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C O R O N A V I R U S

Reduced human activity during COVID-19 alters avian 
land use across North America
Michael B. Schrimpf1, Paulson G. Des Brisay2, Alison Johnston3, Adam C. Smith2,  
Jessica Sánchez-Jasso1, Barry G. Robinson2, Miyako H. Warrington1, Nancy A. Mahony2,  
Andrew G. Horn4, Matthew Strimas-Mackey3, Lenore Fahrig5, Nicola Koper1*

The COVID-19 pandemic resulted in extraordinary declines in human mobility, which, in turn, may affect wildlife. 
Using records of more than 4.3 million birds observed by volunteers from March to May 2017–2020 across Canada 
and the United States, we found that counts of 66 (80%) of 82 focal bird species changed in pandemic-altered 
areas, usually increasing in comparison to prepandemic abundances in urban habitat, near major roads and air-
ports, and in counties where lockdowns were more pronounced or occurred at the same time as peak bird migra-
tion. Our results indicate that human activity affects many of North America’s birds and suggest that we could 
make urban spaces more attractive to birds by reducing traffic and mitigating the disturbance from human trans-
portation after we emerge from the pandemic.

INTRODUCTION
In response to the threats posed by the coronavirus disease 2019 
(COVID-19) pandemic, human movements were restricted to a de-
gree unprecedented in modern times (1, 2). This “anthropause” (3) 
may have had numerous impacts on other species. Urban wildlife 
may have been particularly affected, as markedly decreased vehicu-
lar traffic resulted in decreased air pollution, anthropogenic noise, 
and risks of wildlife collisions with vehicles (4–6). Many bird spe-
cies are negatively affected by roads (7–9), so urban birds may have 
temporarily benefited from decreased traffic [e.g., (10)]. Conversely, 
some species benefit from human disturbances, such as anthropo-
genic noise, which can reduce interspecific competition and pre-
dation rates (11), and thus, the anthropause may have had negative 
consequences for some species. Understanding these interactions 
could ultimately help us to develop effective strategies to reduce our 
environmental footprint in a post–COVID-19 world (12).

We used data from one of the world’s largest biodiversity com-
munity science programs, eBird (13, 14), to examine whether re-
ported bird abundances in cities and surrounding rural areas across 
Canada and the United States changed during the 2020 spring 
migration season (March to May). This 3-month period coincided with 
the largest decreases in human mobility due to pandemic travel restric-
tions in this region. We compared the recorded abundances of 82 bird 
species from March to May before (2017–2019) and during (2020) 
pandemic travel restrictions, among and within 93 counties in Canada 
and the United States that contained urban areas (Fig. 1A). Because 
of potential effects of the pandemic on the behavior of volunteer 
observers (15), we subsampled the available eBird surveys (termed 
“checklists”) to ensure that there were no differences in sampling 
effort, sampling location, or other sampling attributes in the prepandemic 
and pandemic periods (see Materials and Methods and figs. S1 to S4).

We tested whether bird responses to the pandemic differed across 
locations with varying levels of reduced human activity during the 

pandemic lockdowns. Because bird populations and densities naturally 
fluctuate among years, we did not consider increased or decreased 
bird counts in 2020 per se to indicate an effect of travel restrictions. 
Instead, we focused on understanding whether changes occurred in 
the relationships between bird counts and five different indices of 
human activity that underwent pandemic-related changes [described 
below, (i) to (v), and in table S1]. Examining interactions between 
these indices and the prepandemic versus pandemic periods allowed 
us to establish whether abundances changed more in areas where the 
pandemic’s effects were greater. For example, if differences in bird 
observations among years were caused by decreased air and land 
vehicular traffic, we expected that bird abundances would change 
more when close to major roads and airports. This approach also 
allowed us to statistically control for regional variability in lockdowns; 
for example, counties included in our analysis had traffic reductions, 
ranging from 8 to 25% relative to baselines.

We measured human traffic reductions across counties during 
March to May 2020, using the best available mobility data [(i); “change 
in traffic”; Fig. 1A]. In addition, we tested whether bird responses to 
the pandemic were stronger for migrating birds that encountered 
counties primarily during the height of lockdown versus before or 
after the change in traffic had peaked. For this, we calculated the 
county- and species-specific degree of overlap between peak lockdown 
and peak bird migration period [(ii); “migration overlap”; Fig. 1, B to D]. 
Nonzero interactions at the scales of these two indices suggested 
that birds altered their distributions at scales of hundreds to thousands 
of kilometers in response to variable levels of change in average 
vehicular traffic and human activity.

The comparisons above were made across counties, which is the 
finest spatial scale at which we could obtain data on declines in hu-
man mobility due to COVID-19 lockdowns. However, we also ex-
pected that counts of birds might change in response to declining 
human activity within counties, particularly in locations where the 
reduction in human activity was strongest. Therefore, we assessed 
whether the pandemic resulted in changes to the relationships be-
tween bird counts and three other indices that acted as proxies 
of human activity within counties: (iii) distance to major roads, 
(iv) distance to international airports, and (v) urban versus rural sites. 
We tested for interaction effects on bird counts between time period 
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(prepandemic versus pandemic) and each of these three variables. 
We assumed that declines in human activity caused by pandemic 
lockdowns were greater in the vicinity of major roads and airports, 
and in urban compared with rural areas, and thus predicted that 
relationships between bird counts and the pandemic would be in-
fluenced by these proxies of human activity. For example, if a spe-
cies avoided traffic before the pandemic, we predicted that the slope 
of the relationship between bird counts and distance to a major road 
would become shallower (less negative) during the pandemic than 
before the pandemic. Any nonzero interaction terms at this within- 
county scale suggested that, during the pandemic, birds present in a 
county altered their use of areas within roughly 1 to 100 km of land-
scape features associated with human activity.

RESULTS AND DISCUSSION
A total of 4,353,739 observations of individual birds from 88,846 
checklists from the eBird database were selected for the analysis af-
ter filtering and subsampling all available checklists to minimize the 

possibility that results were affected by changes in birder behavior 
during the pandemic. Of 82 focal species, 80% (66 species) showed 
a change in relationship with at least one index of reduced human 
activity during 2020 (Fig. 2 and Table 1). Species were 14 times more 
likely to consistently show increased rather than decreased counts 
when considering all indices, and a species’ response relative to any 
particular index was 2.7 times more likely to be an increase rather 
than a decrease. One-quarter (26%) of species showed both increas-
ing and decreasing responses to reduced human activity, depending 
on which variable was evaluated; for example, red-tailed hawks 
(Buteo jamaicensis) were more commonly observed in urban habi-
tats during the pandemic but were less commonly seen close to major 
roads (Fig. 2). Such mixed results varied greatly among species, sug-
gesting that behavioral adaptations or plasticity have enabled some 
species to cope with or even benefit from certain types of anthropo-
genic disturbances, but not others. For example, many species can 
adjust their vocalizations to communicate more effectively in the 
presence of anthropogenic noise (16), but they may not be able to 
also adapt to changes to the physical environment within urban 

Fig. 1. Change in traffic during COVID-19 pandemic travel restrictions and temporal overlap with migration. (A) Change in traffic volume in 93 counties in North 
America, calculated from (31) as the inverse of the time cell phones spent at home during the peak pandemic lockdown period. (B) Example map showing percent overlap 
between the peak lockdown period and peak migration of an example species, barn swallow (H. rustica). Gray circles are counties in which barn swallows were absent 
from >95% of the checklists and were therefore not included in that model. (C) Changes in human mobility (travel away from home) varied among counties (gray lines). 
Orange line shows an example county [Wake, North Carolina; located at diamond, maps (A) and (B)], and peak lockdown period (25th to 75th percentile of cumulative 
total mobility reduction) for this county is shown using gray rectangle. (D) Example of typical migratory pattern (here, for barn swallow) with the peak period in gray 
rectangle showing 25th to 75th percentile of the cumulative total counts of this species. Overlap between peak abundance and peak travel restriction is the percent of 
the shaded region in (D) that overlaps the shaded region in (C), indicated by the red outline.
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landscapes. Future research should assess whether the effects of 
lockdowns on birds were likely caused by decreased noise, traffic 
mortality, air pollution, or other changes and would help us better 
understand why counts of some species increased in relation to some 
measures of human activity but decreased in relation to others. 
Nonetheless, it is clear that the effects of lockdowns were strongly 
biased toward increasing the number of birds counted in human- 
altered areas when activity and traffic declined.

We detected changes in bird counts across a wide diversity of 
taxonomic families and functional guilds, from hawks to hummingbirds 

(Figs. 2 to 4). Variability in responses within and among taxonomic 
groups was high such that most families included some species that 
consistently increased, consistently decreased, or had mixed responses. 
However, there were some taxonomic trends. All demonstrable effects 
for members of Parulidae (New World warblers) and Passerellidae 
(New World sparrows) represented increases in bird counts in 
response to declining human activity (Fig. 2), suggesting that high 
levels of human activity suppressed the abundances of these families 
before the pandemic. This is particularly notable, as these two families 
account for nearly 50% of the 3 billion birds lost in North America 

Fig. 2. Species-specific responses to declines in human activity during the pandemic. Color matrix indicates whether 82 bird species showed increased (purple), 
decreased (orange), or both (hashed) counts in response to declining human activity (March to May 2020) in the United States and Canada compared with the same areas 
before the pandemic (March to May 2017–2019) based on whether 95% credible intervals of coefficient posterior distributions for statistical interactions between each 
variable and the pandemic/prepandemic period did not overlap zero. Indices of decreased human activity include sites closer to major roads, international airports, or 
urban areas, or counties with greater traffic reductions or greater overlap between peak lockdown and peak migration period. White squares indicate no demonstrable 
change in bird counts, and gray indicates a nonlinear trend such that counts changed slightly in counties with intermediate levels of travel restrictions.
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since 1970 (17). Conversely, two nonnative species that are closely 
associated with urban centers in North America, the rock pigeon 
(Columba livia) and house sparrow (Passer domesticus), did not 
experience any demonstrable effects of lockdowns. The Icterid spe-
cies that we studied, all of which are well-adapted to human-altered 
landscapes, were relatively more likely to decline in counties with 
more migration overlap or as distance to roads decreased (Figs. 2 
and 4), showing the opposite trend compared with many other 
species. Full posterior summaries for all species and interaction co-
efficients are in figs. S10 and S11.

Two-thirds of our focal species showed changes in counts rela-
tive to the among-county indices of human activity. The degree 
of migratory overlap affected more species than any of the other 
indices, and the counts of these species were 5.8 times more likely 
to increase than decrease in counties with higher migration overlap 
(Table  1; e.g., Fig.  3A). This suggests that, during the pandemic, 
many birds used urban areas much more during their migration 
than they otherwise would have. Migratory stopover sites are 
critical to survival during migration (18), meaning that any 
improvement in the quality of such places could have large con-
servation implications. Counts of many species changed in relation 
to the change in traffic among counties, and 1.4 times more species 
displayed increased (e.g., bald eagle, Haliaeetus leucocephalus; 
Fig. 3B) than decreased counts in counties with greater decreases 
in traffic. We note that many cities outside of the United States and 
Canada experienced greater travel restrictions than those examined 
here (the range in traffic reduction among counties in this study 
was 8 to 25%), and thus, the degree of lockdown might have had an 
even greater impact on other continents.

More than half of our focal species showed changes in response 
to human activity within counties during the pandemic (Table  1 
and Fig. 2). Counts of focal species were more than twice as likely to 
increase rather than decrease in urban compared with rural habitats 
during the pandemic (e.g., Fig. 3C). Species were markedly more 
likely to have increased than decreased counts close to airports 
(9 times) and major roads (3.4 times), compared with the pre-
pandemic period (Table 1 and Fig. 3, D and E). Detections of ruby- 
throated hummingbirds (Archilochus colubris), for example, greatly 
increased close to airports during the study period (Fig. 3D). The 
specific mechanisms that explain local-scale effects of lockdowns 
remain unknown, but plausible hypotheses include decreased noise 
(10, 19–20), altered species interactions (21), or decreased air pollution 
(4, 22) with declining human activity. Many species were likely 
influenced by multiple factors; we encourage future research that 
can elucidate the mechanisms that explain these changes. Our results in-
cluded a few examples of species exhibiting decreased abundance 
near roads during the pandemic. Human disturbances such as 
vehicular traffic or industrial noise can have some benefits for wild-
life, such as increasing availability of roadkill for scavenging (23) or 
displacement of predators or competitors of focal species (11). How-
ever, the reduction in heavy vehicle traffic, especially associated with 
airports, apparently benefited many bird species by providing more 
functional habitat.

Not only were many species affected but also many of the effect 
sizes that we observed for the interactions with indices of human 
activity were large (Fig. 4), suggesting strong impacts of reduced 
human activity on birds. For example, counts of some species were 
several hundred percent higher than expected near airports (Fig. 4). 

Table 1. Summary of species responses by predictor variable. The number (percent) of 82 focal species whose counts changed in relation to declining 
human activity during March to May 2020 compared with the prepandemic baseline period (March to May 2017–2019). Responses at among- and within-
county scales are summarized by the number (percent) of species with only increases or decreases, any examples of increases or decreases, and a mix of 
increases and decreases per species among variables at that scale. 

Increase 
(only)

Decrease 
(only)

Ratio of  
increase 

(only):decrease 
(only)

Mixed 
response

Increase 
(any)

Decrease 
(any)

Ratio of  
increase 

(any):decrease 
(any)

Any response

Among-county

 Change in traffic 14
(17.1)

10
(12.2) 1.4

 Overlap 35
(42.7)

6
(7.3) 5.8

 Any among-
county variable

39
(47.6)

9
(11.0) 4.3 6

(7.3)
45

(54.9)
15

(18.3) 3.0 54
(65.9)

Within-county

 Urban-rural 17
(20.7)

8
(9.8) 2.1

 Distance to 
airport

18
(22.0)

2
(2.4) 9.0

 Distance to road 17
(20.7)

5
(6.1) 3.4

 Any within-
county variable

29
(35.4)

5
(6.1) 5.8 9

(11.0)
38

(46.3)
14

(17.1) 2.7 43
(52.4)

 Any variable 42
(51.2)

3
(3.7) 14.0 21

(25.6)
63

(76.8)
24

(29.3) 2.7 66
(80.5)
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Carolina wren (Thryothorus ludovicianus) abundances more than 
doubled near roads (fig. S11), and strong negative relationships with 
roads for barn swallows (Hirundo rustica), gray catbirds (Dumetella 
carolinensis), palm warblers (Setophaga palmarum), and other species 

almost completely disappeared during the pandemic (Fig. 3E and fig. 
S11). This emphasizes the importance of the lockdowns to many spe-
cies and that even moderate reductions in human activity could have 
meaningful conservation implications across some species’ ranges.

Fig. 3. Examples of interactions between the pandemic and prepandemic periods and variables indexing declines in human activity. Marginal predicted mean 
count (lines or points) including 95% credible interval (shaded areas or error bars) of the effect of the predictor on bird counts during the COVID-19 pandemic (purple) 
compared to the prepandemic baseline period (orange) for 5 of 82 North American focal species: (A) overlap between peak migration and peak travel reductions, 
blue-winged teal (Anas discors); (B) percent change in human mobility during pandemic, bald eagle (H. leucocephalus); (C) urban versus rural habitat, black-and-white 
warbler (Mniotilta varia); (D) distance to airport, ruby-throated hummingbird (A. colubris); and (E) distance to major road, barn swallow (H. rustica). Changes to human 
activity during the pandemic increase from left to right on each panel. The y axis shows the mean expected bird count, scaled to a single representative county.
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Our broad, multispecies approach highlights not only how wide-
spread the effects of the pandemic may have been but also how its 
impacts varied in scale among species. The mechanisms at play in 
the responses of different species could be quite different, and more 

species-specific analyses will ultimately be needed to fully explore those 
effects. Behavioral changes resulting from lockdowns have been 
documented in songs of white-crowned sparrows [Zonotrichia 
leucophrys (10)], in habitat use by waterbirds in a 7-ha wetland in 

Fig. 4. Effect of pandemic on bird counts. Y axis shows percent change in expected bird counts relative to predictor variables during the pandemic compared with 
prepandemic levels: the relative difference between the 2017–2019 and 2020 curves in Fig. 3 and fig. S11. Taxonomic families for which the analysis included >3 represent-
ative species are displayed in color. Only nonzero (probability >0.95) interactions are shown. Increases (left) and decreases (right) in relation to pandemic-altered areas 
are shown separately for easier visualization.
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Italy (5), in activity budgets of rock pigeons around Singapore (24), 
and in the use of Australian beaches by Torresian crows [Corvus orru 
(25)]. These diverse impacts demonstrate that responses of birds to 
the pandemic were not limited to North America. Other studies 
have documented changes to bird songs in response to reduced 
vehicle noise (10) and a shift in avian predator behavior leading to 
reduced reproductive success in a colonial seabird (26), emphasizing 
how diverse the species-specific effects of lockdowns were.

Note that our multispecies approach precluded the inclusion of 
species-specific predictors, and thus, the expected mean count for 
any particular species contains considerable unexplained residual 
variation. Semistructured programs like eBird are designed to use 
large sample sizes to evaluate changes in populations and commu-
nities despite such variation. Our goal was to determine whether the 
pandemic altered average bird abundance for a diverse group of birds 
across the widest geographic extent possible, and we recommend 
that any model attempting to predict bird abundance at a particular 
time and place include additional factors to improve predictive 
power for specific species.

Our analytical approach greatly reduced the possibility that 
changes in birder behavior during the pandemic could have affected 
our results. Our spatially explicit subsampling of checklists within 
counties resulted in equal sample sizes and nearly equal distribu-
tions of our predictor variables before and during the pandemic 
(figs. S1 to S4 and table S2). In this way, we minimized the effects of 
varied observer effort, and of birders surveying different locations 
within counties before and during the pandemic. Our focus on 
assessing changes in the relationships between bird counts and in-
dices of human activity, rather than comparing abundance per se 
between pandemic and prepandemic periods, also helped insulate 
our results from variation in the observation process. Detectability 
of birds can be lower in noisy environments, as noise can mask bird 
sounds and distract observers from detecting birds (27). However, 
using independent measures of detection probability (table S3) 
available for most of our focal species, we found no evidence that 
smaller [P > 0.219; see (28)] or less detectable (P > 0.138) species 
were more likely to appear to respond to declining human activity 
during the pandemic (tables S4 and S5). The only significant rela-
tionship between the tendency to alter habitat use during the pan-
demic and mean size or detectability of our focal species was that larger 
species were more likely to alter their habitat use near airports 
(P < 0.047); this is the opposite of the pattern that we would expect 
if the apparent effects of lockdowns on avian abundance were driven 
by observer bias. The taxonomic diversity of species showing changes 
in these relationships adds circumstantial evidence that apparent 
changes in bird counts likely do not result from changes in detect-
ability of birds by birders. Furthermore, we note that many species 
exhibiting increased counts in response to decreased human activity 
(such as ducks, wading birds, and raptors) are species that are usually 
detected visually and are thus relatively insensitive to variation in 
detectability caused by noise. Together, these results suggest that it 
is unlikely that pandemic-related changes in detection were a major 
cause of the patterns that we observed. Nonetheless, we cannot rule 
out the possibility that some species were more detectable during 
than before the pandemic.

Our results suggest that travel restrictions increased use of 
human-altered landscapes by many bird species in response to de-
creases in human activity. However, we cannot yet be certain that 
these trends resulted in conservation gains, especially given the quick 

recovery of traffic levels in many areas. For example, birds that 
occurred in relatively undisturbed territories during peak lockdown 
may have been exposed to increasing traffic noise and road mortality 
levels once lockdowns were eased, resulting in ecological traps during 
the ensuing breeding season (29–32). Further research should assess 
whether demographic parameters, such as mortality, nest success, 
and fecundity, also changed during the pandemic. Nonetheless, our 
results demonstrated that a reduction in human activity affects the 
distribution of many North American bird species. The widespread 
increases in counts of birds in response to reduced human activity 
during the pandemic suggest that a sustained reduction of vehicular 
traffic and human activity might have lasting benefits to birds.

The reduction of traffic associated with the sudden closure of 
global economies had tremendous negative impacts on livelihoods 
of many people, and these impacts must be addressed to achieve 
goals of social, economic, and environmental sustainability. How-
ever, as we move toward a post–COVID-19 society, our results sug-
gest that finding ways of replicating some of the decreases in human 
activity that occurred during the pandemic could benefit many species 
of birds and other wildlife. Simple solutions to reduce noise, such as 
sound barrier walls, have been shown to mitigate the effects of in-
dustrial noise on birds (11). New technologies and policies may also 
help reduce road traffic, for example, by permanently increasing the 
work-from-home habits developed during pandemic lockdowns. 
Out of this event of great human suffering, we hope that, as a society, 
we gain knowledge and humility that will “challenge humanity to 
reconsider our future on Earth” (3) and that we will choose to make 
real-world changes that benefit both humans and other species.

MATERIALS AND METHODS
Study area
Our study included every county (“census division” for Canada) in 
the United States and Canada that contained a municipality with 
more than 50,000 residents, an international airport within municipal 
boundaries (n = 95), and at least 200 eBird checklists during our 
study period (n = 93; data S1). We chose 50,000 residents because it 
is a threshold used to describe metropolitan areas by both Statistics 
Canada and the U.S. Census Bureau, and it limited our focal cities 
to those that had sufficient numbers of eBird checklists for analysis. 
We used only cities that included international airports within 
municipal boundaries to evaluate impacts of distance to airport on 
changes in bird populations. For cities spread over multiple adjacent 
counties, we included each county that encompassed that city if the 
county included at least 10% of the city’s population. In Canada, 
counties were defined by the second-level divisions in the Database 
of Global Administrative Areas (33), which generally correspond to 
census divisions.

Data collation
We used bird data recorded by community science volunteers par-
ticipating in the online eBird program. Volunteers of various skill 
levels entered observations of bird presence and abundance using 
semistructured surveys known as checklists, each of which is a re-
cord of all birds the observers (or groups of observers) found during 
a given period at a given location. Each checklist is stored in con-
junction with relevant effort metadata (e.g., duration and distance 
traveled) in the eBird database (13, 14). We used the eBird Basic 
Dataset, version May-2020, from which we extracted data from our 
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focal counties for March to May 2017–2019 (prepandemic period) 
and March to May 2020 (pandemic period). As eBird data were 
collected opportunistically by volunteers, we filtered the data so that 
we could be confident that observed changes in relative abundance 
did not result from changes in methods or survey effort in space or 
time (15, 34). To control for effort-related biases in detection, check-
lists were only included if (i) users indicated that they recorded all 
birds detected during the survey, i.e.,

“complete” checklists from which we could obtain both detected 
presence and pseudo-absence; (ii) the protocol type was either 
“stationary” or “traveling”; (iii) duration was ≤5 hours; (iv) dis-
tance traveled was ≤3 km; and (v) the number of observers was ≤10 
(34). Distance traveled and duration of each checklist were also 
included in our statistical models as covariates. In addition, because 
new eBird users have consistently lower detection rates than experi-
enced users (35), and because of anecdotal suggestions that many 
people at home during the pandemic may have started using eBird 
in 2020, we excluded any checklists from 2020 observers who did 
not also submit data from the same county at least once in the same 
months during the prior 3 years.

Because of computational constraints and to ensure that sample 
sizes were similar among counties, we subsampled checklists using 
the procedure described below to a maximum of 1000 per county 
for use in modeling. The spatial distribution of eBird surveys is 
biased toward areas of high population density, so our decision to 
focus entirely on counties including cities with more than 50,000 
residents helped to reduce variability in eBird sampling density among 
counties. To further reduce bias that might result from checklists 
overrepresenting specific locations within counties, we used a step-
wise, stratified process to thin the data within counties. We split each 
county into a hexagonal grid with midpoints separated by 3 km, and 
randomly sampled a pair of checklists, each with one list from 2017 
to 2019 and one from 2020, from each grid cell sequentially, until 
each cell no longer had a suitable pair or the maximum number had 
been reached. Choosing the same number of prepandemic and pan-
demic checklists from each cell minimized the effects of birders 
choosing to visit different areas during 2020 than previously. Drawing 
from grid cells sequentially ensured that our subsample had the 
largest possible geographic coverage within each county. Following 
this procedure, two counties containing fewer than 200 checklists 
were dropped from the analysis, leaving a total of 93 counties, 80 of 
which contained the maximum of 1000 checklists and 13 with fewer 
(ranging from 204 to 954). To ensure that sample sizes were suffi-
cient to evaluate both within- and among-county responses to de-
clining human activity, each species was modeled with data from all 
counties in which it was present in at least 5% of checklists. Only 
species for which that threshold was met in at least 30 counties were 
included in the analysis. The count of each focal species, including zeros 
if the species was not detected, was extracted from each checklist.

The natural log of the distances of each eBird checklist to the 
nearest major road [defined as level 1 and 2 roads (36), which gen-
erally correspond to national, state, and county highways] and the 
nearest international airport (37, 38) were calculated using the Near 
tool within ArcGIS (39). These variables were centered so that zero 
indicated moderate distances to roads or airports. Note that distance 
was measured to the single point location chosen for each checklist, 
which often includes some error, and any single checklist could have 
involved travel up to several kilometers from the starting point. 
Therefore, any relationship between distance to a major road or 

airport and the expected mean count of a bird species should be 
interpreted as a general relationship over long-run averages.

We assessed whether counts of each species changed in urban 
and rural sites using land cover data derived from the North American 
Land Change Monitoring System 30-m resolution land cover layer, 
which is based on 2015 Landsat satellite imagery for Canada and the 
United States (40). We reclassified all land types not in the “urban” 
category into a single “rural” (nonurban) category and then calcu-
lated a binary land cover score for each eBird location based on 
whether the rounded proportion of pixels within 50 m of the location 
of each checklist was primarily urban or rural. We used the binary 
measure rather than a continuous measure of percent urban for 
simplicity, and because the majority of checklists (64%) were 100% 
urban or 100% rural. We then scored each checklist as 0 = mostly 
urban or 1 = mostly rural. We note that the term rural also includes 
extensive undeveloped areas within municipal city limits, such as 
large parks or bodies of water.

To generate an index of relative change in vehicular traffic among 
counties (change in traffic), we used COVID-19 Community 
Mobility data (41), which are based on movement of mobile phone 
users who shared their locations using the Location History setting 
on their phones. These data represent changes in mobility relative 
to expected values calculated daily, relative to the appropriate day of 
the week averaged across the 5-week baseline period from 3 January 
2020 to 6 February 2020. Mobility data were assessed at the scale of 
counties within the United States, and at the scale of provinces in 
Canada (41), where data at the county level were not present. We 
created an index of change in traffic during the pandemic period 
using time spent at home as a negative index of change in traffic 
volume (fig. S1) such that an increased period of time at home indi-
cated decreased traffic volume. This index was chosen on the basis 
of (i) our expectation that time spent at home is a negative index of 
time spent in all activities, cumulatively, outside the home; (ii) the 
high negative correlation between time spent at home and time spent 
at either work (r = −0.901, n = 9021) or retail and recreation facili-
ties (r = −0.666, n = 9021); and (iii) the absence of other data sources 
on traffic volumes at the scale of individual counties. We averaged 
the relative daily change in time spent at home from 1 March 2020 
to 31 May 2020 for each county as our measure of change in traffic during 
the pandemic period. This variable was centered for modeling.

To account for the fact that many migrant species traveled through 
different counties at different times, we created a species-specific 
index of overlap between the peak period of human travel restric-
tion and peak bird migration period for each county (hereafter, 
“overlap”). We defined the period of peak travel restriction as the 
days between the 25th and 75th percentiles of the cumulative sum 
of changes in traffic, and the peak migration period as the days 
between the 25th and 75th percentiles of the cumulative sum of 
number of birds recorded among sample checklists (Fig. 1). These 
“peak” periods reflect periods when both traffic levels and migra-
tion were at their highest levels. We calculated the proportion of the 
migration peak that overlapped with the travel restriction peak and 
then subtracted one from that proportion to create a measure that 
ranged from negative one (lowest possible overlap) to zero (highest 
possible overlap). This approach ensured that the main effect of any 
variable interacting with overlap indicated the effect of that variable 
when migration coincided most strongly with decreased traffic (i.e., 
overlap = 0) to facilitate interpretation of parameter estimates. This 
approach was used for all species, even those that were primarily 
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residents in some counties, for which overlap was generally at or close 
to 100%. In these cases, one can think of the overlap term as repre-
senting the co-occurrence of peak lockdown with peak presence.

We investigated collinearity among predictors and found few 
correlations among variables. Correlation between logged distance 
to road and logged distance to airport from all checklists was statis-
tically significant, due to the very large sample size, but  was very 
close to zero (0.069; fig. S5), suggesting that less than 1% of the varia-
tion in each variable was explained by the other. The change in traffic 
at the level of the county was unrelated to the distance to road or 
airport (figs. S6 and S7). As might be expected, rural checklists were 
located slightly further from airports and major roads than urban 
checklists (figs. S8 and S9); however, the large overlap in their dis-
tributions makes any concerns about collinearity among those 
variables relatively minor.

Statistical models
Relative abundance of each species (species-specific count from each 
checklist) was modeled as a negative binomial process within a gen-
eralized linear mixed model, as the negative binomial distribution 
was found to provide the best fit in prior analyses of eBird data (34). 
County was included as a hierarchical random effect. Fixed variables 
included the main effect of the pandemic period (i.e., prepandemic 
or during pandemic), distance traveled during each checklist (kilo-
meters), duration of each checklist (minutes), main effects of the 
five variables of interest [(i) change in traffic, (ii) migration overlap, 
(iii) distance to major road, (iv) distance to airport, and (v) urban 
versus rural location], and interactions between the five variables 
of interest and the pandemic period. We used March to May of 
2017–2019 to describe prepandemic baseline bird counts (code = −1) 
and considered March to May of 2020 to be the pandemic period 
(code = 0).

We performed a Bayesian regression for each species using weakly 
informative priors for all parameters. All covariates were given priors 
drawn from a normal distribution with mean of zero, given that we 
had no preconceived notion about the effect size of any of the 
parameters, and SD of 2.5 divided by the SD of the covariate. This 
prior is informative enough to create reasonable limits on values for 
the coefficients, thus promoting model fit, without severely con-
straining the posterior within those limits (42). The grouped (i.e., 
random) county-specific intercepts were assigned a multivariate 
normal distribution with mean of zero and SD of 2.5, applied as a 
decomposition of a covariance matrix with regularization, concen-
tration, shape, and scale parameters all equal to one, as described in 
(43). The negative binomial reciprocal dispersion parameter had an 
exponential prior with  = 1. All of these choices for priors provided 
relatively flat probabilities over realistic possibilities for the coeffi-
cients, without being too broad as to negatively influence the stability 
of the computations. Prior-posterior overlap was inspected visually 
for each species model to ensure no posteriors heavily mirrored 
prior distributions.

We implemented the models in the Stan programming language 
using the R (44) package rstanarm v2.21.1 (45). Each model was ini-
tially run with five chains of 1000 iterations, following a 300-iteration 
adaptation, with a thinning rate of one. Convergence was assessed 
visually and by inspecting R̂ values and effective sample size of pos-
teriors (data S3). Seven species displayed a slight lack of chain mixing 
and were rerun with two to four times the thinning rate and number of 
iterations to provide appropriate samples from posterior distributions. 

Each of the five interactions of interest was assessed by calculating 
its marginal effect (Fig. 2 and fig. S11) using the R package ggeffects 
(46) and then interpreting the directionality of the shift in relation-
ship from prepandemic to pandemic periods. This approach uses 
the 95% credible interval of the focal coefficient and average values 
for all other coefficients to predict the expected count in a single 
county. Therefore, the value of the expected count is less meaningful 
than the proportional change due to the pandemic (Fig. 3).

Our interpretation of results focused on interaction coefficients 
with a posterior probability ≥0.95 of being either greater or less 
than zero (fig. S10), and we considered all other interaction terms as 
not providing clear enough evidence of a change in the relationship 
due to the pandemic. We considered this a conservative cutoff and 
stress that a lack of demonstrable result for a particular species-by- 
variable combination here should not be taken as strong evidence 
that the pandemic did not affect that species in that way. Relation-
ships that did show a high posterior probability of changing during 
the pandemic were designated as either showing increased or de-
creased counts relative to declining human activity during the pan-
demic based on the direction of the shift. We considered changes in 
the intercept relatively uninformative, as this simply indicated a 
different abundance in 2020, which could have varied regardless of 
the pandemic. Our interpretation relied on directional shifts in the 
slope. For example, ruby-throated hummingbirds were more abundant 
in 2020 close to airports but not far from them, showing an increase 
in their counts in response to declining human activity during the 
pandemic (Fig. 3D). Conversely, indigo bunting counts were greater 
in proximity to airports during prepandemic years, but that relation-
ship mostly disappeared during 2020, showing a decrease in response 
to the decline in human activity (fig. S11). In cases where predictor 
variables were transformed for modeling purposes, they were back- 
transformed for visualization in figures such that the right side of 
the x axis always shows areas more altered by the pandemic.

Detectability
We used the following approaches to evaluate whether the patterns 
that we detected in bird counts during the pandemic might have 
been caused by increased detectability of birds that would otherwise 
have remained undetected under normal anthropogenically modi-
fied acoustic conditions. First, we hypothesized that if apparent changes 
in bird counts were caused by increased detectability during the 
pandemic, then those species that are least detectable should show 
the greatest increases in counts in response to declining human 
activity during the pandemic. We evaluated this separately for each 
interaction term. To do this, we used an independently derived 
measure of detectability for each species by using a statistical method 
developed by Sólymos et al. (47). Briefly, removal sampling (48) was 
used to estimate the species-specific rate at which birds provide a cue 
that make them detectible (e.g., sing, call, move to a conspicuous 
perch, and conspecific interaction), and distance sampling (49) was 
used to estimate species-specific effective detection radius around a 
human observer. We estimated cue rates and effective detection radii 
using a point count database from the Canadian Wildlife Service 
and obtained previously published estimates of these parameters from 
(50). If estimates for a given species were available from both sources, 
we calculated the mean. Last, we used equations from (47) to esti-
mate the total probability of detecting each species during a 5-min, 
100-m-radius point count and considered this to be a relative measure 
of detectability among species. Point-count data used to estimate 
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relative detectability were collected primarily from boreal forest, aspen 
parkland, and prairie grassland ecosystems in Canada. We were 
able to use these methods to calculate detectability for 54 of our 82 focal 
species. Detectability ranged from 0.06 (ruby-throated hummingbird, 
A. colubris) to 0.62 (American crow, Corvus brachyrhynchos), with 
a mean of 0.36 (SD = 0.12; table S3).

Our prediction was that if observed patterns were caused by 
detectability, less detectable species should show more increases in 
response to lockdown relative to more detectable species. To calcu-
late the response variable, we therefore categorized species that ex-
hibited increased counts in response to decreased human activity as 
1 and species with decreased counts or no demonstrable responses 
as 0. We also wanted to test whether detectability might explain any 
observed changes in bird counts (both increases and decreases in 
response to decreased human activity), so we conducted a second 
suite of analyses in which the response variable was calculated by 
categorizing species with either increases or decreases as 1, and spe-
cies for which there was no demonstrable change as 0. We then used 
a binomial process within a generalized linear mixed model to evaluate 
impacts of species-specific detectability on the probability of apparent 
increases (or apparent changes) in counts in response to declining 
human activity for each interaction term. We included taxonomic 
family as a random variable to account for potential similarities in 
relative detectability among related species (table S4).

Previous research has also demonstrated that smaller species are 
more likely to show decreased detectability near roads than larger 
species (28), so we also wanted to ensure that our analyses were not 
driven by body size. On the basis of (28), we hypothesized that if 
changes in bird counts were caused by smaller birds being more 
detectable during the pandemic, then smaller species should show 
the greatest increases in counts in response to declining human 
activity during the pandemic. We, therefore, used the same approach 
as described above for detectability analyses, but with average body 
size per species as the fixed independent variable. Body size data 
were obtained for each of our focal species from (51). As above, we 
assessed both whether smaller species were more likely to show in-
creased counts in response to declining human activity and whether 
smaller species were more likely to show any differences in counts 
in response to declining human activity (table S5).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abf5073
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