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Impact of artificial intelligence on prognosis, shared decision-making, and 
precision medicine for patients with inflammatory bowel disease: a 
perspective and expert opinion
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ABSTRACT
Introduction:  Artificial intelligence (AI) is expected to impact all facets of inflammatory bowel 
disease (IBD) management, including disease assessment, treatment decisions, discovery and 
development of new biomarkers and therapeutics, as well as clinician–patient communication.
Areas covered:  This perspective paper provides an overview of the application of AI in the 
clinical management of IBD through a review of the currently available AI models that could be 
potential tools for prognosis, shared decision-making, and precision medicine. This overview 
covers models that measure treatment response based on statistical or machine-learning methods, 
or a combination of the two. We briefly discuss a computational model that allows integration of 
immune/biological system knowledge with mathematical modeling and also involves a ‘digital 
twin’, which allows measurement of temporal trends in mucosal inflammatory activity for 
predicting treatment response. A viewpoint on AI-enabled wearables and nearables and their use 
to improve IBD management is also included.
Expert opinion:  Although challenges regarding data quality, privacy, and security; ethical 
concerns; technical limitations; and regulatory barriers remain to be fully addressed, a growing 
body of evidence suggests a tremendous potential for integration of AI into daily clinical practice 
to enable precision medicine and shared decision-making.

ARTICLE HIGHLIGHTS
•	 Advances in artificial intelligence (AI) show promise for improving treatment response 

prediction, decision-making, and precision medicine in inflammatory bowel disease (IBD).
•	 In particular, AI could improve precision medicine for IBD by enabling identification of disease 

subtypes, prediction of disease progression and treatment response, selection of personalized 
treatments, and remote monitoring.

•	 Predictive models can benefit clinicians and patients alike by optimizing shared decision-making 
processes; patients can also use AI to cope with daily and long-term challenges of the disease.

•	 Beyond patients and practitioners, predictive models may positively impact healthcare 
structures and payers by enabling effective healthcare-resource utilization.

•	 To increase the accuracy and efficiency of AI models, biomarkers, patient-reported outcomes, 
and disease scores should be combined within predictive models, and the outputs should be 
compared with clinical trial data and real-world data for validation.

1.  Introduction

Inflammatory bowel disease (IBD) is a chronic, debilitat-
ing, inflammatory condition of the gastrointestinal tract, 
which comprises two main pathologies: ulcerative colitis 
(UC) and Crohn’s disease (CD) [1]. It is characterized by 
a lifelong, unpredictable, relapsing-remitting, and 
destructive course associated with irreversible bowel 
damage, which causes considerable morbidity and poor 
quality of life [2]. The pathogenesis is multifactorial, 

involving loss of tolerance to the commensal gut micro-
biome, intestinal epithelial barrier dysfunction, and 
immune dysregulation [3].

IBD diagnosis relies on clinical features, laboratory 
biomarkers (C-reactive protein [CRP] and fecal calpro-
tectin [FCP]), imaging (endoscopy, magnetic resonance, 
ultrasonography, nuclear-medicine techniques), and 
histology [4]. Although treatment algorithms have 
been developed based on clinical evidence, they do 
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not optimally integrate the heterogeneity in present-
ing symptoms, treatment response, and long-term clin-
ical outcomes, such as the development of strictures 
and need for surgery [3]. Therefore, there is an unmet 
need for precision-medicine strategies to improve 
diagnostic and therapeutic approaches to IBD [3, 5].

Advancements in artificial intelligence (AI) technolo-
gies have transformed the way clinicians and research-
ers handle, analyze, decode, and interpret large, 
complex, multifaceted datasets [3]. AI is a multidisci-
plinary field integrating insights from engineering, 
computer science, linguistics, and philosophy, wherein 
systems that could show or mirror human intelligence 
are comprehended, designed, and developed [3]. 
Machine learning (ML), a subdiscipline of AI, has signif-
icant relevance in the healthcare sector, especially sup-
porting diagnosis and outcome prediction [6].

AI has the potential to transform the clinical man-
agement of IBD by providing impactful insights 
through the analysis of large, complex volumes of data 
[7]. AI could influence almost all domains of IBD man-
agement including disease assessment, treatment 
decisions, discovery, and development of new bio-
markers and therapeutics, as well as patient communi-
cation (Figure 1).

In this perspective article, we briefly outline 
advances in AI technologies for the diagnosis and 
endoscopic assessment of IBD. We review various sta-
tistical and AI models predicting treatment response 
and risk of complications in patients with CD, with a 
deep dive into a multimodal AI model predicting the 
treatment response to vedolizumab in patients with CD.

CD was chosen as the main focus of the discussion 
as it is more complex to diagnose and manage than 

Figure 1.  Potential use of AI in the management of IBD.
AI, artificial intelligence; IBD, inflammatory bowel disease; ML, machine learning; NLP, natural language processing.
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UC. The author’s view on this topic is also presented, 
along with expert opinion on the impact of AI on 
prognosis, decision-making, and precision medicine for 
the management of IBD in general.

2.  AI for IBD diagnosis

Most studies evaluating AI for the diagnosis of IBD are 
based on either ML or convolutional neural networks 
to analyze genetic/genomic datasets, imaging and 
endoscopy datasets, and protein expression/proteom-
ics datasets [3].

A major challenge in IBD diagnosis is distinguish-
ing between CD and UC, which is usually done on 
the basis of clinical features, such as how the inflam-
mation is distributed along the gastrointestinal tract 
[3]. AI has been used to analyze molecular data to 
distinguish between CD and UC [8]. Recently, 
Kraszewski et  al. developed a simple diagnostic meth-
odology based only on markers from blood, urine, 
and stools that could be used by a general practi-
tioner for early diagnosis of IBD [9]. Such a model 
would be useful for IBD diagnosis in difficult circum-
stances, like the recent COVID pandemic, during 
which the gold-standard endoscopic evaluation was 
difficult to use. Using random forest ML methods, the 
model could diagnose CD and UC with 97% and 91% 
mean average precision, respectively, demonstrating 
the feasibility of IBD diagnosis using noninvasive 
methods. The UC model included age, gender, and 14 
routinely collected laboratory variables (FCP, platelet–
large cell ratio, erythrocyte sedimentation rate, creat-
inine, hemoglobin, mean corpuscular hemoglobin 
[MCH], low-density lipoprotein cholesterol, peripheral 
blood erythrocytes, peripheral blood leukocytes, hep-
atitis B e-antigen, carcinoembryonic antigen, bacteri-
uria, microscopic stool ova and parasites test, and 
glucosuria). For diagnosis of CD, the most significant 
laboratory markers were peripheral blood neutrophils, 
mean platelet volume, MCH, mean corpuscular hemo-
globin concentration, hematocrit, alkaline phospha-
tase, potassium, total bilirubin, aspartate transaminase, 
peripheral blood monocytes, erythrocytes, basophils, 
and erythroblasts [9]. Involvement of genes and their 
variants in disrupting molecular function are of grow-
ing interest for CD diagnosis and AI/ML methods 
have been used to elucidate such relationships 
[10, 11].

3.  AI for endoscopic assessment

Endoscopic assessment remains the mainstay of 
objective evaluations in IBD and is a key indicator of 

therapeutic response, but it is an invasive procedure. 
Noninvasive prediction models that are based on 
symptoms or routinely used biomarkers cannot pre-
dict endoscopic healing in all patients. Therefore, ile-
ocolonoscopy is the primary approach to assess 
mucosal disease activity and healing in CD [12]. 
However, the established endoscopic scoring systems 
are challenged by recall bias, heterogeneity in clinical 
presentation, and intra- and inter-observer variability 
[13]. Application of AI to estimate endoscopic indi-
ces/scores has been shown to improve precision and 
accuracy in quantifying disease severity for both CD 
and UC [14–20].

Guez et  al. developed a multimodal AI model that 
integrated information from magnetic resonance 
(MR) enterography and biochemical biomarkers, 
such as CRP and FCP, to noninvasively assess ileal 
endoscopic activity in CD [21]. With a better aggre-
gated area under the curve over the folds (0.84 vs 
0.8, p < 1e − 9) and median test mean-squared error 
distribution (7.73 vs 8.8; Wilcoxon test; p < 1e − 5), 
this model performed better than the current clini-
cal linear models based on the MR index of activity 
score as well as the ML models created exclusively 
based on radiological variables or biochemical mark-
ers. Use of this model has potential to reduces the 
number of MR sequences and radiological items 
that need to be assessed by radiologists to predict 
ileal endoscopic activity noninvasively. This noninva-
sive diagnostic method could be an additional 
advantage for young patients with CD as they need 
lifelong monitoring.

Iacucci et  al. have developed an AI model using 
white-light endoscopy and virtual chromoendoscopy 
videos to distinguish histological remission and predict 
risk of flare. The prediction of histological remission 
was found to be similar between white-light endos-
copy and virtual chromoendoscopy videos, with accu-
racy ranging between 80% and 85% [22].

4.  AI in predicting treatment response in CD

AI has been applied in various fields for predicting 
treatment response or selecting treatments. For exam-
ple, it has been used in radiomics to develop a model 
to predict the sensitivity of tumors to nivolumab, 
docetaxel, and gefitinib in patients with non-small cell 
lung cancer [23]. Another example is the development 
of ML-based ‘personalized antibiograms’. Corbin et  al. 
developed ML models predicting antibiotic-susceptibility 
patterns, called personalized antibiograms, using elec-
tronic health record data. Personalized antibiograms 
could achieve similar coverage to the clinician 
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benchmark with narrower antibiotics, which could, in 
turn, improve safety and decrease unnecessary use of 
broad-spectrum antibiotics [24]. Similarly, considerable 
research is being devoted to evaluating the use of AI in 
predicting the treatment response in IBD.

Traditional methods of developing predictive mod-
els in IBD are based on statistical regression, which 
cannot analyze more complex data structures such as 
repeated measurements. AI can help overcome this 
limitation [25]. By facilitating reliable prediction of 
treatment outcomes, AI can inform patient preferences 
and support shared decision-making, thereby enabling 
more personalized and cost-effective management of 
the disease [26]. Nguyen et  al. performed a qualitative 
systematic literature review of studies that compared 
the performance of ML with traditional statistical mod-
els, which were developed based on clinical data rou-
tinely collected to predict IBD risk. This review 
identified 13 studies in which ML-based methods were 
found to perform better than traditional statistical 
methods in terms of predicting response to biologics 
and thiopurines treatment, as well as predicting dis-
ease activity and complications over the long term in 
patients with UC [2]. The performance of some ML 
models developed for predicting treatment response 
in patients with CD is summarized in Table 1. Further 
advancement of the current AI models would make 
them suitable for use in daily practice, where predic-
tion of treatment response, disease course, or compli-
cations can guide clinicians’ treatment decisions.

4.1.  Prediction of treatment response to anti-
tumor necrosis factor (TNF) therapy in CD

In a proof-of-concept study, Con et  al. developed 
deep-learning or artificial neural-network models 
using the biomarker CRP to predict remission (defined 
as CRP < 5 mg/L at 12 months) after anti-TNF therapy 
in CD. The conventional model used baseline data 
only, while the deep-learning models used baseline 
and repeated biomarker data. The ML methods 
showed stronger predictive performance than the 
conventional statistical model with a significantly 
higher area under the receiver operator characteristic 
curve (AuROC; 0.754 [95% CI: 0.674–0.834] vs 0.659 
[95% CI: 0.562–0.756]; p = 0.036) [25].

Park et  al. developed an ML model using the 
imputed gene-expression features that could effectively 
predict non-durable response to anti-TNF agents in 
patients with CD. The model found that the higher 
imputed expression levels of the DPY19L3 and GSTT1 
genes increased, whereas that of NUCB1 decreased the 
probability of a non-durable response (Table 1) [29].

4.2.  Prediction of treatment response to 
ustekinumab

He et  al. developed an ML model based on the unique 
expression of four genes (HSD3B1, MUC4, CF1, and 
CCL11) to predict the response to ustekinumab in 
patients with CD. The model’s AuROC for the training 
and testing datasets were 0.746 and 0.734, respectively 
[30]. This was the first model to build a gene 
expression-prediction model for response to ustekinumab.

4.3.  Prediction of treatment response to 
thiopurines

Using laboratory values and the age of patients, Waljee 
et  al. developed an ML model to predict objective 
remission and clinical outcomes with thiopurines in 
patients with IBD. The AuROC for algorithm-predicted 
remission in the validation set was 0.79 vs 0.49 for 
6-thioguanine nucleotide methods [28].

4.4.  Prediction of complications in patients with 
CD

Siegel et  al. developed a CDPATH or PROSPECT model 
to predict complications (the time from diagnosis to 
occurrence of an internal penetrating disease, bowel 
stricture, or non-perianal surgery, such as bowel resec-
tion or strictureplasty) in patients with CD [33, 34]. The 
PROSPECT tool included the following variables: demo-
graphic and clinical characteristics, medication expo-
sure, time from diagnosis to complication, NOD2 status, 
and serologic immune responses. The tool was cali-
brated and validated in clinical laboratory settings.

4.5.  Prediction of risk for surgery

Two ML models were developed for predicting the risk 
of surgical intervention in patients with CD [31, 35]. 
Stidham et  al. used routinely collected laboratory vari-
ables (complete blood counts and metabolic panels) 
for this. Anti-TNF use was found to be the most 
impactful predictor; it was associated with a lower risk 
of surgery within 1 year. In contrast, corticosteroid use 
was associated an increased risk of surgery. Similarly, 
high platelet counts and mean cell hemoglobin con-
centrations, but low levels of albumin and blood urea 
nitrogen were associated with an increased risk of 
surgery.

Dong et  al. developed ML models predicting the 
risk of CD-related surgery and complications based on 
the predictor variables included in a logistic regression 
model developed by Guizzetti et  al. [36], namely, age 
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Table 1.  Performance of AI models developed for patients with CD.
Study Objective AI method used Performance

Con et  al. 2021 [25] Predicting the response to 
anti-TNF therapy using 
conventional vs 
deep-learning models

Deep learning: feed-forward and 
recurrent neural network

AuROC and 95% CI:
•	 conventional model: 0.659 (0.562–0.756)
•	 feed-forward model: 0.710 (0.622–0.799; p = 0.25 vs 

conventional model)
•	 recurrent neural-network model: 0.754 (0.674–0.834; 

p = 0.036 vs conventional model)
Waljee et  al. 2018 [27] Predicting the response to 

vedolizumab treatment
Random forest method AuROC and 95% CI for corticosteroid-free biologic 

remission at week 52:
•	 baseline data: 0.65 (0.53–0.77)
•	 data through week 6 of vedolizumab treatment: 

0.75 (0.64–0.86)
Waljee et  al. 2017 [28] Predicting the response to 

thiopurine treatment
Random forest method AuROC and 95% CI for objective remission:

•	 ML model using laboratory values and patient age: 
0.79 (0.78–0.81)

•	 method using 6-TGN: 0.49 (0.44–0.54)
Park et  al. 2022 [29] Predicting the non-durable 

response to anti-TNF therapy 
in CD using transcriptome 
imputed from genotypes

LASSO regression AuROC (SD) for training and test datasets:
•	 whole blood (for DPY19L3): 0.845 (0.027) and 0.839 

(0.070)
•	 colon transverse (for TXNDC16): 0.728 (0.060) and 

0.711 (0.150)
•	 small intestine terminal ileum (for 
ENSG00000270127): 0.738 (0.050) and 0.720 (0.120)

AuROC (SD) for training and test dataset, respectively, 
for most frequently selected combination of two or 
three genes for whole-blood expression imputation 
model:
•	 DPY19L3: 0.845 (0.027) and 0.839 (0.070)
•	 DPY19L3 and GSTT1: 0.918 (0.023) and 0.919 (0.040)
•	 DPY19L3, GSTT1, NUCB1: 9 0.935 (0.024) and 0.935 

(0.040)
He et  al. 2021 [30] Predicting response to 

ustekinumab using gene 
transcription profiling of 
patients with CD

Least absolute shrinkage and 
selection operator regression 
analysis

AuROC:
•	 training dataset: 0.746
•	 test dataset: 0.734

Stidham et  al. 2021 [7] Predicting surgical outcomes in 
US veterans with CD using 
ML models incorporating 
routinely collected laboratory 
studies

LASSO regularized logistic 
regression

Mean (SD) sensitivity, specificity, AuROC, Brier score, 
AuROC (random splitting method), and Brier score 
(random splitting method), for the five models, 
respectively:
•	 best model demographic + medication + last labora-

tory measurement + historical laboratory summary: 
0.735 (0.013), 0.726 (0.013), 0.782 (0.0019), 0.0451 
(0.0002), 0.775 (0.0447), 0.0465 (0.0018)

•	 demographic + medication + last laboratory 
measurement: 0.722 (0.011), 0.714 (0.010), 0.761 
(0.0014), 0.0455 (0.0002), 0.761 (0.0446), 0.0466 
(0.0018)

•	 demographic + medication: 0.631 (0.103), 0.702 
(0.012), 0.714 (0.0016), 0.0473 (0.0002), 0.715 
(0.0473), 0.0482 (0.0012)

•	 last laboratory measurement alone: 0.690 (0.009), 
0.670 (0.009), 0.691 (0.0021), 0.0477 (0.0002), 0.673 
(0.0494), 0.0489 (0.0010)

•	 random forest method for all variables: 0.673 (0.017), 
0.652 (0.016), 0.686 (0.0049), 0.0488 (0.0002), 0.675 
(0.0526), 0.0500 (0.0016)

Dong et  al. 2019 [31] Predicting surgery for 
therapeutic decision-making 
in Chinese patients with CD

RF, LR, SVM, DT, ANN Accuracy, precision, true negative rate, and F1 score of 
the models, respectively:
•	 RF: 96.26%, 72.13%, 97.37%, 0.7706
•	 LR: 92.33%, 49.66%, 92.76%, 0.6308
•	 DT: 95.05%, 64.05%, 96.24%, 0.7112
•	 SVM: 92.36%, 50.21%, 93.00%, 0.6288
•	 ANN: 90.89%, 46.83%, 92.24%, 0.5757

Venkatapurapu et  al. 
2022 [32]

Predicting temporal changes in 
mucosal health using a 
computational approach 
integrated with a 
mechanistic model of CD

A hybrid mechanistic-statistical 
platform

Overall sensitivity and specificity:
•	 endoscopic remission: 80% and 69%
•	 mucosal healing: 75% and 70%

Overall performance of the platform:
•	 good (at least 70% of data points matched)
•	 fair (at least 50%)
•	 poor (less than 50%) for 71%, 23%, and 6% of 

patients

6-TGN, 6-thioguanine nucleotide; ANN, artificial neural network; AuROC, area under the receiver operator characteristic curve; CD, Crohn’s disease; CI, 
confidence interval; DT, decision tree; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; ML, machine learning; RF, random 
forest; SD, standard deviation; SVM, support vector machine; TNF, tumor necrosis factor.
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(at enrollment and diagnosis), gender, smoking status, 
perianal disease, previous surgical resection for CD, 
disease location, baseline medication use, abdominal 
mass and pain, strictures, stool frequency, extraintesti-
nal manifestations, and fistulas. The ML model devel-
oped by Dong et al. showed higher accuracy, precision, 
and F1 score than the statistical model [31].

4.6.  Prediction of treatment response to 
vedolizumab—statistical and single-scale AI 
modeling

There are two clinical decision-support tools (CDSTs) 
for predicting treatment response to vedolizumab in 
patients with CD: one developed by Dulai et  al. (2018) 
and the other developed by Waljee et  al. (2018) 
[27, 37–40].

Dulai et al. used a classic regression approach based 
on baseline characteristics as predictors for their 
model. Since vedolizumab exposure is related to its 
response, higher remission rates can be achieved with 
dose intensification in patients with low vedolizumab 
trough concentrations during induction. Moreover, the 
onset of action of vedolizumab is perceived as being 
slow. These notions were examined through external 
validation of the CDST developed by Dulai et  al. using 
three external cohorts [38, 39]. The first external vali-
dation was conducted using GEMINI 2 clinical trial 
data (NCT00783692) to evaluate whether differences in 
the remission rates are associated with differences in 
vedolizumab concentrations. The study also assessed 
whether the CDST can predict variations in the onset 
of action of vedolizumab. The second external valida-
tion was conducted using data from the GETAID pro-
spective study and VICTORY cohorts to evaluate the 
CDST’s ability to accurately identify patients who may 
benefit from dose intensification. The CDST’s ability to 
measure the probability of surgery for CD while on 
vedolizumab was also evaluated. The tool was further 
validated to identify patients at risk of higher 
healthcare-resource utilization, particularly surgery and 
hospitalization [39]. These validations offer opportuni-
ties for therapy optimization, although with some lim-
itations. For example, strong uncertainties remain 
about the vedolizumab serum cut-off point for clinical 
remission [41].

Waljee et  al. used an ML random forest approach 
based on baseline characteristics and early treatment 
outcomes during the vedolizumab induction phase 
reported from a clinical trial to build their model. The 
AuROC for corticosteroid-free remission at week 52 
considering only baseline data was 0.65 (95% CI: 0.53–
0.77), whereas it was 0.75 (95% CI: 0.64–0.86) 

considering data until week 6. This model could iden-
tify patients who were unlikely to attain remission in 
6 weeks [27].

5.  Deep dive: prediction of treatment 
response to vedolizumab—multiscale system 
modeling in immunology

None of the models described in the previous section 
of this paper can predict temporal changes in treat-
ment outcomes or mucosal health. There is therefore a 
need for tools that can help bridge the gap between 
subjective and infrequent objective assessments of dis-
ease severity and support decision-making on therapy 
initiation or continuation.

Venkatapurapu et  al. tried to address this need by 
developing a computational platform that can esti-
mate changes in mucosal health and inflammatory 
activity over a continuous timeline of weeks to years 
[32]. This model was based on the concept of systems 
modeling in immunology [32], which involves multi-
scale modeling integrating molecular, cellular, tissue, 
and organ-level functions (Figure 2). Such multiscale 
models are promising in-silico tools to evaluate new 
therapeutic targets, new biomarkers, and treatment 
responders and non-responders [42].

5.1.  Model description/structure

This multiscale model (Venkatapurapu et  al. [32]) inte-
grates the most current knowledge about each 
immune system with mathematical modeling. The 
platform has the following three major components: 
an ML-based responder classifier, a mechanistic model 
of CD pathophysiology, and a virtual library of patients 
with CD—termed a ‘digital twin’. Using the decision 
tree, a response classifier classifies patients qualita-
tively into having a complete, partial, or no response. 
The mechanistic model is a mathematical representa-
tion of the gut immune system and CD pathophysio-
logical mechanisms in the form of coupled differential 
equations. This method allows for quick mapping of 
real patients with their digital twins. The platform can 
predict endoscopic remission and mucosal healing 
after vedolizumab treatment with an overall sensitivity 
of 80% and 75%, and a specificity of 69% and 70%, 
respectively [32].

5.2.  Author’s view on the model’s potential impact 
on clinical practice

Venkatapurapu et  al. referred to STRIDE I (2015) to 
anchor their model to the therapeutic strategy for CD 
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[32]. However, they seemed to anticipate its evolution 
(STRIDE II) by integrating biomarkers and endoscopic 
scores into their platform and considering the VERSIFY 
study as reference data for training and testing their 
model [43–45]. The multiscale model has the potential 
to affect clinical practice in several ways. It was devel-
oped and validated to predict the evolution of tissue 
damage in response to treatment with vedolizumab. 
Similar training and validation for other biologics will 
enable forecasting of the effect of treatment on 
important clinical measures—such as ulcerated area, 
ulcer size, and overall simple endoscopic score–Crohn’s 
disease (SES-CD)—as well as various biomarkers. This 
process could be customized using individual patients’ 
historical data, rather than relying on a population 
average, offering an effective CDST for physicians to 
manage treatment plans and facilitate shared 
decision-making with patients [32].

Although remarkably innovative and high perform-
ing, with inaccurate FCP concentration prediction over 
time and no integration of the transmural healing 

aspects within the model, the proposed model does 
not fully comply with the recent STRIDE II guidelines 
that recommend selection of therapeutic targets in 
IBD. Hence, complementary work is needed to opti-
mize the model and its deliverables for more effective 
utilization in clinical practice. Another limitation is that 
endoscopic data cannot be used to define transmural 
damage and extraluminal disease; thus, MR data may 
be needed to corroborate the model’s predictions. MR, 
computed tomography, and ultrasonography allow 
noninvasive measurement of transmural inflammation, 
strictures, fistulae, abscesses, and proximal small bowel 
involvement with high sensitivity and specificity [46, 
47]. Hence, cross-fertilizing SES-CD with the MR index 
of activity (MaRIA) score might improve the predictive 
value of the model, especially for patients with a poor 
healing response. Thus, the model’s accuracy is cur-
rently limited because the SES-CD drives 
progression-response scenarios and response classifi-
ers, while the FCP and disease location data drive 
digital-twin assignment.

Figure 2.  Building the multiscale model platform.
MoA, mode of action; QSP, quantitative systems pharmacology.
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5.3.  Considerations for future development

Certain future standpoints could be considered for 
advancement of this model. The model should be 
tested using real-world data either retrospectively or 
prospectively, including biomarkers such as FCP and 
CRP, disease scoring such as CDAI or the Lemann index, 
endoscopic scoring such as SES-CD or modified multi-
plier SES-CD, and transmural scoring such as MaRIA. The 
purpose of this testing would be to: (1) verify that the 
model considers the diversity of disease outcomes 
through virtual patients; (2) identify which parameters 
help generate diversity as seen in the real world; (3) 
adjust the mathematical algorithms; (4) ensure model 
granularity to generate realistic virtual patients; (5) vali-
date the accuracy of the assumptions made during 
model development; and (6) reach the relevant magni-
tude of responses to various treatments. A multicenter 
and international study on the model’s application in 
everyday clinical practice is required for it to be valued 
as an element of precision medicine for IBD in the future.

6.  AI apps, chatbots, wearables, and nearables 
in IBD management

Following the introduction of the STRIDE II guidelines, 
treatment targets are shifting from symptom-based 
control to inflammation-based control, which requires 
monitoring of both symptoms and biomarkers. This 
evolution has challenged patients as well as providers 
to find alternative ways for monitoring, communicat-
ing, and treatment goal setting. Digital health can help 
meet this need, and the use of digital health technol-
ogies (e.g. tools leveraging smart phones, tablets, 
internet platforms, and wearables) is growing [48]. A 
scoping review of digital health apps for the clinical 
care of patients with IBD identified 11 relevant digital 
health apps; most of these apps were for obtaining 
data on patient-reported disease activity, and some 
were for treatment management [49].

Zand et  al. developed a natural language process-
ing (NLP)-based chatbot to categorize electronic mes-
sages from patients with IBD into various categories, 
such as medication queries, laboratory investigation 
results, and insurance or finance. The appropriateness 
of this classification was evaluated by three indepen-
dent physicians. The concordance between the algo-
rithm and physicians was found to be 95% [50].

Jagannath et  al. [51] evaluated a wearable sweat 
sensor that can monitor sweat biomarkers for IBD. 
Given the role of exercise in IBD management [52], 
these types of devices could be useful for patients 
with IBD and become part of routine management for 
these patients [51].

7.  AI in drug discovery for IBD

Evidence shows that AI is being increasingly applied in 
drug discovery and design, and quantitative 
structure-activity/property relationship (QSAR/QSPR) 
modeling presents the state-of-the-art applications in 
this field [53]. AI can support broad chemical space 
exploration, fast and easy identification of hit mole-
cules, suggest their route of synthesis, help predict the 
required chemical structure, and explain drug–target 
interactions and structure-activity relationship [54]. An 
AI application ‘Found In Translation (FIT)’ has been 
developed that uses public gene-expression data to 
predict novel disease-associated genes. This model can 
extrapolate the results of a mouse experiment to 
humans [55]. In addition, the use of virtual patients 
and in-silico trials may lead to more targeted, safer, 
and effective treatments and reduce the need for trials 
and the risk of error [56].

AI-designed drugs for IBD have recently entered 
phase 1 clinical trials. For example, a protein kinase 
C (PKC) theta inhibitor was fully designed by AI, and 
its doses for the first-in-human trial (FIHT) were cal-
culated using ML integrating numerous pharmaco-
logical properties [57]. PKC-theta is critical in 
controlling T-cell functions and drives several auto-
immune and inflammatory diseases, including differ-
ent types of chronic colitis and IBD. The design-to-FIHT 
duration for such small molecules usually takes 
5–10 years, but was about a year in this case [57]. 
Another example is the development of a 
barrier-protective therapy for IBD using a Boolean 
network explorer (a computational platform) by 
Katkar et  al. [58]. This therapy comprises the dual 
agonism of two nuclear receptors—peroxisome 
proliferator-activated receptors (PPAR)α and PPARγ—
with the aim of altering macrophage processes and 
mitigate colitis. This therapy could correct gene 
expression from disease to health [58]. Additionally, 
Wang et  al. developed an ML-based tool (AVA,Dx – 
Analysis of Variation for Association with Disease) 
that incorporated exonic variants from whole exome 
or genome sequencing data to identify IBD patho-
genesis pathways [10].

8.  Conclusion

A growing body of evidence showcases the tremen-
dous potential for integrating AI into daily clinical 
practice to enable personalized medicine and shared 
decision-making in various diseases, including IBD. 
However, more work is needed to test and validate 
these ideas and to change treatment practices. 
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Research should consider challenging already estab-
lished platforms with new omics, molecular, physiolog-
ical, clinical, imaging, and therapeutic updates.

9.  Expert opinion

IBD is a chronic, complex, debilitating disease affecting 
millions of individuals worldwide. It is difficult to man-
age and causes significant morbidity and quality-of-life 
burdens from an individual perspective, and structural 
and financial concerns from a healthcare perspective. 
Advances in AI hold promise for improving prediction, 
fostering shared decision-making between patients 
and healthcare professionals (HCPs), and precision 
medicine.

9.1.  Impact of AI on prognosis

IBD is a multi-omics disorder involving genomic, tran-
scriptomic, proteomic, and epigenomic variations, as 
well as environmental contributions [59]. AI could be 
used to simultaneously analyze different molecules at 
all these levels, and the results could be integrated 
into multi-omics models [60]. This approach could pro-
vide insights into disease pathogenesis, identify more 
promising predictive biomarkers, and facilitate early 
diagnosis and disease management, thereby improv-
ing patient outcomes [61]. Such multi-omics projects 
are underway to investigate IBD heterogeneity and 
improve precision management [62].

9.2.  Impact of AI on clinical decision-making

AI can help patients and clinicians make more informed 
and shared decisions about treatment options by (1) 
analyzing patient data, including medical history and 
progressive treatment outcomes, (2) providing person-
alized treatment recommendations based on individ-
ual characteristics and preferences, and (3) improving 
treatment acceptance and compliance. This leads to 
better patient outcomes and, consequently, better 
financial outcomes for payers. Additionally, based on 
omics makeup, medical history, and predicted treat-
ment response, AI can identify patterns and biomark-
ers that indicate the best treatment options for a 
particular patient by analyzing vast amounts of data 
from multiple sources.

9.3.  Impact of AI on precision medicine

IBD can be effectively treated, but there is no 
one-size-fits-all treatment approach as the condition 

has a wide range of phenotypes, disease courses, and 
outcomes.

It has been shown that single therapeutic agents 
can reach a therapeutic ceiling with limited remis-
sion rates [63]. Given the multiple pathological path-
ways that drive inflammatory processes in IBD, 
treatment approaches involving a combination of 
well-established single agents may be an alternate 
disease-control strategy [63]. However, there is a 
need to clarify inflammatory biopathways and omics 
signatures for each IBD phenotype, to ensure maxi-
mal treatment benefit for each patient. Precision 
medicine supported by AI and ML algorithms can 
help predict the disease course from the time of 
diagnosis, thereby supporting the identification of 
the best treatment approaches to be used for each 
patient [64].

Predictive ability is a critical factor in precision med-
icine. ML algorithms are trained to identify the pat-
terns and relationships between clinical and biological 
variables to predict disease progression, identify 
patients at risk of complications, and recommend opti-
mal treatment plans. Deep-learning algorithms analyze 
complex data such as medical images, genetic data, 
and tissue samples. NLP analyzes unstructured data, 
such as physician notes and patient reports, to identify 
key indicators of disease activity and treatment 
response, providing valuable insights into patient out-
comes. Predictive modeling is used to analyze these 
large datasets of patient information to generate per-
sonalized treatment plans that will help optimize treat-
ment approaches.

Thus, AI integrates data from various sources such 
as electronic medical records, multi-omic and cultu-
romic data, and patient-reported outcomes to create a 
comprehensive picture of the patient’s health status. A 
combination of laboratory results, demographic char-
acteristics, and disease location has been shown to be 
of strong prediction in CD [65]. Integrating genomic 
and clinical data can help identify the different sub-
types of IBD patients [66].

The performance of predictive models is usually 
assessed by their ability to identify patients at risk, and 
by how much the predicted risk deviates from the 
observed risk. However, these statistics do not provide 
insights into whether the model would provide more 
benefit than harm if used in clinical practice [66]. A 
decision-curve analysis to determine the net benefit of a 
particular model in a particular clinical context can help 
improve our ability to evaluate performance and clinical 
utility of these models. The clinical utility would be 
demonstrated if the model shows a higher net benefit 
versus alternative ones [67]. Predictive models or CDSTs 
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exist for most of the biologics [25, 29, 30, 38, 40, 68, 69]. 
Increasing our capability of evaluating the performance 
of these models would result in improved clinical prac-
tice and better outcomes for patients with IBD.

AI can revolutionize daily IBD practices in several 
ways. First, it supports precision medicine, which 
allows a more targeted treatment approach. As previ-
ously stated, physicians can select the most effective 
treatment for each individual by analyzing a patient’s 
omics makeup, medical history, and other factors. This 
leads to better clinical outcomes and fewer side effects 
as patients receive the most appropriate treatment for 
their specific disease phenotype. Second, with preci-
sion medicine, physicians can identify patients at a 
higher risk of developing severe IBD, treatment failure, 
or loss of response, and they can intervene earlier to 
prevent disease progression. This would reduce the 
need for aggressive treatments, surgery, and hospital-
ization. Precision medicine for monitoring disease pro-
gression may include AI-powered remote-monitoring 
tools that help patients and physicians monitor dis-
ease activity and treatment responses in real time, so 
signs of disease flare-ups can be identified early. Lastly, 
precision medicine will lead to more efficient use of 
healthcare resources. Physicians will be able to reduce 
the number of unnecessary procedures and medica-
tions by optimizing treatment selection, leading to 
cost savings for patients and healthcare systems.

9.4.  Challenges to AI adoption in clinical practice

Although AI offers considerable promise for medical 
diagnostics and clinical management, studies may 
present with methodological challenges such as small 
datasets and lack of external validation or comparison 
with healthcare professionals’ performance using the 
same sample, as well as limitations with study design, 
delivery, and reporting [70, 71]. Therefore, there is a 
need for reporting standards that address specific 
methodological challenges of AI to enable acceptance 
and improve perception of this promising technology 
[71]. Other challenges that currently affect the full 
adoption of AI in daily clinical practice, include data 
quality, data privacy and security, ethical concerns, 
technical limitations, and regulatory barriers [72].

Firstly, AI algorithms require high-quality data for 
training and validation to generate accurate predic-
tions. However, healthcare data are often incomplete, 
inconsistent, of poor quality, and lacking standardiza-
tion. This can limit their accuracy and reliability, leading 
to inaccurate predictions, difficulties in interpretation, 
and disparities in care; this would undermine the trust 
of clinicians in the technology and its adoption in 

clinical practice. Data from electronic health records are 
often siloed and not easily accessible. This limits the 
amount of data available to train algorithms and makes 
it difficult to develop algorithms with broad applicabil-
ity [73]. To address these issues of data availability, 
quality, and completeness, efforts are needed to estab-
lish data collection, storage, and sharing standards and 
to develop technologies that can effectively integrate 
data from different sources. This can be costly and 
complex, and HCPs may lack the technical expertise to 
implement and maintain these systems. Domain exper-
tise may not be available in every healthcare institu-
tion. Data scientists and clinicians must collaborate to 
address this issue and ensure that AI algorithms are 
clinically relevant and valid.

Secondly, healthcare data are subject to strict pri-
vacy and security regulations to protect patient confi-
dentiality, which varies across institutions, countries, 
and continents. Sharing data between institutions for 
AI analysis can be challenging because of these regu-
lations, and data breaches can have legal and reputa-
tional consequences.

Thirdly, ethical concerns regarding AI application in 
clinical practice include bias, transparency, and account-
ability. Physicians may be hesitant to rely on AI predic-
tions if they do not understand how the algorithm arrived 
at the prediction or if they are concerned about data bias. 
AI algorithms may produce recommendations that con-
flict with patients’ preferences or values. To address this 
issue, guidelines must be developed to ensure that AI can 
be safely and effectively used to improve patient care. 
This includes ensuring that patients are adequately 
informed about AI applications in their care and respect-
ing their rights and preferences [74].

Finally, regulatory approval is required for medical 
devices that use AI algorithms for clinical decision-making. 
However, the regulatory process can be lengthy, com-
plex, and costly, and lack of clarity regarding the regu-
latory framework for AI-based medical devices can 
hinder their adoption. This limits the ability to develop 
and deploy AI algorithms rapidly [75, 76].

Addressing these challenges requires collaboration 
among HCPs, researchers, regulators, and industries. If 
these challenges are overcome, incorporating AI in 
precision medicine for IBD is expected to significantly 
improve standard procedures for disease management 
over the next 5–10 years.

9.5.  Conclusions and future work

There are no definitive endpoints for AI or precision 
medicine in patients with IBD. AI is an evolving field, 
and new tools and techniques to improve disease 
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management and patient outcomes are constantly 
being developed. The potential of AI to contribute to 
precision medicine continues to grow as our under-
standing of IBD and the underlying pathomechanism 
improves. Potential areas of advancement include data 
source expansion, real-time monitoring, highly specific 
pan-disease or treatment companion biomarkers, 
upscaled prediction skills, accelerated identification 
and development of new treatment targets, and exist-
ing drug repositioning.

AI algorithms must be integrated into clinical work-
flows to ensure they are actionable and can be used in 
routine clinical practices. One of the challenges in this 
area is designing interpretable and transparent algo-
rithms so that clinicians can understand how they arrive 
at a particular recommendation. For this, efforts are 
needed to develop user-friendly interfaces that can be 
easily integrated with electronic health record systems.

Further, AI can help optimize clinical trials for new 
IBD treatments by identifying patients most likely to 
respond to new therapies. This could accelerate the 
development and approval of new IBD treatments. The 
same is true for repositioning existing drugs. Overall, 
the future of AI application in precision medicine for 
IBD is very promising, and significant advancements in 
this field are expected over the next 5 years.
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