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Abstract

Drosophila melanogaster larval development relies on a specialized metabolic state that uti-

lizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature

of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly ele-

vated during this growth phase when compared to other stages of the fly life cycle, indicating

that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh

activity have largely focused on the function of this enzyme at the whole animal level, how-

ever, Ldh expression varies significantly among larval tissues, raising the question of how

this enzyme promotes tissue-specific growth programs. Here we characterize two trans-

gene reporters and an antibody that can be used to study Ldh expression in vivo. We find

that all three tools produce similar Ldh expression patterns. Moreover, these reagents dem-

onstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this

enzyme varies across cell types. Overall, our studies validate a series of genetic and molec-

ular reagents that can be used to study glycolytic metabolism in the fly.

Introduction

Lactate dehydrogenase (Ldh) is a highly conserved enzyme that serves a key role in the regula-

tion of cellular redox balance, glycolytic metabolism, and energy production [1, 2]. Although

this enzyme has been studied for over a century [3, 4], we are still discovering new functions

for both Ldh and lactate in metabolism, signal transduction, the cell cycle, and even gene

expression [1, 2, 5–9]. Moreover, due to the central role that Ldh serves in cellular physiology,

a wide variety of human diseases are associated with changes in Ldh expression and activity.

For example, Ldh is well-known to play a central role in tumor metabolism, and enhanced

Ldh serum levels are used as one of the diagnostic parameters in oral, laryngeal, melanoma,

renal cell carcinoma and breast cancers [10–13]. The role of Ldh in human disease, however,

extends far beyond cancer metabolism, as enhanced Ldh activity is also observed in diabetes
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and hyperglycemia [14–17], as well as during viral infections [18, 19]. In this regard, despite

the well-documented relationship between elevated Ldh activity and human disease progres-

sion, questions remain about the tissue-specific mechanisms that link changes in Ldh expres-

sion and activity with the overall disruption of human health.

The fruit fly Drosophila melanogaster has emerged as an ideal system to study the role of

Ldh in both healthy and diseased tissues. For example, Ldh activity levels fluctuate during the

life-cycle in a predictable manner [20, 21]. In this regard, Ldh clearly plays a significant role

during larval development, when the animal experiences a nearly 200-fold increase in body

mass [22]. Ldh expression and activity are very high during this growth period when compared

to other phases of fly life-cycle [20, 23, 24], indicating that lactate production is important for

larval metabolism. Consistent with this hypothesis, Ldh mutations render larvae unable to

maintain a normal redox balance, and when combined with Gpdh1 mutations, induce signifi-

cant growth defects [25]. In this manner, studies of Ldh provide an opportunity to understand

how changes in Ldh expression affect Drosophila growth, development, and life-history events.

Similarly, studies of Drosophila disease models have also begun to focus on the link between

lactate metabolism activity and tumor growth [for review, see 26], neuronal health and aging

[27–34], as well as during infections and immune challenges [35]. Notable among these find-

ings is that Drosophila tumors up-regulate Ldh in a manner that mimics the elevated Ldh-A

activity observed in many human cancer cells [26, 36–40], indicating that Ldh in both flies and

humans serves a beneficial role in tumorous growth. Thus, studies of Drosophila Ldh hold the

potential to better understand how mammalian Ldh homologs function in development and

disease.

Several genetic and molecular reagents have been used to examine Drosophila Ldh expres-

sion and activity. For example, early studies of Ldh in the fly relied on a biochemical enzymatic

assay that generated an easily visualized staining pattern [24, 37]. These enzymatic assays have

been supplemented with transgenes that rely on fluorescent proteins to either directly or indi-

rectly visualize Ldh gene expression[35, 37, 39, 41]. However, most published Ldh reporters

have not been directly compared, either with each other or with endogenous protein expres-

sion, raising the possibility that published genetic reagents might produce artifactual results.

To address this issue and thus facilitate more precise studies of Drosophila Ldh function, here

we compare the following genetic and molecular reagents: (i) a previously described Ldh geno-

mic rescue construct that consists of a green fluorescent protein (GFP) coding region inserted

immediately before the Ldh stop codon (referred to as Ldh-GFPGenomic) [39], (ii) a previously

described Ldh-GFP reporter that consists of EGFP inserted 50 bp upstream of the endogenous

start site (referred to as Ldh-GFPenhancer) [37, 42], and (iii) a commercially available Drosophila
Ldh antibody (Bosterbio; DZ41222). As described below, we demonstrate that Ldh-GFPGenomic

produces a functional enzyme capable of rescuing the Ldh mutant phenotypes. Moreover, our

studies reveal that all three reagents generate similar tissue-specific Ldh expression patterns.

Interestingly, our analyses also reveal that Ldh is expressed in a complex manner during larval

development, suggesting that this enzyme functions in multiple cell- and tissue-specific roles

during larval development. Overall, our study enhances the ability of the Drosophila commu-

nity to study Ldh within the context of both normal developmental as well as human disease

models.

Methods

Drosophila melanogaster husbandry and genetic analysis

Fly stocks were maintained at 25˚C on Bloomington Drosophila Stock Center (BDSC) food.

Larvae were raised and collected as previously described [43]. Briefly, 50 adult virgin females
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and 25 males were placed into a mating bottle and embryos were collected for 4 hrs on a 35

mm molasses agar plate with a smear of yeast paste on the surface. Collected plates were stored

inside an empty 60 mm plastic plate and placed in a 25˚C incubator.

Ldh mutations were maintained in trans to the balancer chromosome TM3, p{Dfd-GMR-
nvYFP}, Sb1 (BDSC Stock 23231). Unless noted, Ldh mutant larvae harbored a trans-heterozy-

gous combination of Ldh16 and Ldh17 as described in previous studies [44].

Two transgenes were examined in our study. The p{Ldh-GFP} transgene was generated by

inserting GFP immediately upstream of the Ldh stop codon within a previously described Ldh
genomic rescue construct [39, 44]. For our analysis, the p{Ldh-GFP} was placed in the back-

ground of Ldh loss-of-function allele Ldh16 [44]. The previously described Ldh-GFP enhancer

trap line was a kind gift from Utpal Banerjee’s lab [37, 42]. Finally, the p{Ldh-mCherry} trans-

gene, which was previously described in a study of Drosophila hemocyte metabolism [35], is

identical to the p{Ldh-GFP} except that the mCherry coding sequence was inserted immedi-

ately upstream of the Ldh stop codon. To distinguish between the two Ldh-GFP and the Ldh-
mCherry constructs in the text, we will refer to the p{Ldh-GFP} and p{Ldh-mCherry} rescuing

transgenes as Ldh-GFPGenomic and Ldh-mCherryGenomic, respectively, and the Ldh-GFP
enhancer trap line will be referred to as Ldh-GFPEnhancer.

Viability assay

Larval viability was measured by placing 20 synchronized embryos of each genotype on molas-

ses agar plates with yeast paste and measuring time until pupariation. Wandering L3 larvae

were subsequently transferred into a glass vial containing BDSC food and monitored until

eclosion.

Whole-larvae imaging

Expression of the LDH-GFPGenomic and LDH-mCherryGenomic transgenes in intact larvae and

pupae was visualized without fixation using a MZ10F microscope with a EL6000 light source.

GFP was visualized with the Leica ET GFP filter set (470 nm excitation filter; 525 emission fil-

ter). mCherry was visualized using the Leica ET mCherry filter set (560 nm excitation filter;

630 nm emission filter). Images were taken using a Leica MC170 HD microscope camera.

Immunofluorescence

Larval tissues were dissected from mid-third instar larvae in 1X phosphate buffer saline (PBS;

pH 7.0) and fixed with 4% paraformaldehyde in 1X PBS for 30 minutes at room temperature.

Fixed samples were subsequently washed once with 1X PBS and twice with 0.3% PBT (1x PBS

with Triton X-100) for 10 mins per wash.

For antibody staining of GFP in larvae expressing either Ldh-GFP genomic or Ldh-GFPEnhan-

cer, tissues were dissected, fixed and incubated with goat serum blocking buffer (4% Goat

Serum, 0.3% PBT) for one hour at RT and stained overnight at 4˚C with the primary antibody

rabbit anti-GFP diluted 1:500 (#A11122 Thermo Fisher). Samples were washed three times

using 0.3% PBT and stained with secondary antibody Alexa Fluor 488 Goat anti-Rabbit diluted

1:1000 (#R37116; Thermo Fisher) for either 4 hrs at room temperature or overnight at 4˚C.

Stained tissues were washed with 0.3% PBT, immersed in DAPI (0.5μg/μl 1X PBS) for 30 mins

and then mounted with vector shield with DAPI (Vector Laboratories; H-1200-10).

For larval tissues stained with the anti-Ldh antibody (Bosterbio; DZ41222), fixed tissues

were washed three times with 0.03% PBT for 10 minutes and incubated in blocking buffer (3%

bovine serum albumin) for 15 mins on a rocking shaker at room temperature. Tissues were

then incubated with 200 μl of blocking buffer containing a 1:20 dilution of anti-Ldh on a
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rocking shaker for 12 hrs at room temperature, 12 hrs at 4˚C, and a third incubation of 12 hrs

at room temperature. Samples were then washed twice using 200 μl of blocking buffer with a

10 min room temperature incubation for each wash. Once the second wash was removed,

200 μl of blocking buffer containing a 1:1000 dilution of goat anti-rabbit Alexa 488 (Thermo

Fisher; catalog #R37116) was added to the well and samples were incubated overnight on a

rocking incubator at 4˚C. The next day, tissues were washed twice with blocking buffer, once

with 0.03% PBT, once with PBS, and subsequently incubated for 15 mins in PBS containing

0.5 μg/ml of DAPI. Stained tissues were then mounted using vector shield containing DAPI

(Vector Laboratories; H-1200-10).

The following primary antibodies from the Developmental Studies Hybridoma Bank

(DSHB) were used to in our study: mouse anti-Prospero (MR1A-S, 1:500 dilution), rat anti-

Elav (7E8A10, 1:500 dilution), mouse anti-Repo (8D12, 1:20 dilution). In addition, the mouse

anti-Miranda antibody (1:20 dilution, [45]) was a kind gift from Alex Gould. Secondary anti-

bodies used herein were goat anti-mouse Alexa Fluor 568 (Thermo Fisher, A11004; 1:1000

dilution) and goat anti-rat Alexa Fluor 568 (Thermo Fisher, A11077; 1:1000 dilution).

For all imaging studies, multiple Z-stacks of individual tissues were acquired using the

Leica SP8 confocal microscope in the Light Microscopy Imaging Center at Indiana University,

Bloomington and a representative section was used for the figures. The third instar larval CNS

was imaged using a 20X objective, while all other tissues were imaged with a 40X objective.

Excitation/emission max for Alexa Fluor 488 was 499/520 nm and for Alexa Fluor 568 was

579/603 nm.

Gas Chromatography-Mass Spectrometry (GC-MS) analysis

Samples were collected, processed, and analyzed as previously described [46, 47]. For all exper-

iments, six biological replicates containing 25 mid-L2 larvae were analyzed per genotype.

GC-MS data was normalized based on sample mass and internal succinic-d4 acid standard.

Statistical analysis of metabolite data

Statistical analysis was conducted using GraphPad Prism v9.1. Metabolic data are presented as

scatter plots, with the error bars representing the standard deviation and the line in the middle

representing the mean value. Data were compared using Kruskal–Wallis test followed by a

Dunn’s multiple comparison test.

Results

Genetic characterization of the Ldh-GFPGenomic transgene

As a first step towards validating reagents for studying Ldh expression, we initially examined a

GFP-tagged genomic rescue construct, referred to here as Ldh-GFPGenomic, which has been pre-

viously used to study muscle development and imaginal discs tumors [39]. As described above

and elsewhere, this transgene consists of a fragment of genomic DNA that contains the entire

Ldh locus with GFP inserted at the 3’ end of the coding sequence, immediately prior to the

stop codon (Fig 1A). To determine if the Ldh-GFPGenomic generates a functional GFP-tagged

fusion protein, we assayed the ability of this transgene to rescue Ldh mutant phenotypes. Our

genetic approach revealed that the resulting fusion protein appears functional, as the Ldh-
GFPGenomic transgene rescues both the lethal phenotype (Fig 1B and S1 Table) and metabolic

defects displayed by Ldh16/17 mutant larvae (Fig 1C and 1D) [44]. We would note that Ldh-
GFPGenomic; Ldh16/17 mutant larvae exhibited slightly decreased levels of lactate and 2-hydroxy-

glutarate (2HG) as compared with the wild-type control (Fig 1C and 1D and S1 Table),
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however, the observed differences were not significant. Regardless, the general trend of

decreased lactate and 2HG in Ldh-GFPGenomic; Ldh16/17 mutant larvae suggests that the result-

ing fusion protein harbors lower activity than the endogenous enzyme. While there are a num-

ber of factors that could result in the Ldh-GFP enzyme exhibiting reduced activity relative to

endogenous Ldh, a reasonable hypothesis stems from the fact that, in general, Ldh functions as

a tetramer [48–50], thus the GFP tag could potentially disrupt the assembly or function of the

higher order complex. Overall, our findings indicate that Ldh-GFPGenomic produces a func-

tional Ldh enzyme.

In addition to assessing Ldh-GFP enzymatic function, we also assayed the gross expression

pattern of Ldh-GFPGenomic. Previous studies have demonstrated that Ldh is highly active during

larval development relative to other developmental stages–peaking during the L3 stage and

gradually declining during metamorphosis [20, 51]. Consistent with previous observations, we

noted that Ldh-GFPGenomic is expressed at such a high level during larval development that

GFP was apparent in live larvae using a standard dissecting microscope. Overall, these whole

animal expression levels mimicked previously reported changes in larval Ldh enzyme

Fig 1. Genetic characterization of the p{Ldh-GFP} transgene. (A) A schematic diagram of the Ldh-GFPGenomic transgene illustrating

the placement of GFP immediately before the Ldh stop codon. When this transgene is placed in a Ldh16/17 mutant background, the

resulting Ldh-GFP fusion protein is capable of rescuing (B) the Ldh mutant lethal phenotype and partially restoring (C) lactate and (D)

2-hydroxyglutarate (2HG) accumulation. (E) The Ldh-GFPGenomic temporal expression pattern is consistent with previous studies, with

Ldh-GFPGenomic being expressed at high levels throughout larval development and then declining at the onset of metamorphosis. Data in

(B-D) analyzed using Kruskal–Wallis test followed by a Dunn’s multiple comparison test. ***P<0.001.

https://doi.org/10.1371/journal.pone.0287865.g001
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expression and activity, with Ldh-GFP levels peaking in the L3 stage and declining thereafter.

We would also note that Ldh-GFPGenomic is so highly expressed in the larval central nervous

system (CNS) and body wall muscles that GFP fluorescence from these tissues can easily be

observed under low magnifications (Fig 1E). Overall, the observed Ldh-GFPGenomic expression

pattern is consistent with previous biochemical and genetic studies, as well as a recent manu-

script that used this transgene to examine Ldh expression within body wall muscle [39].

In addition to the Ldh-GFPGenomic transgene, we have also generated an identical version of

this transgene labeled with mCherry, referred to herein as Ldh-mCherryGenomic, which was pre-

viously used to study hemocyte metabolism [35]. In general, the Ldh-GFPGenomic and Ldh-
mCherryGenomic transgenes exhibit similar spatial expression patterns, with notably high

expression in the CNS and muscle (S1 Fig). However, the Ldh-mCherry fusion protein persists

throughout much of metamorphosis (compare Fig 1E with S1C), suggesting that this fusion

protein is either stabilized or accumulates to a higher level than Ldh-GFP. Since the Ldh-
GFPGenomic expression pattern more accurately reflects previously reported temporal changes

in Ldh expression and activity, we chose to only characterize Ldh-GFPGenomic in our subse-

quent experiments.

Ldh is expressed in a complex pattern during larval development

Our analysis of the Ldh-GFPGenomic transgene indicates that this genetic reagent can be used to

reliably analyze Ldh expression. To further assess this possibility, we compared the tissue-spe-

cific larval expression pattern of the Ldh-GFPGenomic transgene with Ldh-GFPenhancer, as well as

a previously undescribed Drosophila Ldh antibody (see methods; note that aLdh does not stain

Ldh16/17 mutant tissues; S2 Fig). Our comparison demonstrated that all three reagents pro-

duced a similar cell- and tissue-specific larval staining pattern. Below we provide a brief

description of the Ldh expression pattern in L3 larvae raised under standard growth

conditions.

Central nervous system. The complexity of the Ldh expression pattern is perhaps most

apparent in the central nervous system, where Ldh was highly expressed in the central brain

and ventral nerve chord but absent from the optic lobe region (medulla, neuroepithelia and

lamina; Fig 2A–2L). At the level of individual cell types, we observed identical expression pat-

terns using both GFP transgenes as well as the Ldh antibody—Ldh is highly expressed in a sub-

set of neurons and glia (Fig 3I–3P), as determined by co-staining with antibodies that

recognize the neuronal protein Elav and the glial protein Repo [52, 53]. We would also note

that Ldh expression was absent in neuroblasts that co-stain with a Miranda antibody [54, 55],

but present in ganglion mother cells (GMCs) co-stained with Prospero antibody [54, 55].

Thus, our observations reveal that Ldh is expressed in a subset of GMCs (Fig 3E–3H), neurons

(Fig 3I–3L) and glia (Fig 3M–3P), but not in neuroblasts (Fig 3A–3D). We are unsure as to the

significance of this Ldh expression profile.

Digestive and renal systems. Both the larval gut and Malpighian tubules express Ldh in

cell-specific manner. Within the gut, Ldh was expressed at relatively high levels in subset of

cells within the adult midgut progenitors (AMPs) clusters, but at low or undetectable levels

within larger EC cells (Fig 4A–4F). Considering that AMPs are small clusters of proliferating

cells found within the larval gut epithelium [56], future studies should examine how Ldh influ-

ences the identify and proliferative capacity of these cells.

In the Malpighian tubules, Ldh levels were notably high in stellate cells as compared with

principal cells and other renal cell types (Fig 4G–4L). This result is notable because stellate

cells possess fewer mitochondria than principal cells [57]. Thus, our observation supports pre-

vious studies and suggest that stellate cells are more reliant on glycolysis than principal cells.
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Fat body and salivary glands. Previous studies indicate that Ldh gene expression as well

as Ldh enzymatic activity are relatively low in the larval salivary glands and fat body [20, 58].

Consistent with this observation, Ldh expression was below the level of detection within both

the fat body (Fig 5A–5F) and salivary glands (Fig 5G–5L).

Imaginal discs. Ldh expression has been extensively studied in the larval imaginal discs

[26, 36–40]. These studies have consistently observed relatively low levels of Ldh expression

during normal imaginal disc development. Our findings confirm earlier studies and again

demonstrate that Ldh is present at a relatively low level within the leg, wing, and eye-antennal

imaginal discs from L3 larvae (Fig 6A–6L). However, we found that Ldh is noticeably

expressed within a few cells of these tissues. Patches of GFP expression were observed in the

leg disc, which based on the similarity of this expression with that of sens [59, 60], we hypothe-

size to be the sensory organ precursors (SOPs). Also, both transgenic constructs resulted in

GFP expression in cells of the eye-antennal disc posterior to the morphogenetic furrow (Fig

6E, 6F, 6K and 6L).

Overall, the similarities in expression between the Ldh-GFPGenomic transgene, the Ldh-
GFPenhancer transgene, and the aLdh antibody in the examined larval tissues suggests that the

Drosophila metabolism community can use any of these three reagents to study Ldh. However,

we would recommend that any future study uses more than one of these reagents to validate

observed changes in Ldh expression.

Discussion

Here we demonstrate that two transgenes and a commercially available antibody reveal similar

Ldh expression signatures during larval development. While the Ldh-GFPGenomic and Ldh-
GFPenhancer transgenes were previously described and used for a variety of studies, our analysis

indicates that either reagent can be used to reliably study Ldh expression. Moreover, our char-

acterization of the Ldh antibody provides the first direct visualization of Ldh protein within

the fly and will significantly enhance future studies of this enzyme. We would also note that

while we did not fully characterize the Ldh-mCherry transgene in this study, the use of the

Fig 2. Characterization of Ldh expression in the central nervous system. The Ldh expression pattern in the central nervous system of L3 larvae was examined

using Ldh-GFPGenomic, Ldh-GFPenhancer, and an aLdh antibody. (A-L) Representative confocal images of Ldh expression and DAPI staining in the (A-F) ventral

and (G-L) dorsal sides of the CNS. The scale bar in all images represents 40 μM. Scale bar in (A) applies to (B,G,H). Scale bar in (C) applies to (D,I,J). Scale bar

in (E) applies to (F,K,L).

https://doi.org/10.1371/journal.pone.0287865.g002

PLOS ONE Tools to study Lactate dehydrogenase expression in Drosophila melanogaster

PLOS ONE | https://doi.org/10.1371/journal.pone.0287865 January 3, 2024 7 / 15

https://doi.org/10.1371/journal.pone.0287865.g002
https://doi.org/10.1371/journal.pone.0287865


mCherry fluorophore provides some flexibility in systems that are using GFP transgenes for

other purposes. However, care should be used when using this reagent, as the resulting fusion

protein appears to be stabilized relative to the endogenous enzyme. Overall, our study thus val-

idates use of these reagents for future use by the Drosophila research community.

Beyond our initial validation of these three reagents, our study also reveals that Ldh is

expressed in a complex pattern across tissues and cell-types. At the gross tissue level, our analy-

sis agrees with studies dating back to the 1970s [20], as well as modern gene expression analy-

ses that described how Ldh expression varies in intensity across larval tissues [35, 37, 39, 41,

Fig 3. Ldh expression in ganglion mother cells, neurons, and glia. Representative confocal images showing the absence of

Ldh in neuroblasts of third instar Ldh-GFP genomic larvae. The first two columns from left to right show DAPI and Ldh. The

last column shows the colocalization of Ldh with CNS cell specific markers. (A-D) Ldh is not expressed in neuroblasts, which

are labelled with aMiranda (MIRA) antibody. In contrast, (E-H) Ldh is expressed in ganglion mother cells (GMCs), which are

labelled with aProspero (PROS) antibody. Ldh-GFP is also present in both (I-L) neurons stained with aElav and (M-P) and

glia stained with aRepo. The scale bar in all images represents 40 μM. Scale bar in (A) applies to B-D). Scale bar in (E) applies

to (F-H). Scale bar in (I) applies to (J-L). Scale bar in (M) applies to (N-P). The scale bar in all images represents 40 μM.

https://doi.org/10.1371/journal.pone.0287865.g003
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61]. Consistent with those early studies, we observe very high Ldh expression in muscle and

relatively low or undetectable levels in the fat body and salivary glands. All three observations

are interesting in regard to the metabolism of those tissues. For example, while high levels of

Ldh expression in larval muscle would be expected based on the role of this enzyme in a wide

variety of other animals, adults exhibit relatively low levels of Ldh activity [20], indicating that

Drosophila muscle has evolved to meet the extreme energetic demands without using this

enzyme and raising the question as to why there is such a dramatic difference in Ldh expres-

sion levels between larval and adult muscle. One likely explanation is that Ldh in the muscle, as

Fig 4. Characterization of Ldh expression in the intestine and Malpighian tubules. The Ldh expression pattern in the intestine and Malphigian tubules of

L3 larvae was examined using Ldh-GFPGenomic, Ldh-GFPenhancer, and an aLdh antibody. (A-L) Representative confocal images of Ldh expression and DAPI

staining in (A-F) the midgut and (G-L) the Malphigian tubules. Note that Ldh is expressed at significantly higher levels in (A,C,E) a subset of small cells of the

AMP clusters (denoted with arrowheads in (A-F)) and (G,I,K) the stellate cells of the Malpighian tubules. The scale bar in all images represents 40 μM.

https://doi.org/10.1371/journal.pone.0287865.g004

Fig 5. Ldh expression pattern in the fat body and salivary gland. The Ldh expression patterns in the fat body and salivary glands of L3 larvae were examined

using Ldh-GFPGenomic and Ldh-GFPenhancer. (A-L) Representative confocal images of Ldh expression and DAPI staining in (A-F) the fat body and (G-L) the

salivary glands. The scale bar in all images represents 40 μM.

https://doi.org/10.1371/journal.pone.0287865.g005
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well as other larval tissues, serves to buffer mitochondrial metabolism against the hypoxic envi-

ronments often encountered by Dipteran larvae–a hypothesis supported by earlier studies [62,

63]. Future studies should both examine this possibility and investigate why larval salivary

glands and fat body exhibit relatively low Ldh activity levels.

In contrast to the muscle, fat body, and salivary glands, other larval tissues display a com-

plex expression pattern. For example, the AMP clusters of the larval midgut and stellate cells in

the Malphigian tubules exhibit notably high levels of Ldh expression relative to other cell types

in the surrounding tissue. The larval CNS, however, exhibits the most dramatic example of

how Ldh expression can vary across cell types. Notably, there is a striking lack of Ldh expres-

sion in neuroblasts relative to other cell-types. Moreover, while we observe Ldh in both neu-

rons and glia–a result consistent with the current hypothesis that lactate functions in a

metabolic shuttle between these two cells types [27, 29]. However, we observed an unexpected

heterogeneity in expression levels throughout the brain, with regions of high Ldh expression

being observed adjacent to low levels. We are uncertain as to the significance of this

observation.

Finally, we would highlight the distinct lack of Ldh in larval imaginal discs at the timepoint

examined. Our observation is consistent with several previous studies, which describe how

Ldh is expressed at low levels in normal imaginal discs but at dramatically higher levels in

tumorous discs [26, 36–40]. Together, these suggest that the presence or absence of Ldh within

the discs are of importance for cell growth and development. We would also note that much

Fig 6. Ldh expression pattern in imaginal discs. Representative confocal images of imaginal discs (top to bottom:

wing disc, leg disc and eye disc) dissected from third instar (D5 AEL) Ldh-GFP genomic (A-F) and Ldh-GFPenhancer (G-L)

third instar larvae. DAPI is shown in white and Ldh expression is shown in green. Note that the aLdh antibody failed to

produce any staining in the imaginal discs and thus was excluded from the figure. The scale bar in all images represents

40 μM.

https://doi.org/10.1371/journal.pone.0287865.g006
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earlier studies supported a model in which Ldh expression is somehow linked to imaginal disc

development. After all, the original name for Ldh in Drosophila melanogaster was Imaginal
disc membrane protein L3 (ImpL3) [24, 64], which was identified as being induced in response

to 20-hydroxyedcysone signaling. Consistent with this possibility, imaginal discs exposed to

20-hydroxyecdysone in culture exhibit a significant increase in Ldh expression [24].

In conclusion, our study validates the use of both genetic and molecular reagents to accu-

rately study Ldh expression during larval development. Moving forward, we would encourage

the fly community to use these reagents in combination when conducting studies of Ldh
expression.

Supporting information

S1 Fig. Expression of Ldh-mCherryGenomic during larval development. The Ldh-mCherryGe-

nomic spatial expression pattern is consistent with previous studies, with Ldh-mCherryGenomic

being expressed at high levels in the body wall muscle. However, unlike Ldh-GFPGenomic, the

expression of mCherryGenomic fusion protein persists throughout much of pupal development

(compare with Fig 1B).

(PDF)

S2 Fig. aLdh immunostaining in control and Ldh mutant larval tissues. Representative con-

focal images of the (A-H) central nervous system, (E-H) intestine, (I-L) fat body, and (M-P)

salivary gland dissected from third instar w1118 and Ldh16 larvae. DAPI is shown in white and

Ldh expression is shown in green. Note the brightness in (L) was increased by 30% to highlight

the lack of staining in small cells within AMP clusters. The scale bar in all images represents

40 μM. The scale bar in (A) applies to panels (B-H), the scale bar in (I) applies to panels (J-L),

and the scale bar in (M) applies to panels (N-P).

(PDF)

S1 Table. Data for Fig 1B–1D. Data and statistical analysis used to generated figure panels
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