Skip to main content
. 2024 Jan 3;19(1):e0295501. doi: 10.1371/journal.pone.0295501

Table 5. Hyperparameter settings for machine learning algorithms.

Algorithm Hyperparameter Tuning Range
RF n_estimators = 200, max_depth = 50 n_estimators={20 to 200}, max_depth={5 to 100}
GBM max_depth = 200, learning_rate = 0.2, n_estimators = 50, random_state = 52 n_estimators={20 to 200}, max_depth={5 to 100}, random_state={2 to 100 }, learning_rate= {0.1 to 0.9 }
AdaBoost n_estimators = 300, random_state = 5, learning_rate = 0.8 n_estimators={20 to 200}, random_state={2 to 100 }, learning_rate= {0.1 to 0.9 }
LR solver=‘saga’, multi_class=‘multinomial’, C = 3.0 solver= [‘saga’,‘sag’,‘liblinear’], multi_class=‘multinomial’, C={1.0 to 5.0}
SVC kernel=‘linear’, C = 1.0 kernel=[‘linear’, ‘poly’, ‘sigmoid’], C={1.0 to 5.0}