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Abstract

Machine learning (ML) analyses using '*F-fluorodeoxyglucose (‘*F-FDG) positron emission tomography (PET)/computed
tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the
current clinical articles about '®F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing
prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evalu-
ated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous
studies have commonly shown that '*F-FDG PET radiomics-based ML analysis has good performance in differentiating
benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examin-
ing significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices
(> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied
for the same purpose. Thus, various procedures were used in 'F-FDG PET/CT radiomics-based ML analysis in oncology,
and "®F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be

expected to be established.
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Introduction

Positron emission tomography (PET)/computed tomogra-
phy (CT) with '8F-fluorodeoxyglucose (‘*F-FDG), a glucose
analog that reflects metabolic glucose activity, is widely used
in oncology [1]. Radiomics refers to different mathematical
methods for extracting several quantitative features to obtain
useful biological information [2], and radiomics-based '®F-
FDG PET has also been applied in oncology [3-6].

The development of artificial intelligence (Al is associ-
ated with relevant psychological, ethical, and medicolegal
issues, which should be addressed before Al can be com-
pletely considered in patient management. However, the
ultra-rapid analysis of large datasets is a major strength of
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Al in healthcare applications. In the field of medical imag-
ing, Al has been significantly beneficial in predicting indi-
vidual patient outcomes [7, 8]. Machine learning (ML) can
resolve complex interactions among numerous variables to
construct a prediction model as accurate as possible [9-11].
The flexibility and scalability of ML are superior to those of
conventional statistical approaches. Hence, ML is useful in
several tasks including diagnosis and classification.

Recently, the ML or deep learning (DL) models using
BE_FDG PET/CT radiomic features have been applied to
resolve issues in classification (i.e., “benign or malignant
tumor,” “primary or metastatic tumor,” “classification of his-
tological subtypes,” and “recurrence or non-recurrence’’) or
to construct prediction models (i.e., “tumor characteristic,”
“tumor stage,” or “survival”) [12]. The current review aimed
to summarize the current clinical studies on '*F-FDG PET/
CT radiomics-based ML analyses to address issues in clas-
sification or to construct prediction models for several types
of tumors.
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Literature search and screening

On April 20, 2023, we searched studies with the following
terms in the title from PubMed: “PET/CT” and “radiomic”
or “radiomics” and “machine learning.”

In total, 224 articles were identified during the initial
search. The titles, abstracts, and texts were assessed to
identify relevant articles. The inclusion criteria were as
follows: (1) studies written in English, (2) original clini-
cal studies about oncology, and (3) studies describing
the application of the '®F-FDG PET/CT radiomics-based
ML approach for solving issues associated with classi-
fying or constructing prediction models. The exclusion
criteria were as follows: 1) reports only describing the CT
radiomics-based ML approach, 2) studies using ML for
image reconstruction or segmentation, 3) cohort studies
with < 20 patients, and 4) review articles. Of 224 articles
identified, 45 were review articles; hence, they were not
included in the study. Among the remaining 179 original
articles, 86 were excluded because of non-'8F-FDG tracer
(n=38), only CT-based radiomic ML analysis (n=31),
non-oncological disorders (n=11), application of ML
for image reconstruction or image segmentation (n=4)
and nonclinical studies (n =2). Finally, 93 articles were
included in the analysis, and all articles were published
after 2018 (Fig. 1).

Clinical application of '®F-FDG PET/CT
radiomics-based ML analyses in lung
or mediastinal tumors

Difference between benign and malignant tumors
and between primary and metastatic tumors

Pulmonary nodules are common clinical findings, and lung
cancer frequently presents as a solitary pulmonary nodule
(SPN) on diagnostic imaging at the early disease stage [13].
SPNs are often incidentally detected. Thus, benign SPNs
should be clinically differentiated from malignant SPNs.
Ren et al. [14] reported that the ML model with the least
absolute shrinkage and selection operator (LASSO) regres-
sion algorithm using combined clinical data and PET-radi-
omics had a good diagnostic performance for distinguishing
benign from malignant SPNs, with an area under the receiver
operating characteristic curve (AUC) of 0.94. Zhou et al.
[15] examined the ability of BE.FDG PET/CT radiomics-
based ML analysis in differentiating primary from metastatic
lung lesions. Results showed that the ML model with the
gradient boosting decision tree algorithm with PET-radi-
omics had the highest classification accuracy, with an AUC
of 0.983. Some studies have found similar results [16—19]
(Table 1). Thus, '*F-FDG PET/CT radiomics-based ML
analysis can have a great potential in characterizing SPNs.

Fig. 1 Flowchart of study
retrieval via literature search
and inclusion in the analysis

224 articles identified during the initial search

[PubMed search: “PET/CT”, “radiomic” or “radiomics,” and “machine learning (ML)”)]

Excluded articles, n = 45

|
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Classification according to histological types

Due to the different histologic and biological characteris-
tics of lung adenocarcinoma (ADC) and lung squamous cell
carcinoma (SCC), their treatment regimen, prognosis, and
relapse rate significantly vary [20, 21]. Thus, it is impor-
tant to distinguish these two subtypes of non-small cell lung
cancer (NSCLC) before treatment for appropriate clinical
decision-making.

BE_FDG PET/CT radiomics-based ML analysis might
improve the classification of ADC and SCC [22-26].
Zhao et al. [22] established combined ML models based
on clinical characteristics (sex and smoking status), labo-
ratory findings (carcinoembryonic antigen and squamous
cell carcinoma antigen levels), and PET-radiomics to clas-
sify ADC and SCC. The support vector machine (SVM)
algorithm accurately distinguished ADC from SCC, with
an AUC of 0.876. This algorithm had a significantly better
prediction performance than the clinical model (AUC:0.712,
p=0.037). Han et al. [23] examined the usefulness of PET
radiomics-based ML/DL algorithms for obtaining differen-
tial diagnosis in patients with ADC and SCC. They reported
that ML analyses with either the linear discriminant analy-
sis (AUC: 0.863) or the SVM (AUC: 0.863) algorithm had
optimal performance. Moreover, the VGG16 DL algorithm
(AUC: 0.903) outperformed all conventional ML algorithms.
Similar studies have successfully differentiated ADC from
SCC [24-26] (Table 1).

BE_-FDG PET/CT radiomics-based ML analysis can char-
acterize histological subtypes in thymic epithelial tumors
(TETs) [27, 28]. The ML model trained using BE_.FDG PET
radiomics and DL-based features with the logistic regression
(LR) algorithm was proposed for predicting the histological
subtypes of TETs [27]. This model can accurately differen-
tiate thymic cancer from thymoma, with an AUC of 0.90.

Prediction of tumor characteristics

Recently, the treatment options for NSCLC significantly
improved with advancements in targeted therapies against
mutated genes such as epidermal growth factor receptor
(EGFR), kirsten rat sarcoma viral oncogene (KRAS), and
anaplastic lymphoma kinase (ALK) [29, 30]. Moreover,
immune checkpoint inhibitors targeting programmed cell
death protein 1 (PD-1) or programmed death ligand 1 (PD-
L1) are associated with better survival outcomes compared
with conventional chemotherapy in patients with advanced-
stage NSCLC [31, 32]. Thus, in patients with NSCLC, gene
mutations or the immune checkpoint status of tumors should
be identified to determine the appropriate treatment strategy.

Several reports have examined the usefulness of '*F-FDG
PET/CT radiomics-based ML analysis for predicting gene
mutation. Previous studies commonly showed that '*F-FDG

PET/CT radiomics-based ML analysis had a promising per-
formance for predicting gene mutation [33-39] (Table 1).
Gao et al. [33] constructed radiomics-based models based
on 'F-FDG PET/CT features using ML to predict EGFR
mutation status in patients with lung ADC. Results showed
that the ML model with the random forest (RF) algorithm
using combined clinical data, CT-radiomics and PET-radi-
omics had the highest performance, with an AUC of 0.730.
Chang et al. [34] revealed that the combined clinical data
and PET/CT-based ML model with the LASSO regression
algorithm is significantly advantageous in predicting ALK
mutation status in patients with lung ADC compared with
the clinical model (AUC:0.88 vs. 0.74, p<0.001). Shiri
et al. [35] reported that the ML model with the stochastic
gradient descent algorithm using CT-radiomics and PET-
radiomics outperformed conventional methods (peak of
standardized uptake value [SUVpeak] or metabolic tumor
volume [MTV]) in predicting EGFR and KRAS gene muta-
tion status in NSCLC (EGFR: SUVpeak [AUC: 0.69] vs.
ML model [AUC: 0.82]; KRAS: MTV [AUC: 0.55] vs. ML
model [AUC: 0.83]). Previous studies have shown that the
'SF-FDG PET/CT radiomics-based ML model have a similar
performance, with AUCs of 0.797-0.870 [36-39].

Several studies have assessed the predictive ability of
BE_.FDG PET/CT radiomics-based ML analysis for immune
checkpoint status in NSCLC [40-42]. Lim et al. [40] pre-
dicted the PD-L1 expression level in patients with NCSLC
using the "®F-FDG PET/CT radiomics-based ML model.
Results showed that the ML model with the Naive Bayes
algorithm using the top five features (CT_gray-level run
length matrix [GLRLM]_long run high grey-level emphasis,
CT_grey-level co-occurrence matrix [GLCM]_homogeneity,
CT_mean Hounsfield unit, CT_GLRLM_long run empha-
sis, and PET_SUVmax) had the best predictive performance
(AUC: 0.712). Mu et al. [41] developed a '®F-FDG PET/CT-
based DL model to evaluate PD-L1 status. Results showed
that the deep learning score (DLS) could significantly distin-
guish PD-L1-positive from PD-L1-negative patients (AUC:
0.82).

Predicting tumor stage

The clinical outcome of NSCLC is directly related to its
stage at diagnosis [43]. Moreover, there were reports show-
ing the usefulness of the '®F-FDG PET/CT radiomics-
based ML method for predicting tumor stage in lung can-
cer [44-46]. Wang et al. [44] reported that the ML model
with the gradient tree boosting (XGB) ML algorithm using
combined clinical data and PET/CT radiomics of the pri-
mary tumor and lymph node had the highest diagnostic
performance in predicting lymph node metastasis (LNM)
in NSCLC (AUC: 0.93). Moreover, this model had a great
potential in predicting N2 stage NSCLC (AUC: 0.94). In
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addition, Laros et al. [45] reported that the combined PET-
radiomics of the primary tumor and lymph node had good
performance in predicting LNM from NSCLC, with an accu-
racy of 0.88.

Predicting treatment response or survival

Previous studies have examined the potential of ML analysis
using pretreatment '®F-FDG PET/CT radiomic features for
predicting patient response and survival in malignant lung
tumors [47-57] (Table 1).

Zhao et al. [47] examined the ability of ML models
trained using clinical data and '*F-FDG PET/CT radiomics
for predicting overall survival (OS) in patients with lung
ADC who underwent surgery and received radiotherapy
(RT), chemotherapy, or immunotherapy. The ensemble ML
models, which were constructed with clinical data and '®F-
FDG PET/CT radiomic features, could predict the 3- and
4-year OS, with an AUC of 0.84 and 0.88, respectively.
Huang et al. [48] showed that the convolutional neural net-
works (CNNG) trained by '8F-FDG PET/CT had good per-
formance in predicting OS in patients with malignant lung
tumor who received RT, chemotherapy, or immunotherapy.
To predict OS, the CNNs trained using clinical data and
¥F_FDG PET/CT radiomics with the random survival forest
(RSF) ML model (concordance index [C-index]: 0.737) had
a similar performance to CT alone (C-index: 0.730). How-
ever, it had a better performance than PET (C-index: 0.595)
and clinical models (C-index: 0.595) alone.

Previous studies have assessed the ability of '®F-FDG
PET/CT radiomics-based ML models for predicting out-
comes in not only patients with surgically treated NSCLC
[49, 50] but also those with nonsurgically treated NSCLC
[51-56]. Ahn et al. [49] used the '®F-FDG PET/CT radi-
omics-based ML approach to predict disease recurrence
in patients with NSCLC who underwent surgery. Results
showed that the ML model with the RF algorithm had good
performance for predicting recurrence, with an AUC of
0.956. Mu et al. [51] established the '®F-FDG PET-based
DLSs, which is useful for predicting EGFR mutation status
(EGFR-DLS) (AUC: 0.81). EGFR-DLS was significantly
and positively associated with a longer progression-free
survival (PFS) in patients treated with EGFR-tyrosine
kinase inhibitors (hazard ratio [HR]:0.24, p <0.001). Mu
et al. [52] reported that the 'SF-FDG PET/CT radiomics-
based ML model had a good AUC for predicting response
to immune checkpoint inhibitors (0.81). Moreover, the con-
structed nomogram models (C-indices of 0.77 and 0.80 for
predicting OS and PFS, respectively) had good performance
in predicting prognosis. Similar studies have successfully
predicted treatment responses or survival in patients with
NSCLC [50, 53-57] (Table 1).
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The '8F-FDG PET/CT radiomics-based ML analysis has
been applied to predict PFS in malignant pleural mesothe-
lioma [58]. This study showed the prognostic potential of
the cox regression ML model established using specific
PET radiomics-based on the principal component analysis
for PFS with a C-index of 0.66.

Summary

Previous studies commonly showed that '®F-FDG PET
radiomics-based ML analysis had a high predictive per-
formance for differentiating benign from malignant
tumors, predicting tumor characteristics, staging tumors,
and assessing treatment outcome or prognosis in lung or
mediastinal tumors, with AUCs, accuracies, or C-indices
of > 0.70. Thus, the '®*F-FDG PET radiomics-based ML
analysis might play important roles in supporting clini-
cians in diagnostic and patient management including pre-
cision medicine for lung or mediastinal tumors. However,
as shown in Table 1, previous studies have reported several
ML processes including ML algorithms, and different ML
models have been applied for the same purpose.

Clinical application of '8F-FDG PET/CT
radiomics-based ML analyses in head
and neck tumors

Differentiating benign and malignant tumors
and predicting tumor characteristics

In head and neck tumors, '®F-FDG PET/CT radiomics-
based ML analyses have been applied to differentiate
benign from malignant tumors or to predict tumor charac-
teristics. The following articles have reported about dif-
ferentiating benign from malignant tumors.

In thyroid incidentalomas, distinguishing benign from
malignant tumors based on SUVmax on '8F-FDG PET/CT
is challenging due to a significant overlap between these
lesions [59]. Aksu et al. [60] reported that the ML model
with the RF algorithm had a better performance in differ-
entiating benign from malignant thyroid incidentalomas
based on SUVmax (AUC: 0.849 vs. 0.758).

The assessment of human papillomavirus (HPV) sta-
tus plays an important role in treatment planning for oro-
pharyngeal cancer [61]. Haider et al. [62] showed that
the AUC of combined tumor and lymph node PET/CT
radiomics-based ML model with the XGB algorithm for
predicting HPV status in oropharyngeal cancer was 0.83.
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Predicting treatment response or survival

Previous studies have reported the predictive ability of
BE_.FDG PET/CT radiomics-based ML analysis for treat-
ment outcomes in head and neck cancers [63—71] (Table 2).
Haider et al. [63] showed that the ML model with the RSF
algorithm using clinical and pretreatment '*F-FDG PET/CT
radiomics had good predictive performance for locoregional
progression in patients with HPV-associated oropharyngeal
cancer who received RT (C-index: 0.76). In hypopharyngeal
cancers, the ML model with the LR algorithm constructed
based on UICC stage, T and N stage, and pretreatment '8F-
FDG PET-radiomics with GLCM_entropy and GLRLM_
run length non-uniformity (RLNU) is a significant predictor
of PFS (HR:3.22, p=0.045) [64].

Previous studies have reported the usefulness of intra-
treatment '*F-FDG PET/CT radiomics-based ML analysis
for outcome prediction in head and neck cancers. Lafata
et al. [65] showed that the unsupervised clustering of intra-
treatment '*F-FDG PET/CT radiomics, which were obtained
2 weeks after RT (at a dose of 20 Gy), was significantly
associated with recurrence-free survival (HR:2.69, p=0.04)
in patients with oropharyngeal cancer who received defini-
tive RT. Moreover, a previous study assessed the ability of
ML analysis using the combined '®F-FDG PET radiomics
and genomic data for predicting 3-year OS in head and neck
cancers (AUC: 0.75) [66]. Similar studies have success-
fully predicted prognosis in head and neck cancer [67-71]
(Table 2).

Summary

Previous studies revealed that 'F-FDG PET/CT radiomics-
based ML analysis had good predictive performances for
predicting treatment outcome or prognosis, with AUCs or
C-indices of >0.70, in head and neck tumors. Thus, '*F-FDG
PET/CT radiomics-based ML analysis might be expected
to be an important tool for patient management in head and
neck tumors. However, several ML processing approaches
have also been discussed (Table 2).

Clinical application of '®F-FDG PET/CT
radiomics-based ML analyses in lymphatic
tumors

Differentiating benign from malignant tumors
and primary from metastatic tumors or classifying
tumors according to histological types

The conventional semi-quantitative '*F-FDG PET param-
eters such as SUVmax, MTYV, and total lesion glycolysis

(TLG) are useful biomarkers for characterizing malignant
lymphoma [72, 73]. However, the ability of these parameters
in identifying tumor heterogeneity, which ultimately contrib-
utes to tumor aggressiveness and poor prognosis, remains
limited [74]. Recently, BE.FDG PET/CT radiomics-based
ML analysis has been applied to overcome these issues [75].
Previous studies have revealed that '*F-FDG PET/CT radi-
omics-based ML analysis is useful in not only classifying
tumors based on histological subtypes but also differentiat-
ing malignant lymphoma from other diseases [76—80].

Abenavoli et al. [76] showed that the ML model with the
RF algorithm using PET-radiomics had a better performance
in differentiating diffuse large B-cell lymphoma (DLBCL)
from Hodgkin’s lymphoma (HD) based on SUVmax (AUC:
0.87 vs. 0.78). de Jesus et al. [77] reported that the ML
model with the gradient boosting algorithm using PET/CT
radiomics had a significantly higher AUC in distinguishing
DLBCL and follicular lymphoma according to SUVmax
(AUC:0.86 vs. 0.79, p<0.01). Lovinfosse et al. [78] also
showed that the ML model with the RF algorithm using
clinical data and PET-radiomics had good performance in
differentiating DLBCL from HD, with an AUC of 0.95. Fur-
ther, the authors showed that the constructed ML model with
the RF algorithm had good performance in differentiating
malignant lymphoma and sarcoidosis, with an AUC of 0.94.
Yang et al. [79] revealed that the ML model with the SVM
algorithm constructed according to combined CNN-based
features and PET-radiomics had a great potential in distin-
guishing malignant lymphoma from enlarged metastatic
cervical lymph nodes (AUC: 0.948).

Predicting treatment response or survival

For the treatment assessment of malignant lymphoma, the
visual assessment of the Deauville score (DC) has been a
useful "®F-FDG PET/CT criterion: DC1-DC3, complete
metabolic response; DC4 and DCS5, incomplete metabolic
response [81-83]. However, there might be difficulties in
predicting treatment outcomes based on DC alone because
of the inter- or intra-variability of DC definition. Thus, 18p.
FDG PET/CT radiomics-based ML analysis can be a novel
approach for predicting treatment outcomes in malignant
lymphoma.

Frood et al. [84] examined the ability of pretreatment '*F-
FDG PET/CT radiomics-based ML analysis for predicting
recurrence after DLBCL treatment. Results showed that the
ML model with the ridge regression algorithm using com-
bined clinical and PET-radiomics had good performance,
with an AUC of 0.73. Cui et al. [85] assessed the poten-
tial of the '®F-FDG PET/CT radiomics-based ML approach
for identifying patients with DLBCL who are at high risk
for progression or relapse after receiving first-line therapy.
Results showed that the ML model with the RF algorithm
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using clinical data, baseline, end-of-treatment and delta
PET-radiomics features was a significant predictor of PFS
(C-index: 0.853). By contrast, '*F-FDG PET/CT radiomics-
based ML analysis was found to be useful for predicting
recurrence after HD treatment [86, 87]. Frood et al. [86]
showed that the ML model with the ridge regression algo-
rithm using combined clinical data and PET-radiomics had
good predictive performance, with an AUC of 0.81. Similar
studies have successfully predicted treatment responses or
survival in malignant lymphoma [8§7-91] (Table 3).

Summary

Previous studies have shown that '8F-FDG PET/CT radiom-
ics-based ML analysis is useful in not only differentiating but
also predicting treatment outcome or prognosis in patients
with malignant lymphomas. Each best ML model had good
predictive performance, with AUCs or C-indices of >0.70
(Table 3). Thus, it might be expected to promote the transla-
tion of '8F-FDG PET/CT radiomics-based ML analysis into
clinical practice in the field of lymphatic tumors. However,
the articles included in this review showed heterogeneity
among various ML approaches.

Clinical application of '®F-FDG PET/CT
radiomics-based ML analyses in breast
tumors

Differentiating benign from malignant tumors
and predicting tumor characteristics or stage

Several studies have examined the clinical potential of '*F-
FDG PET/CT radiomics-based ML analyses in differenti-
ating benign from malignant tumors and predicting tumor
characteristics or stage in breast cancer [92-96].

Eifer et al. [92] showed that ML analyses with the
k-nearest neighbors (kNN) algorithm using CT-radiomics
and PET-radiomics had good performance in differentiat-
ing LNM from breast cancer from post-COVID-19 vaccine-
associated axillary lymphadenopathy, with an AUC of 0.98.

An accurate assessment of both hormone receptor status
and human EGFR 2 (HER?2) status is important for treatment
planning in breast cancer [97, 98]. Moreover, an accurate
pretreatment assessment of axillary lymph node is essential
in managing breast cancer [99]. Chen et al. [93] showed that
the constructed ML model with the XGB algorithm based
on PET/CTmean radiomics had good predictive ability for
HER?2 status in breast cancer (AUC: 0.76). In addition, Song
[94] reported that the constructed ML model with the XGB
algorithm based on PET/CT radiomics had good perfor-
mance for predicting axillary LNM in patients with breast

@ Springer

cancer (AUC: 0.890). A similar study has successfully pre-
dicted hormone status in breast cancer [95] (Table 4).

Predicting treatment response or survival

Two studies have examined the ability of 'F-FDG PET/
CT radiomics-based ML analysis for predicting treatment
outcome in breast cancer [100, 101]. Li et al. [100] assessed
the usefulness of '®F-FDG PET/CT radiomics-based ML
analysis for predicting pathological complete response
(pCR) to neoadjuvant chemotherapy (NAC) in breast can-
cer. Results showed that the diagnostic accuracy of the ML
model with the RF algorithm constructed based on patient
age and PET/CT radiomics increased compared with that of
the ML model with the RF algorithm constructed according
to PET/CT radiomics only (0.800 vs. 0.767). The authors
hypothesized that the finding can be attributed to the fact
that younger patients had a higher pCR rate than older ones.
Goémez et al. [101] assessed the predictive ability of '*F-
FDG PET/CT radiomics-based ML analysis for metabolic
response after metastatic breast cancer treatment. Results
showed that the ML. model with the LASSO + SVM algo-
rithm using combined clinical data and PET-radiomics had
good performance, with an AUC of 0.82.

Summary

In breast tumors, each best ML model had good predic-
tive performance for differentiating benign from malignant
tumors and for predicting tumor characteristics and stage
and treatment outcome, with AUCs or accuracies of >0.70
(Table 4). The heterogeneity of ML approaches was also
noted in the reported studies.

Although there have been several studies that have
explored the usefulness of '*F-FDG PET/CT radiomics-
based ML analysis associated with breast tumors, it might
be expected in the '*F-FDG PET/CT radiomics-based ML
analysis to be a novel tool to patient management for breast
tumors.

Clinical application of '®F-FDG PET/CT
radiomics-based ML analyses in abdominal
tumors

Differentiating benign from malignant tumors
and predicting tumor characteristics or stage

In abdominal tumors, the usefulness of '*F-FDG PET/CT
radiomics-based ML analyses in differentiating benign and
malignant tumors and predicting tumor characteristics or
stage has been evaluated [102—-108] (Table 5).
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In pancreatic tumors, the ML model with the SVM algo-
rithm using CT-radiomics and PET-radiomics has been a
useful tool for differentiating autoimmune pancreatitis (AIP)
and pancreatic ductal adenocarcinoma (PDAC), with an
accuracy of 0.850 [102]. Moreover, this group established
the multidomain fusion DL model using CT-radiomics,
PET-radiomics, and DL features for differentiating AIP from
PDAC [103]. Results showed that the accuracy of this DL
model improved (0.901) compared with that of the formerly
published ML model [102]. Xing et al. [104] assessed the
ability of '*F-FDG PET/CT radiomics-based ML analysis for
predicting the pathological grade of PDAC. Results showed
that the ML model with the XGB algorithm using the com-
bined CT-radiomics and PET-radiomics (AUC: 0.921) was
better in predicting the pathological grade of PDAC than the
CT-radiomics alone (AUC: 0.817) or the PET radiomics-
based model alone (AUC: 0.771).

In liver tumors, Jiang et al. [105] assessed the usefulness
of 8F-FDG PET radiomics-based ML analysis for predict-
ing microvascular invasion (MVI) in hepatocellular carci-
noma (HCC) and intrahepatic cholangiocarcinoma (ICC).
Results showed that the constructed ML model with the RF
algorithm using PET-radiomics and clinical features (cancer
antigen 19-9 level or tumor stage) was useful for predicting
MVl in either HCC (AUC: 0.88) or ICC (AUC: 0.90) [105].

Liu et al. [106] constructed a useful ML model with the
Adaboost algorithm using CT-radiomics and PET-radiomics
for predicting LNM in gastric cancer with an accuracy of
0.852. This model detected some metastatic lymph nodes
that were missed on contrast-enhanced CT scan (19.6%).
Thus, the constructed ML model might offer a potentially
useful adjunct to the current staging approaches for gastric
cancer. He et al. [107] showed that the ML model with the
XGB algorithm using CT-radiomics and PET-radiomics
was successful in classifying regional LNM from colo-
rectal cancer, with an accuracy of 0.7636. This ML model
was better in predicting LNM than lymph node status, as
described in clinical '*F-FDG PET/CT scan reports (accu-
racy: 0.7091). Li et al. [108] reported that '*F-FDG PET/CT
radiomics-based ML analysis was useful for predicting the
microsatellite instability (MSI) status, which is an essential
prognostic factor of colorectal cancer. Results showed that
the constructed ML model with the Adaboost algorithm
using two selected radiomic features (PET-Skewness and
CT-RoomMeanSquared) had good predictive performance
for MSI, with an AUC of 0.828.

Predicting treatment response or survival
Several reports examined the usefulness of '*F-FDG PET/

CT radiomics-based ML analyses for predicting treatment
outcome in abdominal tumors [109-113]. These studies

showed that the '®F-FDG PET/CT radiomics-based ML
analyses were the power tools for predicting treatment
response or prognosis.

Toyama et al. [109] revealed that PET-radiomics with
gray-level zone length matrix (GLZLM)_gray-level non-
uniformity (GLNU) was the most important feature on the
ML model with the RF algorithm for predicting 1-year sur-
vival in pancreatic cancer, and multivariate analysis with
Cox hazard regression revealed GLZLM_GLNU as the only
statistically significant PET-radiomics for predicting 1-year
survival (HR:2.0, p=0.0094). Liu et al. [110] constructed
the ML model with the Adaboost algorithm using clini-
cal data, CT-radiomics and PET-radiomics for predicting
HER?2 expression status or disease progression in gastric
cancer. The predictive accuracies of constructed ML model
for HER2 expression status and disease progression were
83.3% and 77.8%, respectively. Lv et al. [111] developed
the ML mode with the RSF algorithm using clinical data,
CT-radiomics and PET-radiomics to predict recurrence-free
survival in patients with colorectal cancer who received
surgery, and revealed that the constructed ML model had
good performance in predicting the prognosis (C-index for
all patients, 0.780; C-index for stage III patients, 0.820).
Shen et al. [112] constructed the ML model with the RF
algorithm using PET-radiomics for predicting pCR after
neoadjuvant chemoradiotherapy (CRT) in rectal cancer, and
this ML model showed high predictive performance with an
accuracy of 0.953. Moreover, the ability of ML model with
the RF algorithm using PET-radiomics for predicting 2-year
OS has also been reported in metastatic rectal cancer (2-year
0OS; AUC:0.843) [113].

Summary

In abdominal tumors, each best '*F-FDG PET radiomics-
based ML model had good predictive performance for dif-
ferentiating benign and malignant tumors, predicting tumor
characteristics, staging tumors, or assessing treatment
outcome with AUCs, accuracies, or C-indices of >0.70
(Table 5). The application of '*F-FDG PET radiomics-based
ML analyses might be especially expected in the field of
gastrointestinal cancers.

Clinical application of '8F-FDG PET/CT
radiomics ML analyses in gynecological
tumors

Predicting tumor stage
The expression of some protein molecules such as cyclooxy-

genase-2 (COX-2) is associated with LNM and lymphovas-
cular space invasion (LVSI) in cervical cancer [114, 115].

@ Springer



Japanese Journal of Radiology (2024) 42:28-55

48

[opow FuruIea] suIydeW 3s3q 3} JO INsal Y} sjuasaid AJuo douewLIONod,

uiyoew 103934 Joddns WA S ‘Aderoyiorper 1y 1s910j WOPURI ,Jy ‘[BAIAINS 931)-uoIssiFoid §.7 4
‘[EAIAINS [[BISAO §() ‘SUIUIBI] QUIYORW Ty ‘UoIseAul odeds re[noseaoydwA] /SA7 ‘UoIssaISar onsISo| y7 ‘siseiselow apou ydwA| a7 ‘wipLios[e ojerodo uonod[es pue a3eULIYS 2)N[0sqe Jsea]
0SSV ‘s10qU31au 1SaIRdU-Y NNY ‘SUIppnq [eIOWNENUI g 77 ‘Onel piezey yy ‘Ade1oyjorpeIowayd Jy) ‘7-9SeudSAX00[0Ad Z-X(0) ‘@AINd dnsujoereyd Junerado I9ATEOAI oY) Iopun eaIe )Ny

TG0 ssau [opowr
-9sI209 10} YH—SO Paseq-sorwoIpel K1331ms
£69°() :Ssou (uonepI[eA-SSOI) 1Ad + [eowio 1o ‘I¥D ‘Id
-9SIB0D 10} YH—SdAd  uoleplfea [euiaju] - NNY paurquon eg=u Ta)fe SO pue Sfd  1edued [eLndwopuy 170 [#21] e 10 ofeyeN
[opowr
paseq-sorwoIpes
(uonepI[eA-sSoI) Wy 1Ad + [eowio K1931mSs 10
680 *YH  uoneplfeA [euIaju] - -OS[e aseq SATEN pauIquon 0S=u  T¥D ‘LY 1e Sdd 1o0ued [BIIAIR)  TTOT  [£TT] T8 10 ofeyeN
[epowr
paseq-sorworpes
110409 uon 1Ad + [eowio 1ID Ioye
8.°0 :DNV -epiea pue Sururel], - I pauIquio) g1 =u uorssardoid aseasiq IO0URD [BOTAIDD)  1Z0T [2T1] Te 1° eIorrag
[BAIAINS 10 Isuodsal JuaunyeaI) SundIpatg
310700 uoT) QuOTE [opow paseq
¥8L°0 :DNV  -epI[eA pue Sururer], - INAS+OSSVT -solwolpel [4d 9L=u aLl Tooued edrard)  1z0z  [1er] e Suoy)y
310400 uon QuO[e [opow paseq
908°0 :DNV -EPI[eA pue Sururel], - dT+0OSSV1 -sorworper JHd clr=u ISAT Jooued [edIAlR])  170C [oz1] TR 1T
L18°0 -INNT 10} DNV
$18°0 310700 uomn QUOTE [opowW paseq smeIs N
T"X0D 10§ DNV -epI[eA pue Sururer], - dT+OSSVT -solwolpel [4d syl=u SeIS 2-X0D Iooued [eo1a1e) g0z 6111 1810 Sueyz
[opowt
Paseq-sorwoIper
14d equiod pue
[BOTUI]O paurquio)
[opow
Ppaseq-soruorper
Ldd ¥equo)
[opowI paseq-sot
-worpel [Hd pue
[BOLUI[S paulquioy)
[opow [opow paseq
310700 UoT) SoTworper -sorwolpel 134
96°0 DNV -eplea pue Suluter],  -LHd 1quo) 3I0MISU [eINON [opoul [edTuI[?y 8LI=u NNT Jooued [edlaIe)  €z0c  [8T1] B9 BIONT
J3e)s aJowrn) SunRIpaId
s[opowt
SINSY uonepI[eA [opowW A 1S9  WILIOS[e TN 910D TN paonnsuo))  ozis ofdwres wry odAy Jowny, sreox sioyIny

sJowm) [e9I50[099UAS UT SaSATeUE SUILLIL] QUIYIEU PASEq-SoToIper 10/ 1Hd DA, UO SAIpms dsAnejuasaidar jo Krewung 9 sjqey

pringer

Qs



Japanese Journal of Radiology (2024) 42:28-55

49

Tumor budding (TB) is defined as a single neoplastic cell or
cell cluster of up to four neoplastic cells at the invasive front
of the tumor or within the tumor mass (intratumoral bud-
ding) [116]. Moreover, TB is associated with LNM, LVSI,
and prognosis in cervical cancer [117]. Some investigators
applied the '®F-FDG PET/CT radiomics-based ML models
for predicting not only LNM or LVSI but also the expres-
sion of COX-2 or TB status in cervical cancer [118—121]
(Table 6).

Lucia et al. [118] developed the ML model with the
neural network algorithm using combat harmonized PET-
radiomics acquired from the different PET scanners (analog
and digital PET) for predicting para-aortic LNM in cervical
cancer. Results showed that the constructed ML model had
an extremely high predictive ability, with an AUC of 0.96.
Zhang et al. [119] showed that the constructed ML model
with the LR algorithm using the PET-radiomics scores
established using the LASSO regression had good predic-
tive performance for not only pelvic LNM (AUC: 0.817) but
also the expression of COX-2 (AUC: 0.814) in cervical can-
cers. Li et al. [120] revealed that the ML model with the LR
algorithm using the PET-radiomics scores constructed using
the LASSO regression had good predictive performance for
LVSI in cervical cancer, with an AUC of 0.806. Chong et al.
[121] showed that the constructed ML model with the SVM
algorithm using conventional parameters (SUVmax, MTYV,
and TLG) and selected 29 PET-radiomics using the LASSO
regression algorithm had good predictive performance for
intratumoral budding in cervical cancer (AUC: 0.784).

Predicting treatment response or survival

A few reports have addressed the efficacy of '*F-FDG PET/
CT radiomics-based ML analysis for predicting treatment
outcomes or prognosis in cervical or endometrial cancer
[122-124] (Table 6).

Ferreira et al. [122] showed that the ML model with the
RF algorithm using clinical data and PET-radiomics had
good performance for predicting disease-free survival in
patients with advanced-stage cervical cancer who received
CRT (AUC: 0.78). Another study revealed that the ML
model with the Naive Bayes algorithm constructed based
on FIGO stage and four pretreatment PET-radiomics fea-
tures (including surface area, MTV, GLRLM_RLNU,
and GLRLM_GLNU) was a significant predictor of PFS
(HR:6.89, p=0.003) in patients with cervical cancer who
underwent surgery and/or received CRT or chemotherapy
[123]. In endometrial cancers, the ML model with the KNN
algorithm established using combined clinical data and PET-
radiomics has been useful for predicting disease progression,
with an AUC of 0.890 [124]. In this study, coarseness, which
was the best PET-radiomics feature, was considered a sig-
nificant and independent factor of PFS (HR:0.65, p =0.003)

and OS (HR:0.52, p <0.001) in the multivariate Cox regres-
sion analysis.

Summary

In cervical or endometrial cancers, each best ML model had
good predictive performance for predicting tumor stage with
an AUC or accuracy of > 0.70. Moreover, the best ML model
or best PET-radiomics feature is a significant predictor of
survival, and the heterogenous ML approaches were also
observed among the reported studies. Although there are
not so many reports that have explored the usefulness of
BE_FDG PET/CT radiomics-based ML analysis associated
with gynecological tumors, the '®F-FDG PET/CT radiom-
ics-based ML analysis might provide useful information
about patient management with gynecological tumors for
clinicians.

Clinical application of '®F-FDG PET/CT
radiomics-based ML analyses in other
tumors

In hematological malignancies including multiple myeloma
and acute leukemia, '*F-FDG PET/CT radiomics-based ML
analyses have been applied to identify skeletal metastases,
predict diffuse infiltration in the bone marrow, or predict
prognosis [125—-128] (Table 7).

Mannam et al. [125] showed that the ML model with
the multilayer perceptron algorithm established based on
CT-radiomics and PET-radiomics had good classification
accuracy between multiple myeloma and skeletal metasta-
ses, with an AUC of 0.9538. Mesguich et al. [126] devel-
oped an ML model with the RF algorithm using five PET/
CT radiomics for predicting diffuse infiltration in the bone
marrow in multiple myeloma. Results showed that the con-
structed ML model had an extremely high predictive abil-
ity, with an AUC of 0.90. Further, the ML model with the
RF algorithm using CT-radiomics and PET-radiomics had
good performance in predicting bone marrow involvement
in acute leukemia [127]. The diagnostic accuracy of this
model was significantly higher than that of visual analysis
(0.886 vs. 0.686, p=0.041). Ni et al. [128] evaluated the
ability of "8F-FDG PET/CT radiomics-based ML analysis
for predicting PFS after multiple myeloma treatment. Results
showed that the ML model with the LASSO + cox regres-
sion algorithm trained using the combined clinical and PET/
CT radiomics-based model had a higher predictive perfor-
mance (C-index: 0.698) than the ML model with clinical
data (C-index: 0.563) or PET/CT radiomics-based model
(C-index: 0.651) alone.
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The mistosis-karyorrhexis index (MKI) status is an inde-
pendent prognostic factor of neuroblastoma [129]. Feng
et al. [130] developed the I8R_FDG PET/CT radiomics-based
ML model for predicting MKI status in neuroblastoma. The
constructed ML model with the XGB algorithm using PET/
CT radiomics had an extremely high predictive ability, with
an AUC of 0.951. Thus, the ML model can be used to non-
invasively predict MKI status in pediatric neuroblastoma.
Further, it is a significantly effective tool for the long-term
management of pediatric neuroblastoma.

Conclusion

The efficacy of '®F-FDG PET/CT radiomics-based ML
analyses in various tumors was investigated. The number
of studies about this topic has been increasing after 2018.
The '®F-FDG PET/CT radiomics-based ML analyses might
be expected to be important tools for patient management
in several types of tumors. However, previous studies have
reported numerous ML procedures including the use of algo-
rithms, and different ML models have been applied for the
same purpose. Thus, various approaches are used to perform
BE.FDG PET/CT radiomics-based ML analysis in oncology.
Moreover, '*F-FDG PET/CT radiomics-based ML models,
which can be easily and universally applied in clinical prac-
tice, should be established.

Funding No funding.

Declarations

Conflict of interest The authors declare that they have no conflict in-
terest.

Ethical approval Not applicable because of a review article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/
CT: Current applications and future directions. Radiology.
2006;238:405-22.

2. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more
than pictures, they are data. Radiology. 2016;278:563-77.

3. Tamaki N, Hirata K, Kotani T, Nakai Y, Matsushima S, Yamada
K. Four-dimensional quantitative analysis using FDG-PET in
clinical oncology. Jpn J Radiol. 2023. https://doi.org/10.1007/
s11604-023-01411-4.

4. Tsujikawa T, Rahman T, Yamamoto M, Yamada S, Tsuyoshi H,
Kiyono Y, et al. "®F-FDG PET radiomics approaches: compar-
ing and clustering features in cervical cancer. Ann Nucl Med.
2017;31:678-85.

5. Peng L, Hong X, Yuan Q, Lu L, Wang Q, Chen W. Predic-
tion of local recurrence and distant metastasis using radiomics
analysis of pretreatment nasopharyngeal [18F]FDG PET/CT
images. Ann Nucl Med. 2021;35:458-68.

6. Kim M, Gu W, Nakajima T, Higuchi T, Ogawa M, Shimizu
T, et al. Texture analysis of ['*F]-fluorodeoxyglucose-positron
emission tomography/computed tomography for predicting the
treatment response of postoperative recurrent or metastatic oral
squamous cell carcinoma treated with cetuximab. Ann Nucl
Med. 2021;35:871-80.

7. Coppola F, Faggioni L, Gabelloni M, De Vietro F, Mendola
V, Cattabriga A, et al. Human, all too human? an all-around
appraisal of the “artificial intelligence revolution” in medical
imaging. Front Psychol. 2021;12: 710982.

8. Jeste DV, Graham SA, Nguyen TT, Depp CA, Lee EE, Kim
HC. Beyond artificial intelligence: exploring artificial wisdom.
Int Psychogeriatr. 2020;32:993-1001.

9. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning
for medical imaging. Radiographics. 2017;37:505-15.

10. Waljee AK, Higgins PD. Machine learning in medicine: a
primer for physicians. Am J Gastroenterol. 2010;105:1224-6.

11. Panch T, Szolovits P, Atun R. Artificial intelligence, machine
learning and health systems. ] Glob Health. 2018;8: 020303.

12. Hirata K, Sugimori H, Fujima N, Toyonaga T, Kudo K. Arti-
ficial intelligence for nuclear medicine in oncology. Ann Nucl
Med. 2022;36:123-32.

13. Sim YT, Poon FW. Imaging of solitary pulmonary nodule-a
clinical review. Quant Imaging Med Surg. 2013;3:316-26.

14. Ren C, Xu M, Zhang J, Zhang F, Song S, Sun Y, et al. Clas-
sification of solid pulmonary nodules using a machine-learning
nomogram based on '8F-FDG PET/CT radiomics integrated
clinicobiological features. Ann Transl Med. 2022;10:1265.

15. Zhou Y, Ma XL, Zhang T, Wang J, Zhang T, Tian R. Use of
radiomics based on '®F-FDG PET/CT and machine learning
methods to aid clinical decision-making in the classification
of solitary pulmonary lesions: an innovative approach. Eur J
Nucl Med Mol Imaging. 2021;48:2904-13.

16. Salihoglu YS, Uslu Erdemir R, Aydur Piiren B, Ozdemir
S, Uyulan C, Ergiizel TT, et al. Diagnostic performance of
machine learning models based on '®F-FDG PET/CT radiomic
features in the classification of solitary pulmonary nodules.
Mol Imaging Radionucl Ther. 2022;31:82-8.

17. Zhang R, Zhu L, Cai Z, Jiang W, Li J, Yang C, et al. Potential
feature exploration and model development based on '*F-FDG
PET/CT images for differentiating benign and malignant lung
lesions. Eur J Radiol. 2019;121: 108735.

18. Yan M, Wang W. Development of a radiomics prediction model
for histological type diagnosis in solitary pulmonary nodules:

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11604-023-01411-4
https://doi.org/10.1007/s11604-023-01411-4

52

Japanese Journal of Radiology (2024) 42:28-55

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

the combination of CT and FDG PET. Front Oncol. 2020;10:
555514.

Agiiloglu N, Aksu A, Unat DS. Machine learning approach
using '8F-FDG PET-based radiomics in differentiation of lung
adenocarcinoma with bronchoalveolar distribution and infec-
tion. Nucl Med Commun. 2023;44:302-8.

Ma Y, Feng W, Wu Z, Liu M, Zhang F, Liang Z, et al. Intra-
tumoural heterogeneity characterization through texture and
colour analysis for differentiation of non-small cell lung car-
cinoma subtypes. Phys Med Biol. 2018;63: 165018.

Fukui T, Taniguchi T, Kawaguchi K, Fukumoto K, Nakamura
S, Sakao Y, et al. Comparisons of the clinicopathological fea-
tures and survival outcomes between lung cancer patients with
adenocarcinoma and squamous cell carcinoma. Gen Thorac
Cardiovasc Surg. 2015;63:507-13.

Zhao H, Su'Y, Wang M, Lyu Z, Xu P, Jiao Y, et al. The machine
learning model for distinguishing pathological subtypes of
non-small cell lung cancer. Front Oncol. 2022;12: 875761.
Han Y, Ma Y, Wu Z, Zhang F, Zheng D, Liu X, et al. Histologic
subtype classification of non-small cell lung cancer using PET/
CT images. Eur J Nucl Med Mol Imaging. 2021;48:350-60.
Ren C, Zhang J, Qi M, Zhang J, Zhang Y, Song S, et al. Machine
learning based on clinico-biological features integrated '*F-FDG
PET/CT radiomics for distinguishing squamous cell carcinoma
from adenocarcinoma of lung. Eur J Nucl Med Mol Imaging.
2021;48:1538-49.

Koyasu S, Nishio M, Isoda H, Nakamoto Y, Togashi K. Useful-
ness of gradient tree boosting for predicting histological subtype
and EGFR mutation status of non-small cell lung cancer on '8F
FDG-PET/CT. Ann Nucl Med. 2020;34:49-57.

Hyun SH, Ahn MS, Koh YW, Lee SJ. A Machine-learning
approach using PET-based radiomics to predict the histological
subtypes of lung cancer. Clin Nucl Med. 2019;44:956-60.
Nakajo M, Takeda A, Katsuki A, Jinguji M, Ohmura K, Tani A,
et al. The efficacy of '®F-FDG-PET-based radiomic and deep-
learning features using a machine-learning approach to predict
the pathological risk subtypes of thymic epithelial tumors. Br J
Radiol. 2022;95:20211050.

Ozkan E, Orhan K, Soydal C, Kahya Y, Seckin Tunc S, et al.
Combined clinical and specific positron emission tomography/
computed tomography-based radiomic features and machine-
learning model in prediction of thymoma risk groups. Nucl Med
Commun. 2022;43:529-39.

Herbst RS, Morgensztern D, Boshoff C. The biology and man-
agement of non-small cell lung cancer. Nature. 2018;553:446-54.
Linardou H, Dahabreh 1J, Kanaloupiti D, Siannis F, Bafaloukos
D, Kosmidis P, et al. Assessment of somatic k-RAS mutations as
a mechanism associated with resistance to EGFR-targeted agents:
a systematic review and meta-analysis of studies in advanced
non-small-cell lung cancer and metastatic colorectal cancer. Lan-
cet Oncol. 2008;9:962-72.

Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Cs&szi
T, Fulop A, et al. Pembrolizumab versus chemotherapy for
PD-L1-positive non-small-cell lung cancer. N Engl J Med.
2016;375:1823-33.

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V,
Havel JJ, et al. Cancer immunology. mutational landscape deter-
mines sensitivity to PD-1 blockade in non-small cell lung cancer.
Science. 2015;348:124-8.

Gao J, Niu R, Shi Y, Shao X, Jiang Z, Ge X, et al. The predictive
value of ['"®FIFDG PET/CT radiomics combined with clinical
features for EGFR mutation status in different clinical staging
of lung adenocarcinoma. EINMMI Res. 2023;13:26.

Chang C, Sun X, Wang G, Yu H, Zhao W, Ge Y, et al. A
machine learning model based on PET/CT radiomics and cinical

@ Springer

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

characteristics predicts ALK rearrangement status in lung adeno-
carcinoma. Front Oncol. 2021;11: 603882.

Shiri I, Maleki H, Hajianfar G, Abdollahi H, Ashrafinia S, Hatt
M, et al. Next-generation radiogenomics sequencing for predic-
tion of EGFR and KRAS mutation status in NSCLC patients
using multimodal imaging and machine learning algorithms. Mol
Imaging Biol. 2020;22:1132-48.

Liu Q, Sun D, Li N, Kim J, Feng D, Huang G, et al. Predict-
ing EGFR mutation subtypes in lung adenocarcinoma using
8F_FDG PET/CT radiomic features. Transl Lung Cancer Res.
2020;9:549-62.

Agiiloglu N, Aksu A, Akyol M, Katgi N, Doks6z TC. Importance
of pretreatment '8F-FDG PET/CT texture analysis in predicting
EGFR and ALK mutation in patients with non-small cell lung
cancer. Nuklearmedizin. 2022;61:433-9.

Nair JKR, Saeed UA, McDougall CC, Sabri A, Kovacina B,
Raidu BVS, et al. Radiogenomic models using machine learn-
ing techniques to predict EGFR mutations in non-small cell lung
cancer. Can Assoc Radiol J. 2021;72:109-19.

Li X, Yin G, Zhang Y, Dai D, Liu J, Chen P, et al. Predic-
tive power of a radiomic signature based on '*F-FDG PET/CT
images for EGFR mutational status in NSCLC. Front Oncol.
2019;9:1062.

Lim CH, Koh YW, Hyun SH, Lee SJ. A machine learning
approach using PET/CT-based radiomics for prediction of
PD-L1 expression in non-small cell lung cancer. Anticancer
Res. 2022;42:5875-84.

Mu W, Jiang L, Shi Y, Tunali I, Gray JE, Katsoulakis E, et al.
Non-invasive measurement of PD-L1 status and prediction
of immunotherapy response using deep learning of PET/CT
images. J Immunother Cancer. 2021;9: e002118.

Tong H, Sun J, Fang J, Zhang M, Liu H, Xia R, et al. A
machine learning model based on PET/CT radiomics and
clinical characteristics predicts tumor immune profiles in non-
small cell lung cancer: a retrospective multicohort study. Front
Immunol. 2022;13: 859323.

Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura
H, Eberhardt WEE, et al. The IASLC lung cancer staging pro-
ject: proposals for revision of the TNM stage groupings in the
forthcoming (eighth) edition of the TNM classification for lung
cancer. J Thorac Oncol. 2016;11:39-51.

Wang M, Liu L, Dai Q, Jin M, Huang G. Developing a pri-
mary tumor and lymph node '*F-FDG PET/CT-clinical (TLPC)
model to predict lymph node metastasis of resectable T2—4
NSCLC. J Cancer Res Clin Oncol. 2023;149:247-61.

Laros SSA, Dieckens D, Blazis SP, van der Heide JA. Machine
learning classification of mediastinal lymph node metastasis
in NSCLC: a multicentre study in a Western European patient
population. EINMMI Phys. 2022;9:66.

Onozato Y, Iwata T, Uematsu Y, Shimizu D, Yamamoto T,
Matsui Y, et al. Predicting pathological highly invasive lung
cancer from preoperative ['®F]FDG PET/CT with multiple
machine learning models. Eur J Nucl Med Mol Imaging.
2023;50:715-26.

Zhao M, Kluge K, Papp L, Grahovac M, Yang S, Jiang C, et al.
Multi-lesion radiomics of PET/CT for non-invasive survival
stratification and histologic tumor risk profiling in patients with
lung adenocarcinoma. Eur Radiol. 2022;32:7056-67.

Huang B, Sollee J, Luo YH, Reddy A, Zhong Z, Wu J, et al.
Prediction of lung malignancy progression and survival with
machine learning based on pre-treatment FDG-PET/CT. EBio-
Medicine. 2022;82: 104127.



Japanese Journal of Radiology (2024) 42:28-55

53

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Ahn HK, Lee H, Kim SG, Hyun SH. Pre-treatment BE_EDG
PET-based radiomics predict survival in resected non-small cell
lung cancer. Clin Radiol. 2019;74:467-73.

Kirienko M, Sollini M, Corbetta M, Voulaz E, Gozzi N, Inter-
lenghi M, et al. Radiomics and gene expression profile to char-
acterise the disease and predict outcome in patients with lung
cancer. Eur J Nucl Med Mol Imaging. 2021;48:3643-55.

Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, et al. Non-
invasive decision support for NSCLC treatment using PET/CT
radiomics. Nat Commun. 2020;11:5228.

Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radi-
omics of '®F-FDG PET/CT images predicts clinical benefit of
advanced NSCLC patients to checkpoint blockade immunother-
apy. Eur J Nucl Med Mol Imaging. 2020;47:1168-82.

Bertolini M, Trojani V, Botti A, Cucurachi N, Galaverni M,
Cozzi S, et al. Novel harmonization method for multi-Centric
radiomic studies in non-small cell lung cancer. Curr Oncol.
2022;29:5179-94.

Sepehri S, Tankyevych O, Upadhaya T, Visvikis D, Hatt M,
Cheze Le Rest C. Comparison and fusion of machine learning
algorithms for prospective validation of PET/CT radiomic fea-
tures prognostic value in stage II-III non-small cell lung cancer.
Diagnostics (Basel). 2021;11:675.

Afshar P, Mohammadi A, Tyrrell PN, Cheung P, Sigiuk A, Pla-
taniotis KN, et al. DRTOP: deep learning-based radiomics for
the time-to-event outcome prediction in lung cancer. Sci Rep.
2020;10:12366.

Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M,
Smedby O. Early survival prediction in non-small cell lung
cancer from PET/CT images using an intra-tumor partitioning
method. Phys Med. 2019;60:58-65.

Park SB, Kim KU, Park YW, Hwang JH, Lim CH. Applica-
tion of '8F-fluorodeoxyglucose PET/CT radiomic features and
machine learning to predict early recurrence of non-small cell
lung cancer after curative-intent therapy. Nucl Med Commun.
2023;44:161-8.

Pavic M, Bogowicz M, Kraft J, Vuong D, Mayinger M, Kroeze
SGC, et al. FDG PET versus CT radiomics to predict outcome
in malignant pleural mesothelioma patients. EINMMI Res.
2020;10:81.

Palaniswamy SS, Subramanyam P. Diagnostic utility of
PETCT in thyroid malignancies: an update. Ann Nucl Med.
2013;27:681-93.

Aksu A, Karahan Sen NP, Acar E, Capa KG. Evaluating focal
BE_FDG uptake in thyroid gland with radiomics. Nucl Med Mol
Imaging. 2020;54:241-8.

Benson E, Li R, Eisele D, Fakhry C. The clinical impact of HPV
tumor status upon head and neck squamous cell carcinomas. Oral
Oncol. 2014;50:565-74.

Haider SP, Mahajan A, Zeevi T, Baumeister P, Reichel C, Sharaf
K, et al. PET/CT radiomics signature of human papilloma virus
association in oropharyngeal squamous cell carcinoma. Eur J
Nucl Med Mol Imaging. 2020;47:2978-91.

Haider SP, Sharaf K, Zeevi T, Baumeister P, Reichel C, Forghani
R, et al. Prediction of post-radiotherapy locoregional progression
in HPV-associated oropharyngeal squamous cell carcinoma using
machine-learning analysis of baseline PET/CT radiomics. Transl
Oncol. 2021;14: 100906.

Nakajo M, Kawaji K, Nagano H, Jinguji M, Mukai A, Kawabata
H, et al. The usefulness of machine learning-based evaluation of
clinical and pretreatment ['*F]-FDG-PET/CT radiomic features
for predicting prognosis in hypopharyngeal cancer. Mol Imaging
Biol. 2023;25:303-13.

Lafata KJ, Chang Y, Wang C, Mowery YM, Vergalasova I, Nied-
zwiecki D, et al. Intrinsic radiomic expression patterns after 20

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Gy demonstrate early metabolic response of oropharyngeal can-
cers. Med Phys. 2021;48:3767-77.

Spielvogel CP, Stoiber S, Papp L, Krajnc D, Grahovac M, Gurn-
hofer E, et al. Radiogenomic markers enable risk stratification
and inference of mutational pathway states in head and neck can-
cer. Eur J Nucl Med Mol Imaging. 2023;50:546-58.

Haider SP, Zeevi T, Baumeister P, Reichel C, Sharaf K, Forghani
R, et al. Potential added value of PET/CT radiomics for survival
prognostication beyond AJCC 8th edition staging in oropharyn-
geal squamous cell carcinoma. Cancers (Basel). 2020;12:1778.
Zhong J, Frood R, Brown P, Nelstrop H, Prestwich R, McDermott
G, et al. Machine learning-based FDG PET-CT radiomics for
outcome prediction in larynx and hypopharynx squamous cell
carcinoma. Clin Radiol. 2021;76:78.€9-78.e17.

Du D, Feng H, Lv W, Ashrafinia S, Yuan Q, Wang Q, et al.
Machine learning methods for optimal radiomics-based differ-
entiation between recurrence and inflammation: application to
nasopharyngeal carcinoma post-therapy PET/CT images. Mol
Imaging Biol. 2020;22:730-8.

Peng H, Dong D, Fang MJ, Li L, Tang LL, Chen L, et al. Prog-
nostic value of deep learning PET/CT-based radiomics: potential
role for future individual induction chemotherapy in advanced
nasopharyngeal carcinoma. Clin Cancer Res. 2019;25:4271-9.
LiuZ, Cao Y, Diao W, Cheng Y, Jia Z, Peng X. Radiomics-based
prediction of survival in patients with head and neck squamous
cell carcinoma based on pre- and post-treatment '*F-PET/CT.
Aging (Albany NY). 2020;12:14593-619.

Zhao P, Yu T, Pan Z. Prognostic value of the baseline BE_FDG
PET/CT metabolic tumour volume (MTV) and further stratifica-
tion in low-intermediate (L-I) and high-intermediate (H-I) risk
NCCNIPI subgroup by MTV in DLBCL MTYV predict prognosis
in DLBCL. Ann Nucl Med. 2021;35:24-30.

Baba S, Abe K, Isoda T, Maruoka Y, Sasaki M, Honda H. Impact
of FDG-PET/CT in the management of lymphoma. Ann Nucl
Med. 2011;25:701-16.

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance
to cancer therapies. Nat Rev Clin Oncol. 2018;15:81-94.
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC,
van Timmeren J, et al. Radiomics: the bridge between medi-
cal imaging and personalized medicine. Nat Rev Clin Oncol.
2017;14:749-62.

Abenavoli EM, Barbetti M, Linguanti F, Mungai F, Nassi L, Puc-
cini B, et al. Characterization of mediastinal bulky lymphomas
with FDG-PET-based radiomics and machine learning tech-
niques. Cancers (Basel). 2023;15:1931.

de Jesus FM, Yin Y, Mantzorou-Kyriaki E, Kahle XU, de Haas
RJ, Yakar D, et al. Machine learning in the differentiation of
follicular lymphoma from diffuse large B-cell lymphoma with
radiomic ['8F]JFDG PET/CT features. Eur J Nucl Med Mol Imag-
ing. 2022;49:1535-43.

Lovinfosse P, Ferreira M, Withofs N, Jadoul A, Derwael C,
Frix AN, et al. Distinction of lymphoma from Sarcoidosis on
"¥F-FDG PET/CT: evaluation of radiomics-feature-guided
machine learning versus human reader performance. J Nucl Med.
2022;63:1933-40.

Yang Y, Zheng B, Li Y, Li Y, Ma X. Computer-aided diagnostic
models to classify lymph node metastasis and lymphoma involve-
ment in enlarged cervical lymph nodes using PET/CT. Med Phys.
2023;50:152-62.

Cui C, Yao X, Xu L, Chao Y, Hu Y, Zhao S, et al. Improving
the classification of PCNSL and brain metastases by developing
a machine learning model based on '®F-FDG PET. J Pers Med.
2023;13:539.

Tilly H, Vitolo U, Walewski J, da Silva MG, Shpilberg O, André
M, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO

@ Springer



54

Japanese Journal of Radiology (2024) 42:28-55

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

clinical practice guidelines for diagnosis, treatment and follow-
up. Ann Oncol. 2012;23(Suppl 7):vii78-82.

Annunziata S, Cuccaro A, Calcagni ML, Hohaus S, Giordano
A, Rufini V. Interim FDG-PET/CT in Hodgkin lymphoma: the
prognostic role of the ratio between target lesion and liver SUV-
max (rPET). Ann Nucl Med. 2016;30:588-92.

Annunziata S, Cuccaro A, Tisi MC, Hohaus S, Rufini V. FDG-
PET/CT at the end of immuno-chemotherapy in follicular lym-
phoma: the prognostic role of the ratio between target lesion and
liver SUV .. (rPET). Ann Nucl Med. 2018;32:372-7.

Frood R, Clark M, Burton C, Tsoumpas C, Frangi AF, Glee-
son F, et al. Discovery of pre-treatment FDG PET/CT-derived
radiomics-based models for predicting outcome in diffuse large
B-cell lymphoma. Cancers (Basel). 2022;14:1711.

Cui Y, Jiang Y, Deng X, Long W, Liu B, Fan W, et al. 18g_
FDG PET-based combined baseline and end-of-treatment
radiomics model improves the prognosis prediction in diffuse
large B cell lymphoma after first-line therapy. Acad Radiol.
2022;S1076-6332(22):00548-57.

Frood R, Clark M, Burton C, Tsoumpas C, Frangi AF, Gleeson
F, et al. Utility of pre-treatment FDG PET/CT-derived machine
learning models for outcome prediction in classical Hodgkin
lymphoma. Eur Radiol. 2022;32:7237-47.

Ritter Z, Papp L, Zambo K, Téth Z, Dezs6 D, Veres DS, et al.
Two-year event-free survival prediction in DLBCL patients
based on in vivo radiomics and clinical parameters. Front Oncol.
2022;12: 820136.

Jiang C, Li A, Teng Y, Huang X, Ding C, Chen J, et al. Optimal
PET-based radiomic signature construction based on the cross-
combination method for predicting the survival of patients with
diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging.
2022;49:2902-16.

Jiang C, Huang X, Li A, Teng Y, Ding C, Chen J, et al. Radiom-
ics signature from ['8F]JFDG PET images for prognosis predica-
tion of primary gastrointestinal diffuse large B cell lymphoma.
Eur Radiol. 2022;32:5730-41.

Coskun N, Okudan B, Uncu D, Kitapci MT. Baseline 18F-
FDG PET textural features as predictors of response to chemo-
therapy in diffuse large B-cell lymphoma. Nucl Med Commun.
2021;42:1227-32.

Milgrom SA, Elhalawani H, Lee J, Wang Q, Mohamed ASR,
Dabaja BS, et al. A PET radiomics model to predict refractory
mediastinal Hodgkin lymphoma. Sci Rep. 2019;9:1322.

Eifer M, Pinian H, Klang E, Alhoubani Y, Kanana N, Tau N,
et al. FDG PET/CT radiomics as a tool to differentiate between
reactive axillary lymphadenopathy following COVID-19 vacci-
nation and metastatic breast cancer axillary lymphadenopathy:
a pilot study. Eur Radiol. 2022;32:5921-9.

Chen Y, Wang Z, Yin G, Sui C, Liu Z, Li X, et al. Predic-
tion of HER2 expression in breast cancer by combining PET/
CT radiomic analysis and machine learning. Ann Nucl Med.
2022;36:172-82.

Song BI. A machine learning-based radiomics model for the pre-
diction of axillary lymph-node metastasis in breast cancer. Breast
Cancer. 2021;28:664-71.

Krajnc D, Papp L, Nakuz TS, Magometschnigg HF, Grahovac
M, Spielvogel CP, et al. Breast tumor characterization using ['*F]
FDG-PET/CT imaging combined with data preprocessing and
radiomics. Cancers (Basel). 2021;13(6):1249.

Ou X, Zhang J, Wang J, Pang F, Wang Y, Wei X, et al. Radiomics
based on '® F-FDG PET/CT could differentiate breast carcinoma
from breast lymphoma using machine-learning approach: a pre-
liminary study. Cancer Med. 2020;9:496-506.

Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami
N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers.
2019;5:66.

@ Springer

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Burstein HJ. The distinctive nature of HER2-positive breast can-
cers. N Engl J Med. 2005;353:1652—-4.

Banerjee M, George J, Song EY, Roy A, Hryniuk W. Tree-
based model for breast cancer prognostication. J Clin Oncol.
2004;22:2567-75.

Li P, Wang X, Xu C, Liu C, Zheng C, Fulham MJ, et al. BE_FDG
PET/CT radiomic predictors of pathologic complete response
(pCR) to neoadjuvant chemotherapy in breast cancer patients.
Eur J Nucl Med Mol Imaging. 2020;47:1116-26.

Goémez OV, Herraiz JL, Udias JM, Haug A, Papp L, Cioni D,
et al. Analysis of cross-combinations of feature selection and
machine-learning classification methods based on ['®F|F-FDG
PET/CT radiomic features for metabolic response prediction of
metastatic breast cancer lesions. Cancers (Basel). 2022;14:2922.
Zhang Y, Cheng C, Liu Z, Wang L, Pan G, Sun G, et al. Radiom-
ics analysis for the differentiation of autoimmune pancreatitis and
pancreatic ductal adenocarcinoma in '® F-FDG PET/CT. Med
Phys. 2019;46:4520-30.

Wei W, Jia G, Wu Z, Wang T, Wang H, Wei K, et al. A multid-
omain fusion model of radiomics and deep learning to discrimi-
nate between PDAC and AIP based on '®F-FDG PET/CT images.
Jpn J Radiol. 2023;41:417-27.

Xing H, Hao Z, Zhu W, Sun D, Ding J, Zhang H, et al. Preopera-
tive prediction of pathological grade in pancreatic ductal adeno-
carcinoma based on '®F-FDG PET/CT radiomics. EJNMMI Res.
2021;11:19.

Jiang C, Zhao L, Xin B, Ma G, Wang X, Song S. '*F-FDG PET/
CT radiomic analysis for classifying and predicting microvascu-
lar invasion in hepatocellular carcinoma and intrahepatic chol-
angiocarcinoma. Quant Imaging Med Surg. 2022;12:4135-50.
Liu Q, Li J, Xin B, Sun Y, Feng D, Fulham MJ, et al. '*F-FDG
PET/CT radiomics for preoperative prediction of lymph node
metastases and nodal staging in gastric cancer. Front Oncol.
2021;11: 723345.

He J, Wang Q, Zhang Y, Wu H, Zhou Y, Zhao S. Preoperative
prediction of regional lymph node metastasis of colorectal cancer
based on '8F-FDG PET/CT and machine learning. Ann Nucl
Med. 2021;35:617-27.

LiJ, Yang Z, Xin B, Hao Y, Wang L, Song S, et al. Quantitative
prediction of microsatellite instability in colorectal cancer with
preoperative PET/CT-based radiomics. Front Oncol. 2021;11:
702055.

Toyama Y, Hotta M, Motoi F, Takanami K, Minamimoto R,
Takase K. Prognostic value of FDG-PET radiomics with machine
learning in pancreatic cancer. Sci Rep. 2020;10:17024.

Liu Q, LiJ, Xin B, Sun Y, Wang X, Song S. Preoperative 18p.
FDG PET/CT radiomics analysis for predicting HER2 expres-
sion and prognosis in gastric cancer. Quant Imaging Med Surg.
2023;13:1537-49.

Lv L, Xin B, Hao Y, Yang Z, Xu J, Wang L, et al. Radiomic
analysis for predicting prognosis of colorectal cancer from pre-
operative '8F-FDG PET/CT. J Transl Med. 2022;20:66.

Shen WC, Chen SW, Wu KC, Lee PY, Feng CL, Hsieh TC, et al.
Predicting pathological complete response in rectal cancer after
chemoradiotherapy with a random forest using '*F-fluorodeoxy-
glucose positron emission tomography and computed tomogra-
phy radiomics. Ann Transl Med. 2020;8:207.

Agiiloglu N, Aksu A. Evaluation of survival of the patients with
metastatic rectal cancer by staging '*F-FDG PET/CT radiomic
and volumetric parameters. Rev Esp Med Nucl Imagen Mol
(Engl Ed). 2023;42:122-8.

LiuH, XiaoJ, Yang Y, Liu Y, Ma R, Li Y, et al. COX-2 expres-
sion is correlated with VEGF-C, lymphangiogenesis and lymph
node metastasis in human cervical cancer. Microvasc Res.
2011;82:131-40.



Japanese Journal of Radiology (2024) 42:28-55

55

115.

116.

117.

118.

119.

120.

121.

122.

123.

Hoellen F, Waldmann A, Banz-Jansen C, Rody A, Heide M,
Koster F, et al. Expression of cyclooxygenase-2 in cervical
cancer is associated with lymphovascular invasion. Oncol Lett.
2016;12:2351-6.

Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H,
et al. Recommendations for reporting tumor budding in colorec-
tal cancer based on the International Tumor Budding Consensus
Conference (ITBCC) 2016. Mod Pathol. 2017;30:1299-311.
Park JY, Hong DG, Chong GO, Park JY. Tumor Budding is a
Valuable diagnostic parameter in prediction of disease progres-
sion of endometrial endometrioid carcinoma. Pathol Oncol Res.
2019;25:723-30.

Lucia F, Bourbonne V, Pleyers C, Dupré PF, Miranda O, Visvikis
D, et al. Multicentric development and evaluation of BR_FDG
PET/CT and MRI radiomics models to predict para-aortic lymph
node involvement in locally advanced cervical cancer. Eur J Nucl
Med Mol Imaging. 2023;50:2514-28.

Zhang Z, Li X, Sun H. Development of machine learning models
integrating PET/CT radiomic and immunohistochemical path-
omic features for treatment strategy choice of cervical cancer
with negative pelvic lymph node by mediating COX-2 expres-
sion. Front Physiol. 2022;13: 994304.

Li X, XuC, Yu Y, Guo Y, Sun H. Prediction of lymphovascular
space invasion using a combination of tenascin-C, cox-2, and
PET/CT radiomics in patients with early-stage cervical squamous
cell carcinoma. BMC Cancer. 2021;21:866.

Chong GO, Park SH, Jeong SY, Kim SJ, Park NJ, Lee YH, et al.
Prediction model for tumor budding status using the radiomic
features of F-18 fluorodeoxyglucose positron emission tomog-
raphy/computed tomography in cervical cancer. Diagnostics
(Basel). 2021;11:1517.

Ferreira M, Lovinfosse P, Hermesse J, Decuypere M, Rous-
seau C, Lucia F, et al. ['"8F]FDG PET radiomics to predict
disease-free survival in cervical cancer: a multi-scanner/center
study with external validation. Eur J Nucl Med Mol Imaging.
2021;48:3432-43.

Nakajo M, Jinguji M, Tani A, Yano E, Hoo CK, Hirahara D, et al.
Machine learning based evaluation of clinical and pretreatment

124.

125.

126.

127.

128.

129.

130.

I8F_-FDG-PET/CT radiomic features to predict prognosis of cer-
vical cancer patients. Abdom Radiol (NY). 2022;47:838-47.
Nakajo M, Jinguji M, Tani A, Kikuno H, Hirahara D, Togami S,
et al. Application of a machine learning approach for the analysis
of clinical and radiomic features of pretreatment ['*F]-FDG PET/
CT to predict prognosis of patients with endometrial cancer. Mol
Imaging Biol. 2021;23:756-65.

Mannam P, Murali A, Gokulakrishnan P, Venkatachalapathy E,
Venkata Sai PM. Radiomic analysis of positron-emission tomog-
raphy and computed tomography images to differentiate between
multiple myeloma and skeletal metastases. Indian J Nucl Med.
2022;37:217-26.

Mesguich C, Hindie E, de Senneville BD, Tlili G, Pinaquy JB,
Marit G, et al. Improved 18-FDG PET/CT diagnosis of multiple
myeloma diffuse disease by radiomics analysis. Nucl Med Com-
mun. 2021;42:1135-43.

Li H, Xu C, Xin B, Zheng C, Zhao Y, Hao K, et al. 'F-FDG
PET/CT radiomic analysis with machine learning for identifying
bone marrow involvement in the patients with suspected relapsed
acute leukemia. Theranostics. 2019;9:4730-9.

Ni B, Huang G, Huang H, Wang T, Han X, Shen L, et al.
Machine learning model based on optimized radiomics feature
from '8F-FDG-PET/CT and clinical characteristics predicts prog-
nosis of multiple myeloma: a preliminary study. J Clin Med.
2023;12:2280.

Sokol E, Desai AV, Applebaum MA, Valteau-Couanet D,
Park JR, Pearson ADIJ, et al. Age, diagnostic category, tumor
grade, and Mitosis-Karyorrhexis Index are independently
prognostic in neuroblastoma: an INRG project. J Clin Oncol.
2020;38:1906-18.

Feng L, Qian L, Yang S, Ren Q, Zhang S, Qin H, et al. Prediction
for Mitosis-Karyorrhexis Index status of pediatric neuroblastoma
via machine learning based '®F-FDG PET/CT radiomics. Diag-
nostics (Basel). 2022;12:262.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer



	Clinical application of 18F-fluorodeoxyglucose positron emission tomographycomputed tomography radiomics-based machine learning analyses in the field of oncology
	Abstract
	Introduction
	Literature search and screening
	Clinical application of 18F-FDG PETCT radiomics-based ML analyses in lung or mediastinal tumors
	Difference between benign and malignant tumors and between primary and metastatic tumors
	Classification according to histological types
	Prediction of tumor characteristics
	Predicting tumor stage
	Predicting treatment response or survival

	Summary
	Clinical application of 18F-FDG PETCT radiomics-based ML analyses in head and neck tumors
	Differentiating benign and malignant tumors and predicting tumor characteristics
	Predicting treatment response or survival

	Summary
	Clinical application of 18F-FDG PETCT radiomics-based ML analyses in lymphatic tumors
	Differentiating benign from malignant tumors and primary from metastatic tumors or classifying tumors according to histological types
	Predicting treatment response or survival

	Summary
	Clinical application of 18F-FDG PETCT radiomics-based ML analyses in breast tumors
	Differentiating benign from malignant tumors and predicting tumor characteristics or stage
	Predicting treatment response or survival

	Summary
	Clinical application of 18F-FDG PETCT radiomics-based ML analyses in abdominal tumors
	Differentiating benign from malignant tumors and predicting tumor characteristics or stage
	Predicting treatment response or survival

	Summary
	Clinical application of 18F-FDG PETCT radiomics ML analyses in gynecological tumors
	Predicting tumor stage
	Predicting treatment response or survival

	Summary
	Clinical application of 18F-FDG PETCT radiomics-based ML analyses in other tumors
	Conclusion
	References




