Table 2.
Performance evaluation metrics for prediction of patient admission/readmission.
Sampling type | Accuracy score | Precision Score | Recall score | F1 score | AUC | |
---|---|---|---|---|---|---|
Patient admission | ||||||
Decision tree | WS | 0.93 | 0.70 | 0.75 | 0.72 | 0.85 |
OS | 0.92 | 0.64 | 0.83 | 0.72 | 0.88 | |
US | 0.91 | 0.60 | 0.92 | 0.72 | 0.91 | |
Random forest | WS | 0.95 | 0.82 | 0.79 | 0.81 | 0.98 |
OS | 0.94 | 0.72 | 0.87 | 0.79 | 0.98 | |
US | 0.93 | 0.68 | 0.93 | 0.78 | 0.98 | |
Logistic regression | WS | 0.91 | 0.76 | 0.44 | 0.56 | 0.94 |
OS | 0.92 | 0.63 | 0.94 | 0.75 | 0.96 | |
US | 0.93 | 0.70 | 0.80 | 0.75 | 0.96 | |
Support vector machine | WS | 0.95 | 0.80 | 0.79 | 0.80 | 0.97 |
OS | 0.92 | 0.62 | 0.97 | 0.76 | 0.98 | |
US | 0.94 | 0.70 | 0.94 | 0.81 | 0.98 | |
Patient readmission | ||||||
Decision tree | WS | 0.55 | 0.52 | 0.62 | 0.56 | 0.52 |
Random forest | WS | 0.55 | 0.52 | 0.60 | 0.56 | 0.58 |
Logistic regression | WS | 0.55 | 0.52 | 0.46 | 0.49 | 0.48 |
Support vector machine | WS | 0.52 | 0.49 | 0.48 | 0.49 | 0.50 |
Distribution type: without sampling (WS), oversampling (OS), undersampling (US). Best performing model in bold.