Skip to main content
. 2023 Dec 21;14:1266548. doi: 10.3389/fpsyt.2023.1266548

Table 2.

Performance evaluation metrics for prediction of patient admission/readmission.

Sampling type Accuracy score Precision Score Recall score F1 score AUC
Patient admission
Decision tree WS 0.93 0.70 0.75 0.72 0.85
OS 0.92 0.64 0.83 0.72 0.88
US 0.91 0.60 0.92 0.72 0.91
Random forest WS 0.95 0.82 0.79 0.81 0.98
OS 0.94 0.72 0.87 0.79 0.98
US 0.93 0.68 0.93 0.78 0.98
Logistic regression WS 0.91 0.76 0.44 0.56 0.94
OS 0.92 0.63 0.94 0.75 0.96
US 0.93 0.70 0.80 0.75 0.96
Support vector machine WS 0.95 0.80 0.79 0.80 0.97
OS 0.92 0.62 0.97 0.76 0.98
US 0.94 0.70 0.94 0.81 0.98
Patient readmission
Decision tree WS 0.55 0.52 0.62 0.56 0.52
Random forest WS 0.55 0.52 0.60 0.56 0.58
Logistic regression WS 0.55 0.52 0.46 0.49 0.48
Support vector machine WS 0.52 0.49 0.48 0.49 0.50

Distribution type: without sampling (WS), oversampling (OS), undersampling (US). Best performing model in bold.