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Summary:

We propose a broad class of so-called Cox-Aalen transformation models that incorporate 

both multiplicative and additive covariate effects on the baseline hazard function within 

a transformation. The proposed models provide a highly flexible and versatile class of 

semiparametric models that include the transformation models and the Cox-Aalen model as 

special cases. Specifically, it extends the transformation models by allowing potentially time-

dependent covariates to work additively on the baseline hazard and extends the Cox-Aalen model 

through a predetermined transformation function. We propose an estimating equation approach 

and devise an Expectation-Solving (ES) algorithm that involves fast and robust calculations. The 

resulting estimator is shown to be consistent and asymptotically normal via modern empirical 

process techniques. The ES algorithm yields a computationally simple method for estimating 

the variance of both parametric and nonparametric estimators. Finally, we demonstrate the 

performance of our procedures through extensive simulation studies and applications in two 

randomized, placebo-controlled HIV prevention efficacy trials. The data example shows the utility 

of the proposed Cox-Aalen transformation models in enhancing statistical power for discovering 

covariate effects.
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1. Introduction

Censored failure time data are frequently encountered in epidemiological and biomedical 

studies. In the literature, the multiplicative and additive hazards models provide two 

principal frameworks for analyzing such data. The most popular multiplicative hazards 

model is the proportional hazards model (Cox, 1972), where the covariates are assumed 

to act multiplicatively on an unknown baseline hazard function. In contrast, the additive 

hazards models furnish an additive effect between the covariates and the baseline hazard 

function, enabling a direct reflection of the risk increase or decrease (Aalen, 1980; Huffer 

and McKeague, 1991; Lin and Ying, 1994). Without prior domain knowledge, it is hard 

to determine which approach is preferable among multiplicative and additive hazards 

models. In fact, both models may often be used to complement each other and provide 

more complete insights. Therefore, various multiplicative-additive hazard models have 

been proposed to capture both multiplicative and additive effects (Lin and Ying, 1995; 

Martinussen and Scheike, 2002). In particular, Scheike and Zhang (2002) suggested a 

Cox-Aalen model by replacing the baseline hazard function in the Cox model with Aalen’s 

additive model. The Cox-Aalen model has been studied for various types of censored 

data, e.g., right-censored (Scheike and Zhang, 2002), interval-censored (Boruvka and Cook, 

2015), left-truncated and right-censored (Shen and Weng, 2018), left-truncated and mixed 

interval-censored (Shen and Weng, 2019), and recurrent-event (Qu and Sun, 2019).

Transformation models have also received wide attention in survival analysis. Dabrowska 

and Doksum (1988) introduced the class of linear transformation models, which includes 

the proportional hazards and proportional odds models (Pettitt, 1982; Bennett, 1983). 

Estimators for this class of models were proposed by Dabrowska and Doksum (1988), 

Cheng et al. (1995), Fine et al. (1998), Chen et al. (2002), among others. Zeng and 

Lin (2006) extended the linear transformation models to allow time-dependent covariates. 

Hereafter, we refer to this class of transformation models as Zeng and Lin’s model to 

avoid confusion. There is rich literature investigating Zeng and Lin’s model. Zeng and Lin 

(2006) proposed a nonparametric maximum likelihood estimator (NPMLE) in the presence 

of right-censored data. Zeng and Lin (2007) derived a system of self-consistent equations 

for the jump sizes of the baseline cumulative hazard function at exact failure times through 

an expectation-maximization (EM) algorithm. Chen (2009) showed that the self-consistent 

estimator derived in Zeng and Lin (2007) is asymptotically equivalent to a weighted 

Breslow-type estimator, which can be solved by a computationally-efficient iterative 

reweighting algorithm. Liu and Zeng (2013) investigated variable selection procedures 

by minimizing a weighted negative partial log-likelihood function plus an adaptive lasso 

penalty. More recently, Zeng et al. (2016) and Zhou et al. (2021) studied the nonparametric 

maximum likelihood estimation of Zeng and Lin’s model with interval-censored and partly 

interval-censored data, respectively.

However, one limitation of Zeng and Lin’s model is that all covariate effects are assumed 

to be multiplicative within the transformation function. This assumption is too restrictive 

in some applications. For example, in an analysis of risk factors on mortality among 

patients with myocardial infarction, Scheike and Zhang (2003) showed that some covariates 

(e.g., ventricular fibrillation and congestive heart failure) have additive effects while others 
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(e.g., age and sex) have multiplicative effects. In addition, they pointed out that naively 

treating all covariates as multiplicative led to incorrect results when predicting survival 

probabilities. Another example is HIV prevention efficacy trials, for which HIV incidence 

varies across geographic regions and by sex/gender; thus, the different regions/sex/gender 

subgroups have different baseline hazard functions (Corey et al., 2021). Moreover, a Kaplan-

Meier plot shows that survival curves for different regions cross, potentially suggesting an 

additive region effect. To the best of our knowledge, no existing work considers a class of 

semiparametric transformation models in which the baseline hazard function is allowed to 

depend on some potentially time-varying covariates additively. Therefore, it is desirable to 

provide a larger class of semiparametric transformation models that can accommodate both 

multiplicative and additive covariate effects under one unified framework.

The EM algorithm is a powerful tool for performing maximum likelihood estimation in the 

presence of latent variables or missing data (Dempster et al., 1977). In particular, various 

EM-type algorithms have been proposed to find NPMLE for semiparametric transformation 

models (Zeng and Lin, 2007; Liu and Zeng, 2013; Zeng et al., 2016; Zhou et al., 2021). In 

analogy to EM, Elashoff and Ryan (2004) proposed an expectation-solving (ES) algorithm 

that handles missing data for general estimating equations, greatly facilitating its application 

to a broader framework. When the complete-data estimating equations correspond to the 

score functions from the likelihood, the ES algorithm essentially reduces to the EM. 

The ES algorithm dramatically improves computational efficiency for solving estimating 

equations involving frailty or latent variables. For example, Johnson and Strawderman 

(2012) developed a smoothing expectation and substitution algorithm for the semiparametric 

accelerated failure time frailty model. Henderson and Rathouz (2018) considered an 

approximate EM procedure for a longitudinal latent class model for count data.

In this article, we propose a broad class of so-called Cox-Aalen transformation models 

that incorporate both multiplicative and additive covariate effects upon the baseline hazard 

function within a transformation. The proposed class of models is very flexible and 

contains Zeng and Lin’s model and the Cox-Aalen model as special cases. However, 

the multiplicative-additive structure within the transformation and the need to estimate 

several nonparametric functions simultaneously impose additional challenges for model 

estimation. To alleviate such difficulties, we devise an ES-type algorithm, which iterates 

between an E-step wherein functions of complete data are replaced by their expectations 

and an S-step where these expected values are substituted into the complete-data estimating 

equations, which are then solved. More specifically, within the S-step, the high-dimensional 

parameters are calculated explicitly, while the low-dimensional parameters are updated via 

the Newton-Raphson method. Consequently, the proposed ES algorithm is fast and stable 

even under a high percentage censoring rate, as evidenced by our simulation studies and 

real data applications. Another attraction of our approach is that we provide simple variance 

estimators for both parametric and nonparametric estimates. Furthermore, the theoretical 

properties of the proposed estimators are rigorously studied via modern empirical process 

techniques.

The rest of the article is organized as follows. In Section 2, we present the proposed Cox-

Aalen transformation models. In Section 3, we formally describe the estimation procedure 
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and establish the asymptotic properties of the proposed estimators. In Section 4, simulation 

studies are conducted to evaluate the finite-sample performance of the proposed method. In 

Section 5, we apply our method to two randomized HIV prevention efficacy trials. Section 6 

concludes with a discussion.

2. Semiparametric Cox-Aalen Transformation Models

Let X ⋅ = X1 ⋅ , …, Xq ⋅ ⊤ and Z ⋅ = Z1 ⋅ , …, Zd ⋅ ⊤ denote q × 1 and d × 1 vectors of 

potentially time-varying covariates, and T  denote the failure time of interest. We propose a 

broad class of so-called Cox-Aalen transformation models such that the cumulative hazard 

function for T  conditional on X ⋅  and Z ⋅  takes the form

Λ t X ⋅ , Z ⋅ = G ∫
0

t

exp β⊤Z s dΛX s ,

(1)

where β is a d × 1 vector of unknown regression coefficients, ΛX s = ∫0
s X ⊤ v α v dv is 

an unknown increasing function with α v = α1 v , …, αq v ⊤, and G ⋅  is a pre-specified 

transformation function that is strictly increasing and thrice continuously differentiable with 

G 0 = 0, G′ 0 > 0 and G ∞ = ∞. In addition, let A t = ∫0
tα s ds = A1 t , …, Aq t ⊤, where 

Aj t = ∫0
tαj v dv for j = 1, …, q. With X1 ⋅  fixed at 1, α1 t  can be interpreted as a reference 

level of the risk. Generally, it is not meaningful to have X ⋅  equal or proportional to Z ⋅ . 

For the choices of G, it is useful to consider the class of frailty-induced transformations

G x = − log∫
0

∞

exp −xξ f ξ dξ,

(2)

where f ξ  is a density function of a nonnegative random variable ξ with support 0, ∞ . 

The choice of the gamma density with unit mean and variance r for f ξ  yields the 

logarithmic transformations G x = r−1log 1 + rx r ⩾ 0  with r = 0 specifying G x = x. The 

choice of the positive stable distribution with parameter 0 < ρ < 1 yields the class of Box-

Cox transformations G x = 1 + x ρ − 1 /ρ. Note that G x = log 1 + x  is often considered 

to be a member of the above class with ρ = 0. By treating the latent variable ξ as missing, the 

frailty-induced transformations are particularly useful in deriving EM type algorithms (Zeng 

and Lin, 2007; Liu and Zeng, 2013; Zeng et al., 2016; Zhou et al., 2021). Some remarks 

regarding the Cox-Aalen transformation models are as follows:

REMARK 1: When αj t = 0 j = 2, …, q  for any t, the right-hand side of (1) reduces to
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G ∫
0

t

exp β⊤Z s dA1 s .

(3)

Hence, Zeng and Lin’s model is a special case of the proposed model. Moreover, when 

Z is time-invariant, (3) further reduces to a class of linear transformation models with the 

form logA1 T = − β⊤Z + logG−1 −logϵ0 , where ϵ0 has a uniform distribution (Chen et al., 

2002). The choices G x = x and G x = log 1 + x  yield the proportional hazards model and 

proportional odds model, respectively.

REMARK 2: When G x = x, according to (1), the cumulative hazard function on the left-hand 

side can be written as

∫
0

t

X ⊤ s α s exp β⊤Z s ds .

(4)

Thus, the conditional hazard function of T  is X⊤ t α t exp β⊤Z t . Therefore, the Cox-Aalen 

model is a special case of the proposed models. In particular, when X2, …, Xq represent levels 

in a set of factors, model (4) further reduces to the stratified Cox model (Kalbfleisch and 

Prentice, 2002, Section 4.4).

REMARK 3: for G x = log 1 + x , the odds of surviving beyond time t based on (1) are

γ t X, Z = Pr T > t X, Z
Pr T ⩽ t X, Z = ∫

0

t

exp β⊤Z s dΛX s

−1

.

In the special case where Z are time-independent covariates,

γ t X, Z = γ t X, Z0 exp −β⊤ Z − Z0 ,

which is a stratified proportional odds model when X is a random variable indicating strata.

As illustrated above, our proposed class of semiparametric models is very flexible and 

contains many popular models in survival analysis. To motivate our approach, we first 

set up the observed data likelihood and derive the NPMLE for a special case. Then, for 

more general situations, we propose estimating the parameters β and A ⋅  using estimating 

equations along with an easily-implemented ES algorithm. Finally, the asymptotic properties 
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of the resulting estimators are derived via modern empirical process theory (van der Vaart 

and Wellner, 1996).

3. Methods

3.1 Notations

For the ith individual, let T i and Ci be the failure time and censoring time, respectively. Let 

T i = min T i, Ci  be the observed time and define Δi = I T i ⩽ Ci . Thus, Δi = 1 indicates that the 

exact failure time for the ith individual was observed while Δi = 0 implies censoring. For a 

random sample of n participants, the observed data consist of Oi = Δi, T i, Xi t , Zi t , t ∈ 0, τ
for i = 1, …n, where τ denotes the duration of the study. Moreover, we define Y i t = I T i ⩾ t
and Ni t = ΔiI T i ⩽ t .

3.2 Nonparametric Maximum Likelihood Estimation

Assume that T i and Ci are conditionally independent given Xi ⋅  and Zi ⋅ . Under the 

proposed Cox-Aalen transformation model (1), the likelihood for the observed data is

Ln β, ΛX = Πi = 1
n

Λ′Xi T i exp β⊤Zi T i G′ ∫
0

Ti

exp β⊤Zi s dΛXi s
Δi

× exp −G ∫
0

Ti

exp β⊤Zi s dΛXi s ,

(5)

where Λ′X ⋅  and G′ ⋅  are the derivatives of ΛX ⋅  and G ⋅ , respectively. The likelihood 

(5) involves β and q infinite dimensional parameters Aj j = 1, …, q , and it may not be 

concave in these parameters. Thus, the nonparametric maximum likelihood techniques are 

usually employed to restrict the parameter space.

To establish a simple and efficient estimation procedure, we adopt the idea in Zeng and Lin 

(2007) by treating ξ as a latent variable in the class of frailty-induced transformations (2). 

Note that model (1) is equivalent to the survival time T  with cumulative hazard function

Λ t X ⋅ , Z ⋅ , ξ = ξ∫
0

t

exp β⊤Z s dΛX s ,

(6)

because
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Pr T > t X ⋅ , Z ⋅ = E Pr T > t X ⋅ , Z ⋅ , ξ X ⋅ , Z ⋅

= E exp −ξ∫
0

t

exp β⊤Z s dΛX s X ⋅ , Z ⋅

= ∫
0

∞

exp −ξ∫
0

t

exp β⊤Z s dΛX s f ξ dξ

= exp −G ∫
0

t

exp β⊤Z s dΛX s .

Based on (2), it can be shown that the likelihood (5) is equivalent to

Πi = 1
n ∫

ξi
ξiΛ′Xi T i exp β⊤Zi T i

Δiexp −ξi∫
0

Ti

exp β⊤Zi s dΛXi s f ξi dξi .

Now we consider nonparametric maximum likelihood estimation of β and A ⋅ . Let 

0 = t0 < t1 < ⋯ < tm < ∞ denote the uniquely observed event times among the n observations. 

Assume that the estimator for Aj j = 1, …, q  is a step function with jump size ajk at tk. By the 

observation that dΛX t = X⊤ t dA t , the estimator for ΛX is a step function with jump size 

X⊤ tk ak at tk where ak = a1k, …, aqk
⊤ for k = 1, …, m. Let Oi

C = Δi, T i, Xi t , Zi t , ξi, t ∈ 0, τ  be 

the complete data for the ith participant. The complete-data log-likelihood function can be 

written as

∑
i = 1

n
∑

k = 1

m
ΔiI T i = tk log ξi Xik

⊤ak + β⊤Zik

− ξi ∑
tk ⩽ T i

exp β⊤Zik Xik
⊤ak + log f ξi ,

(7)

where Zik = Zi tk  and Xik = Xi tk .

To obtain the NPMLE of β and A ⋅ , we propose an EM-type algorithm by treating ξ as 

missing data. In the E-step, we evaluate the posterior mean of ξi given the observed data, 

denoted by E ξi . The detailed calculations are given in the next subsection. In the M-step, 

we maximize the expectation of (7) conditional on the observed data. More specifically, we 

set the derivatives of the conditional expectation of (7) with respect to ak k = 1, …, m  and β
to zeros, respectively. Then one can solve for the estimates through the following equations:

∑
i = 1

n

ΔiI T i = tk
Xik

Xik
⊤ak

− I T i ⩾ tk E ξi exp β⊤Zik Xik = 0, for k = 1, …, m,

(8)
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∑
i = 1

n

∑
k = 1

m

ΔiI T i = tk − I T i ⩾ tk E ξi Xik
⊤ak exp β⊤Zik Zik = 0.

(9)

The dimension of the unknown parameters a1, …, am, β  depends on m, which could be a large 

number when n is large or the censoring rate is low. Therefore, (8) and (9) are a system of 

high-dimensional nonlinear equations that is notoriously difficult to solve due to the curse of 

dimensionality. For a special case, i.e., X is a vector of design variables for categories, there 

exist explicit formulae for calculating the high-dimensional parameters ak k = 1, …, m . See 

Web Appendix A for details. However, such explicit formulae do not exist for more general 

scenarios; hence we consider an alternative estimating equation approach to overcome the 

aforementioned computational difficulties.

3.3 Estimating Equations

Following Elashoff and Ryan (2004), we develop an expectation-solving (ES) algorithm for 

model (1) in this section. We begin by constructing a system of complete-data estimating 

equations based on model (6), which is equivalent to the proposed model (1) under the 

frailty-induced transformations (2). The connection between the proposed ES algorithm and 

the EM algorithm is discussed at the end of this section. Note that the intensity for Ni t  is 

Y i t ξiexp β⊤Zi t Xi
⊤ t α t  if ξi is known. Let

Mi t = Ni t −∫
0

t

Y i s ξiexp β0
⊤Zi s Xi

⊤ s dA0 s ,

where (β0, A0) are the true values of (β, A). It is clear that E Xi t dMi t = 0 for any 0 ⩽ t ⩽ τ
and Ε ∫0

τZi t dMi t = 0. By treating ξi as missing, we consider the following complete-data 

estimating equations

∑
i = 1

n

Xi t dNi t − Y i t ξiexp β⊤Zi t Xi
⊤ t dA t = 0 0 ⩽ t ⩽ τ ,

(10)

∑
i = 1

n ∫
0

τ

Zi t dNi t − Y i t ξiexp β⊤Zi t Xi
⊤ t dA t = 0.

(11)
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By the previous arguments that the nonparametric estimator for ΛX is a step function with 

jump size X⊤ tk ak at tk k = 1, …, m , it follows that (10) and (11) can be written as

∑i = 1

n
ΔiI T i = t1 − I T i ⩾ t1 ξi Xi1

⊤a1 exp β⊤Zi1 Xi1 = 0

…

∑i = 1

n
ΔiI T i = tm − I T i ⩾ tm ξi Xim

⊤ am exp β⊤Zim Xim = 0

∑i = 1

n ∑k = 1

m
ΔiI T i = tk − I T i ⩾ tk ξi Xik

⊤ak exp β⊤Zik Zik = 0.

(12)

Write θ = a1
⊤, …, am

⊤, β⊤ ⊤
. We propose to estimate θ through an ES-type algorithm by treating 

ξi as missing. The ES algorithm iterates between an E-step wherein the functions of the 

complete data are replaced by their expectations, and an S-step where these expected values 

are substituted into the complete-data estimating equations (12), which are then solved. 

After specifying initial values of the unknown parameters θ, say θ 0 , the proposed ES 

algorithm iterates between the following two steps until convergence:

E-step. Evaluate the posterior means E ξi . When Δi = 1, the posterior density of 

ξi given the observed data Δi = 1, T i, Xi, Zi  is proportional to ξiexp −ξiSi1 f ξi , where 

Si1 = Δi∑tk ⩽ Ti Xik
⊤ak exp β⊤Zik . Hence we obtain

E ξi = G′ Si1 − G″ Si1
G′ Si1

,

by taking the derivative twice of the equation exp −G x = ∫0
∞exp −xξ f ξ dξ, where G′ ⋅

and G″ ⋅  are the first and second derivatives of G ⋅ , respectively. When Δi = 0, the 

posterior density of ξi given the observed data (Δi = 0, Ci, Xi, Zi) is proportional to 

exp −ξiSi2 f ξi , where Si2 = 1 − Δi ∑tk ⩽ Ci Xik
⊤ak exp β⊤Zik . One can obtain E ξi = G′ Si2 . 

Therefore, the E-step can be summarized as

E ξi = Δi G′ Si1 − G″ Si1
G′ Si1

+ 1 − Δi G′ Si2 .

S-step. After replacing ξ by E ξi , we solve (12) for θ. To this end, we propose the following 

nonlinear Gauss-Seidel method (Ortega and Rheinboldt, 1970; Ortega, 1972).

Step 1. Fix β, update ak k = 1, …, m  by solving
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∑
i = 1

n

ΔiI T i = t1 − I T i ⩾ t1 E ξi Xi1
⊤a1 exp β⊤Zi1 Xi1 = 0

…

∑
i = 1

n

ΔiI T i = tm − I T i ⩾ tm E ξi Xim
⊤ am exp β⊤Zim Xim = 0.

(13)

Note that for fixed β, (13) is a system of linear equations with respect to ak k = 1, …, m
and updating ak is independent of updating aj for k ≠ j k, j = 1, …, m . In particular, we have 

explicit formulae for updating ak k = 1, …, m , i.e.,

ak = ∑
i = 1

n
I T i ⩾ tk E ξi exp β⊤Zik XikXik

⊤

−1
∑

i = 1

n
ΔiI T i = tk Xik ,

(14)

for k = 1, …, m.

Step 2. Fix a1, …, am, we update β by solving the following equation using the Newton-

Raphson method:

∑
i = 1

n

∑
k = 1

m

ΔiI T i = tk − I T i ⩾ tk E ξi Xik
⊤ak exp β⊤Zik Zik = 0.

Note that within the S-step, we iterate between Step 1 and Step 2 until convergence. The 

S-step is declared convergent when the sum of the absolute differences of the estimates at 

two successive iterations is less than a small positive number, say 10−3.

We iterate between the E- and S-steps until convergence and denote the final estimates 

by θ = a1
⊤, …, am

⊤, β⊤ ⊤
. A natural estimator of A t  is A t = ∑tk ⩽ t ak for 0 ⩽ t ⩽ τ. Moreover, 

recall that A t = ∫0
tα s ds, hence we can estimate α t , 0 ⩽ t ⩽ τ via a kernel estimator

α t = ∑
k = 1

m

ℎ−1K t − tk
ℎ ak,

where K x  is the kernel function and h is the bandwidth. Throughout this article, we choose 

the Epanechnikov kernel function, i.e., K x = 3
4max 1 − x2, 0 .
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The proposed ES algorithm has several desirable features. First, a closed-form formula 

for computing E ξi  is obtained in the E-step. Second, it avoids solving a large system of 

nonlinear equations in the S-step because the high-dimensional parameters ak k = 1, …, m
are calculated explicitly while the low-dimensional parameter β is updated via the Newton-

Raphson method. Accordingly, the proposed ES algorithm performs stably and satisfactorily 

without calculating the inverse of any high-dimensional matrices. Third, when X is a vector 

of design variables for categories, the corresponding ES algorithm coincides with the EM 

algorithm proposed in Section 3.2 by observing that for fixed β, (8) and (13) share the 

same solution in terms of ak k = 1, …, m . This implies that the proposed ES estimator is also 

efficient under this special case. See Web Appendix B for detailed justifications. Similarly, 

it can be shown that the ES algorithm coincides with the EM algorithm When X = 1, i.e., 

q = 1. Finally, we remark that (13) can be considered as a weighted version of (8), where 

each participant i is assigned weight Xik
⊤ak.

3.4 Variance Estimator

In this section, we provide easy-to-compute variance estimators for both the parametric 

estimates β  and the nonparametric estimates A t , a t . Note that E ξi  is a function of the 

observed data Oi and the unknown parameter θ:E ξi = g Oi, θ . With O the collection of 

Oi i = 1, …n , the proposed ES estimator is intrinsically equivalent to solving the following 

observed-data estimating equation: U O, θ = 0, where U O, θ = Ua1, …, Uam, Uβ ,

Ua1 = ∑i = 1

n
ΔiI T i = t1 − I T i ⩾ t1 g Oi, θ Xi1

⊤a1 exp β⊤Zi1 Xi1

…

Uam = ∑i = 1

n
ΔiI T i = tm − I T i ⩾ tm g Oi, θ Xim

⊤ am exp β⊤Zim Xim

Uβ = ∑i = 1

n ∑k = 1

m
ΔiI T i = tk − I T i ⩾ tk g Oi, θ Xik

⊤ak exp β⊤Zik Zik .

(15)

Note that Ua1, …, Uam, Uβ also depend on the observed data O and the unknown parameter θ. 

Here, we compress the notation when there is no confusion. From (15), one can easily note 

that U O, θ  can be expressed as the sum of independent terms:

U O, θ = ∑
i = 1

n

Ui Oi, θ .

Let D O, θ  be the derivative of U O, θ  with respect to θ. The covariance matrix of θ  is 

consistently estimated by

D O, θ −1 ∑
i = 1

n

Ui Oi, θ Ui
⊤ Oi, θ D O, θ −1 ⊤  θ = θ .
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(16)

Therefore, the variance covariance matrix of β  can be consistently estimated by the d × d
lower right-hand corner of (16). The variance covariance matrix of ak k = 1, …, m  can be 

consistently estimated by the qm × qm  upper left-hand corner of (16).

In addition, recall that A t = ∑tk ⩽ t ak and α t = ∑k = 1
m ℎ−1K t − tk

ℎ ak for 0 ⩽ t ⩽ τ, such that 

the variance for A t  and α t  are

Var A t = ∑
tk ⩽ t

∑
tj ⩽ t

Cov ak, aj ,

Var α t = ∑
k = 1

m

∑
j = 1

m

ℎ−2K t − tk
ℎ K t − tj

ℎ Cov ak, aj .

Variance estimators are obtained by replacing Cov ak, a j  by Cov ak, a j  in the above 

expressions.

3.5 Asymptotic Properties

In this subsection, we present the asymptotic properties of the proposed ES estimator. let 

ϕ t = G′ t , ψ t = G″ t /G′ t  and ρ t; β, A =∫
0

t

Y s exp β⊤Z s X⊤ s dA s . Hence, the 

posterior mean of ξ can be written as g τ; β, A = ϕ ρ τ; β, A − Δψ ρ τ; β, A .

Let P  denote the true probability measure and ℙn denote the empirical measure. In addition, 

let θ = β, A  be the parameters of interest and θ0 = β0, A0  be the true values of the 

parameters. Then the proposed ES estimator θ = β , A  is a Z-estimator solving the following 

observed-data estimating equation

ℙnΦ β, A t ≡ ℙn
Φ1 β, A

Φ2 β, A t = 0,

for 0 ⩽ t ⩽ τ, where

Φ1 β, A =∫
0

τ

Z t dN t − Y t exp β⊤Z t g τ; β, A Z t X⊤ t dA t ,
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Φ2 β, A t = X t dN t − Y t exp β⊤Z t g τ; β, A X t X⊤ t dA t .

Let ℎ be a function in BV 1 0, τ , where BV 1 0, τ  denotes the set of functions with total 

variation bounded by 1 on 0, τ . Define

Φ2 β, A ℎ =∫
0

τ

ℎ t X t dN t − Y t exp β⊤Z t g τ; β, A X t X⊤ t dA t .

Similar to Gao et al. (2017) and van der Vaart and Wellner (1996, Section 3.3.1), the 

proposed ES estimator (β , A) is equivalent to the root of the estimating equation

ℙnΦ β, A ℎ ≡ ℙn
Φ1 β, A

Φ2 β, A ℎ = 0,

for all ℎ ∈ BV 1 0, τ .

Write Ψ θ = PΦ β, A ℎ  and Ψn θ = ℙnΦ β, A ℎ . Note that Ψ θ  and Ψn θ  are 

actually ℎ-dependent. Rigorously speaking, we should write Ψ θ ℎ = PΦ β, A ℎ  and 

Ψn θ ℎ = ℙnΦ β, A ℎ , but in the rest of the article, we suppress the letter ℎ when there 

is no confusion. The proposed ES estimator is a Z-estimator that satisfies Ψn θ = 0. To 

establish the asymptotic properties, we assume the following regularity conditions:

Condition 1. With probability one, X ⋅  and Z ⋅  have bounded total variation in 0, τ .

Condition 2. Let ℬ be a compact set of ℛd and BV 0, τ  be the class of functions with 

bound variation over 0, τ . The true parameter (β0, A0) belongs to ℬ × BV q 0, τ  with β0 an 

interior point of ℬ and A0 t = A01 t , …, A0q t ⊤ is continuous over 0, τ  with A0 0 = 0. Here 

BV q 0, τ  denotes the product space BV 0, τ × ⋯ × BV 0, τ .

Condition 3. With probability one, there exists a positive constant ε such that 

P Y τ = 1 X ⋅ , Z ⋅ > ε and PN2 τ < ∞. If there exists a vector γ and a deterministic 

function γ0 t  such that γ0 t + γ⊤X t = 0 with probability one, then γ0 t = 0 and γ = 0 for any 

t ∈ 0, τ .

Condition 4. The transformation function G is thrice continuously differentiable on 0, ∞
with G 0 = 0, G′ x > 0 and G ∞ = ∞.

Condition 5. Let Ψ̇θ0 be the Fréchet derivative of Ψ θ  with respect to θ at θ = θ0. See Web 

Appendix C for detailed expressions of Ψ̇θ0. We assume that Ψ̇θ0 is an invertible map.

REMARK 4: Conditions 1 and 2 state the boundedness of the covariates and the compactness 

of the Euclidean parameter space, which are conventional conditions used in most regression 
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analyses. Condition 3 ensures the existence and uniqueness of the jump sizes in (14). 

Condition 4 ensures that the transformation function G is strictly increasing on 0, ∞ . 

Condition 5 is a classical condition for Z-estimators.

THEOREM 1: Under Conditions 1 – 5, the proposed ES estimator (β , A) is strongly consistent 
to (β0, A0).

THEOREM 2: Under Conditions 1 – 5, n β − β0, A − A0  converges weakly to a zero-mean 

Gaussian process in the metric space ℛd × linq BV 1 0, τ .

Here, we let lin BV 1 0, τ  be the closed linear span for linear functionals of 

BV 1 0, τ . For each j j = 1, …, q , Aj is contained in the Banach space lin BV 1 0, τ , 

where Aj ℎ = ∫ ℎ t dAj t  for ℎ ∈ BV 0, τ . Thus, A = A1, …, Aq
⊤ is contained in 

the Banach space linq BV 1 0, τ . Here, linq BV 1 0, τ  stands for the product space 

lin BV 1 0, τ × ⋯ × lin BV 1 0, τ . Detailed proofs of the above theorems are presented in Web 

Appendix C.

4. Simulation Studies

We carried out extensive simulation studies to evaluate the finite-sample performance of the 

proposed estimation and inference procedures. Suppose that the failure time T  follows the 

Cox-Aalen transformation model with the cumulative hazard function

Λ t X ⋅ , Z ⋅ = G ∫
0

t

exp β1Z1 s + β2Z2 dΛX s .

Here, Z1 t = B1I t ⩽ V + B2I t > V  is a time-dependent covariate where B1 and B2 are 

independent Ber 0.5 , V ∼ Unif 0, 3 , and Z2 ∼ Unif 0, 1  is a time-independent covariate. We 

set β1 = 0.5, β2 = − 0.5, and consider four different configurations for ΛX s = ∫0
sX⊤ v dA v , 

A t = A1 t , …, Aq t ⊤:

Scenario 1. X = 1, X2
⊤ with X2 ∼ Ber 0.4 , A1 t = log 1 + t/4  and A2 t = 0.1t.

Scenario 2. X = 1, X2
⊤ with X2 ∼ Unif 0, 1 , A1 t = log 1 + t/4  and A2 t = 0.1t.

Scenario 3. X t = 1, X2 t ⊤ with X2 t = B3 + B4t, where B3 ∼ Unif 1, 2  and 

B4 ∼ Unif 0.1, 0.5 , A1 t = log 1 + t/4  and A2 t = 0.1t.

Scenario 4. Let D be a categorical variable that takes values in 1, 2, 3  with 

equal probability. X = 1, X2, X3
⊤, where X2 = I D = 2 , X3 = I D = 3 , A1 t = log 1 + t/4 , 

A2 t = 0.1t and A3 t = 0.05t.
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For the transformation functions, we consider the class of logarithmic transformations 

G x = r−1log 1 + rx  with r = 0, 0.5 and 1, where r = 0 specifies the Cox-Aalen model. For 

all setups, we let τ = 1 be the duration of the study. For each study participant, we generate 

one censoring time C ∼ Exponential 0.5 . We set Δ = 1 if T ⩽ min C, τ , and 0 otherwise. This 

process yields about 75 – 85% right-censored observations for r = 0, 0.5 and 1. For each 

dataset, we applied the proposed ES algorithm by setting the initial value of β to 0 and the 

initial value of ak to be 1/m, 0, …, 0  for each k = 1, …, m. We also tried other initial values, 

yielding almost identical results. We set n = 200, 500 or 800, and all simulation results are 

based on 1000 replicates.

Table 1 summarizes the results for estimation of β1 and β2 for all scenarios. Despite the 

high censoring percentage, from Table 1, one can see that the proposed procedures perform 

well in several ways: (i) the estimators are virtually unbiased; (ii) the estimated standard 

error is fairly close to the empirical standard error; (iii) the empirical coverage probability 

of 95% confidence intervals are all close to the nominal 95% level; (iv) when the sample 

size increases, the bias, and the variability of the parameter estimator, decreases. Thus, our 

proposed estimation procedures are reliable for various Cox-Aalen transformation models.

Figure 1 shows the estimation results for the cumulative regression functions A ⋅  in 

Scenario 1. The proposed estimators are again virtually unbiased and the estimated curves 

are able to capture the shapes of the true cumulative regression functions very well; the 

estimated standard errors are close to the empirical standard errors; and the confidence 

intervals have reasonably accurate coverage probabilities. To save space, estimation results 

for α ⋅  via the kernel smoothing approach with bandwidth ℎ = 0.1 are provided in Web 

Appendix D for Scenario 1. In addition, estimation results for A ⋅  and α ⋅  under 

Scenarios 2 and 4 are also presented in Web Appendix D. These results further confirm 

the satisfactory performance of our proposed method in various numerical settings. We 

also conducted simulation studies to investigate the robustness of the proposed estimator 

under the misspecification of the G function. The setups were the same as Scenario 3, 

and simulation results are displayed in Web Appendix D. The results suggested that the 

misspecification of the transformation function led to biased estimates and lower coverage 

probabilities than the nominal levels.

Moreover, we demonstrate the superiority of our proposed model over Zeng and Lin’s 

model in one simulation example. Specifically, we generated the data from our proposed 

Cox-Aalen transformation model where one covariate has a multiplicative effect, and the 

other has an additive effect. If we falsely assume that both covariates have multiplicative 

effects and fit Zeng and Lin’s model, we will obtain biased estimates of the survival 

function and cumulative hazard. Thus, our proposed model can better capture complex 

hazard functions. See Web Appendix D for details.

5. An HIV Prevention Study Example

In this section, we apply the proposed model and methods to two harmonized randomized 

trials, HIV Vaccine Trials Network (HVTN) 704/HIV Prevention Trials Network (HPTN) 

085 and HVTN 703/HPTN 081 (Corey et al., 2021), designed to determine whether a 
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broadly neutralizing monoclonal antibody (bnAb) can prevent the acquisition of human 

immunodeficiency virus type 1 (HIV). The HVTN 704/HPTN 085 trial enrolled 2687 men 

who have sex with men and transgender persons in the Americas and Europe, and HVTN 

703/HPTN 081 enrolled 1924 females in sub-Saharan Africa. For each trial, HIV uninfected 

participants were randomly assigned in 1:1:1 ratio to receive infusions of a bnAb (VRC01) 

at a dose of 10 mg per kilogram of body weight (low-dose group), VRC01 at 30 mg per 

kilogram (high-dose group) or saline placebo, administered at 8-week intervals for 10 total 

infusions. The primary efficacy endpoint was diagnosis of HIV infection by the week 80 

trial visit, and HIV testing was conducted at each 4-week trial visit starting at week 0. For 

participants acquiring HIV infection, the diagnosis date was determined by the adjudicated 

diagnosis date based on validated assays (Corey et al., 2021). Participant follow-up is right-

censored by the minimum of their last negative HIV sample collection date and τ = 85.9
weeks (Corey et al., 2021). Therefore, the observed data consist of exact and right-censored 

observations.

Among the 4559 HIV negative participants from both trials, 1401 are in the U.S. and 

Switzerland, 1249 in Brazil and Peru, 1009 in South Africa, and 900 in other sub-

Saharan African countries (Switzerland was pooled with the U.S. given few participants in 

Switzerland). We analyze the two trials pooled together, which is valid given the harmonized 

protocols such that essentially the study is one trial in two distinct study populations. There 

were a total of 174 HIV infection diagnosis endpoints in the two trials pooled, including 60 

out of 1520 participants in the low-dose group, 47 out of 1520 in the high-dose group, and 

67 out of 1519 in the placebo group. The numbers of HIV infection diagnosis endpoints by 

region are reported in Web Appendix E. Participants were categorized by age (in years old) 

into four groups, [17, 20], [21, 30], [31, 40] and [41, 52], with 540, 2651, 1102 and 266 

participants, respectively.

Figure 2 reveals that the risk of HIV infection diagnosis in different regions crosses over. 

Therefore, without imposing proportional hazards for different regions, we consider the 

following Cox-Aalen transformation model to assess the association between treatment 

assignment, age, and region with the time since the first infusion to HIV infection diagnosis:

Λ t X, Z = G ∫
0

t

exp β⊤Z dΛX s ,

where β is the unknown regression coefficients and ΛX s = ∫0
s X⊤α v dv = X⊤A s  with 

A s = A1 s , …, A4 s ⊤. Here, Z = Z1, Z2, Z3, Z4, Z5
⊤, where Z1 and Z2 are indicators of 

being assigned to the low-dose and high-dose group, respectively, with the placebo group 

as the reference group; Z3, Z4, Z5 are indicators of the age groups [21, 30], [31, 40] 

and [41, 52], respectively, with [17, 20] as the reference age group. In addition, let 

X = 1, X2, X3, X4
⊤, where X2, X3, X4 are indicators of participants from Brazil and Peru, 

South Africa, and other sub-Saharan African countries, respectively. The participants from 

USA and Switzerland are considered as the reference group.
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We conducted the analysis using the class of logarithmic transformations 

G x = r−1log 1 + rx , with r values ranging from 0 to 3 with an increment of 0.1. The r
value that maximizes the log-likelihood function evaluated at the final parameter estimates 

was selected. The log-likelihood is maximized at r = 0, though the values do not change 

greatly for different values of r due to a high censoring rate (about 96.2%); this phenomenon 

is verified in our simulation studies (see Web Appendix E for details).

The lower panel of Table 2 shows the regression parameter estimates for the selected 

transformation function (r = 0). High-dose VRC01 significantly lowers the risk of HIV 

infection diagnosis, while low-dose VRC01 does not. The model fit also shows a significant 

association between older age and a lower risk of HIV infection diagnosis. Figure 3 

displays the estimated baseline cumulative hazard function Λ t X, Z = 0  for the four 

different regions. The risk of HIV infection diagnosis is the highest in Brazil and Peru and 

lowest in the U.S. and Switzerland. The estimates for South Africa and other sub-Saharan 

African countries cross; in particular, South Africa has a lower risk at early times after 

the first infusion but a higher risk at later times. In addition, Figure 3 shows that the 

HIV infection diagnosis hazards are not proportional across geographic regions. Figure 4 

plots the estimates of conditional survival functions at sixteen different combinations of 

covariates: four age groups crossed with four regions. This figure further confirms our 

findings above. In Web Appendix E, we also report the analysis results under other values of 

r and observe the same patterns.

The four other panels of Table 2 (upper panels) show results from Zeng and Lin’s model fit 

to each of the four geographic regions separately; this method was not applied to the full 

cohort (pooled) data because it cannot flexibly model the differences in baseline cumulative 

hazards and the diagnostics support lack of fit. In these results, the p-values for the effect 

of high-dose VRC01 markedly increase, and the coefficient estimates for the age group [41, 

52] are unstable because there are very few HIV infection diagnosis endpoints in this age 

group in the three regions Brazil and Peru, South Africa, and other sub-Saharan African 

countries. Therefore, the results from the Cox-Aalen transformation modeling –which could 

be based on the full cohort data through flexible specifications of the baseline cumulative 

hazard functions – provide new insights with improved precision and power beyond insights 

achieved from the application of Zeng and Lin’s model.

6. Discussion

In this article, we proposed a class of semiparametric Cox-Aalen transformation models 

that includes Zeng and Lin’s model (Zeng and Lin, 2006; Zeng et al., 2016) and the 

Cox-Aalen model (Scheike and Zhang, 2002) as special cases. By considering the class of 

frailty-induced transformations, we successfully developed a fast and stable ES algorithm 

to estimate the parametric and nonparametric components of the proposed model along 

with easy-to-compute variance estimators. In addition, the asymptotic properties of our 

proposed estimators are rigorously studied. Elashoff and Ryan (2004) pointed out that an 

ES algorithm can be regarded as a block Newton-Gauss-Seidel algorithm (see Ortega 1972, 

p.146). Following Ortega (1972, p.147), an ES algorithm converges locally to the solution, 

θ , of U θ = 0 if the Jacobian matrix D = ∂U / ∂θ is nonsingular at θ = θ  and the largest 
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eigenvalue of D−1 θ  is less than 1. For general estimating equations, the two conditions 

above are difficult to verify in advance, especially for the second condition. Nevertheless, 

the matrix D is needed to calculate the variance of θ  in (16), and hence one can check the 

required conditions numerically.

In real data applications, we ascertain whether a covariate has a multiplicative or additive 

effect based on the following criteria. First, we may employ the underlying biological, 

physical meaning, or other domain knowledge for decision-making. Second, initial data 

exploration can be performed for each covariate, such as drawing the Kaplan-Meier (KM) 

plot. If the KM curves cross, this covariate should be modeled additively. Third, similar to 

Qu and Sun (2019), Yu et al. (2019), we may employ some AIC or BIC-based procedures. 

In particular, all possible combinations of covariate effects will be examined. However, it is 

easy to see that this is inefficient when there are many covariates. In addition, Scheike and 

Zhang (2003) proposed supremum tests to determine the multiplicative and additive parts 

of the Cox-Aalen model. It is worthwhile to investigate if similar testing procedures can 

be constructed for our proposed model. More theoretical and numerical studies are needed, 

which we leave for future work.

Indeed, the outlined procedures for determining the covariates for the multiplicative or 

additive components are valid for a given class of the Cox-Aalen transformation model. In 

practice, when the KM curves corresponding to different values or groups of values of a 

certain covariate, say X, cross, the effects of this covariate are not necessarily additive. In 

addition to the possibility that the effect of X is additive, there are a number of ways that 

the proportionality can fail, e.g., X not as a part of Z under the Cox-Aalen transformation 

model. For example, the effect of X could be time-varying as in the Cox model with 

time-varying regression coefficients studied by Cai and Sun (2003). In another scenario, 

the contributions from the additive components and the multiplicative components of the 

model may not be in the multiplicative form. In addition to choosing the right covariates for 

the multiplicative and additive components of the model, mis-specifying the transformation 

function can result in erroneous inferences.

Assessing the adequacy of the proposed model is crucial because model misspecification 

affects the validity of inference and prediction accuracy. For Zeng and Lin’s model, 

Chen et al. (2012) considered appropriate time-dependent residuals and constructed various 

graphical and numerical procedures for model assessment. In our analysis of the HIV 

prevention trial data, we use the log-likelihood to select the transformation function, even 

though the log-likelihood surface is relatively flat. Similar to Chen et al. (2012), we suggest 

constructing the cumulative sums of residuals over the argument of the transformation 

function, i.e., W x, t = n−1/2∑i = 1
n ∫0

tI ∫0
uY i s eβ ⊤ Zi s Xi

⊤ s dA s ⩽ x dMi u; β , A  to check the 

transformation form, where Mi t; β, A = Ni t − G ∫0
tY i s eβ ⊤ Zi s Xi

⊤ s dA s . A thorough 

theoretical and numerical investigation of model misspecification is still needed for the 

proposed model. We are currently pursuing this direction.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimation results for (a) A1 t = log 1 + t/4  and (b) A2 t = 0.1t in Scenario 1, under the 

logarithmic transformation G x = r−1log 1 + rx  with r = 0. The dashed and solid lines 

are for data sets with n = 500 and n = 800, respectively. Bias, SE, SEE, and CP stand, 

respectively, for the bias, empirical standard error, mean of the standard error estimator, and 

empirical coverage probability of the 95% confidence interval.
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Figure 2. 
Kaplan-Meier plot for four regions in the full cohort. Here, “USAS”, “BP”, “SA” and “Other 

SSA” represent USA and Switzerland, Brazil and Peru, South Africa and other sub-Saharan 

African countries, respectively.
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Figure 3. 
Estimated baseline cumulative hazard function for four regions under the logarithmic 

transformation G x = r−1log 1 + rx  with r = 0. Here, “USAS”, “BP”, “SA” and “Other 

SSA” represent USA and Switzerland, Brazil and Peru, South Africa and other sub-Saharan 

African countries, respectively.
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Figure 4. 
Estimated survival functions by considering different combinations of covariates under the 

proposed model with the transformation G x = r−1log 1 + rx  with r = 0. Here, “Age1”, 

“Age2”, “Age3” and “Age4” stand for the age goups, [17, 20], [21, 30], [31, 40] and [41, 

52], respectively. “USAS”, “BP”, “SA” and “Other SSA” represent USA and Switzerland, 

Brazil and Peru, South Africa and other sub-Saharan African countries, respectively.
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Table 1

Simulation results for estimation of the regression parameters under Scenarios 1 to 4

β1 = 0.5 β2 = − 0.5

r n Bias SE SEE CP Bias SE SEE CP

Scenario 1

0 200 0.003 0.350 0.340 0.950 −0.014 0.587 0.574 0.947

500 0.007 0.212 0.212 0.952 −0.005 0.354 0.359 0.956

800 −0.003 0.172 0.167 0.948 −0.001 0.279 0.285 0.951

0.5 200 −0.001 0.380 0.369 0.949 −0.014 0.639 0.630 0.950

500 0.007 0.227 0.230 0.961 −0.002 0.388 0.395 0.957

800 −0.004 0.185 0.181 0.951 −0.001 0.302 0.313 0.951

1 200 −0.002 0.402 0.402 0.956 −0.020 0.690 0.699 0.957

500 0.008 0.246 0.252 0.957 0.002 0.415 0.437 0.968

800 −0.005 0.198 0.198 0.946 −0.003 0.323 0.347 0.957

Scenario 2

0 200 0.004 0.337 0.334 0.954 −0.002 0.574 0.563 0.942

500 0.006 0.208 0.209 0.962 −0.004 0.348 0.353 0.960

800 −0.002 0.169 0.164 0.945 −0.006 0.275 0.280 0.949

0.5 200 −0.002 0.363 0.362 0.951 −0.014 0.624 0.620 0.948

500 0.008 0.223 0.227 0.954 −0.000 0.384 0.389 0.963

800 −0.003 0.184 0.179 0.946 −0.003 0.300 0.308 0.948

1 200 −0.005 0.389 0.396 0.957 −0.019 0.672 0.690 0.958

500 0.007 0.240 0.248 0.957 0.002 0.412 0.432 0.965

800 −0.004 0.197 0.195 0.944 −0.005 0.325 0.342 0.961

Scenario 3

0 200 0.005 0.288 0.287 0.958 −0.009 0.494 0.486 0.947

500 0.002 0.180 0.180 0.949 −0.004 0.305 0.305 0.953

800 −0.001 0.146 0.141 0.949 −0.009 0.245 0.241 0.950

0.5 200 0.001 0.319 0.321 0.954 −0.009 0.552 0.555 0.953

500 0.001 0.198 0.202 0.956 −0.004 0.348 0.348 0.953

800 −0.001 0.160 0.159 0.947 −0.009 0.276 0.276 0.942

1 200 0.010 0.343 0.365 0.964 −0.002 0.624 0.647 0.962

500 −0.002 0.216 0.229 0.959 −0.002 0.380 0.403 0.963

800 −0.006 0.175 0.180 0.963 −0.003 0.305 0.318 0.960

Scenario 4

0 200 0.010 0.339 0.334 0.951 −0.011 0.572 0.562 0.938

500 0.005 0.211 0.209 0.948 −0.003 0.348 0.353 0.958

800 −0.000 0.169 0.164 0.948 −0.000 0.280 0.279 0.948

0.5 200 0.007 0.366 0.362 0.946 −0.014 0.615 0.619 0.947

500 0.003 0.228 0.227 0.950 −0.005 0.378 0.389 0.968

800 0.001 0.183 0.179 0.950 −0.001 0.308 0.307 0.949

1 200 0.002 0.389 0.396 0.951 −0.008 0.657 0.690 0.960
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β1 = 0.5 β2 = − 0.5

r n Bias SE SEE CP Bias SE SEE CP

500 0.002 0.244 0.248 0.957 0.002 0.412 0.433 0.967

800 0.001 0.195 0.196 0.956 0.000 0.330 0.341 0.954

Note: Bias, bias of the parameter estimator; SE, empirical standard error of the parameter estimator; SEE, mean of the standard error estimator; CP, 
empirical coverage percentage of the 95% confidence interval.
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Table 2

Regression analysis results for the HIV trials from Zeng and Lin’s model fit to each of the four geographic 

regions separately and the proposed Cox-Aalen transformation model based on the full cohort data with the 

logarithmic transformation G x = r−1log 1 + rx  with r = 0

USA/Switzerland Brazil/Peru

Covariates Est SE p-value Est SE p-value

Low-dose −0.107 0.484 0.825 −0.167 0.276 0.545

High-dose −0.437 0.524 0.404 −0.279 0.283 0.325

21 − 30 −0.454 0.630 0.472 −0.525 0.262 0.045

31 − 40 −2.709 1.141 0.018 −1.283 0.396 0.001

41 − 52 −1.152 0.903 0.202 −16.859 1.668 < 0.001

South Africa Other SSA

Covariates Est SE p-value Est SE p-value

Low-dose −0.025 0.354 0.943 −0.080 0.400 0.842

High-dose −0.392 0.392 0.317 −0.509 0.449 0.258

21 – 30 −0.187 0.380 0.623 −0.480 0.498 0.335

31 – 40 −0.954 0.601 0.112 −0.719 0.586 0.220

41 – 52 −13.867 2.366 < 0.001 −13.871 2.626 < 0.001

The Proposed Model

Covariates Est SE p-value

Low-dose −0.108 0.178 0.542

High-dose −0.363 0.190 0.056

21 – 30 −0.429 0.187 0.022

31 – 40 −1.219 0.274 < 0.001

41 – 52 −1.989 0.721 0.006

Note: Est and SE stand for the estimates of the regression parameters and the estimated standard errors, respectively. “Other SSA” is for other 
sub-Saharan African countries. “USA/Switzerland”, “Brazil/Peru”, “South Africa”, and “Other SSA” correspond to the estimation results by fitting 
Zeng and Lin’s model to each geographic region. “The Proposed Model” corresponds to the estimation results when fitting the proposed Cox-Aalen 
transformation models to the full cohort data.
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