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Genotype by environment 
and genotype by yield*trait 
interactions in sugar beet: 
analyzing yield stability 
and determining key traits 
association
Mahdi Hassani *, Seyed Bagher Mahmoudi , Ali Saremirad  & Dariush Taleghani 

The genotype by environment interaction significantly influences plant yield, making it imperative to 
understand its nature for the creation of breeding programs to enhance crop production. However, 
this is not the only obstacle in the yield improvement process. Breeders also face the significant 
challenge of unfavorable and negative correlations among key traits. In this study, the stability 
of root yield and white sugar yield, and the association between the key traits of root yield, sugar 
content, nitrogen, sodium, and potassium were examined in 20 sugar beet genotypes. The study was 
conducted using a randomized complete block design with four replications over two consecutive 
years across five locations. The combined analysis of variance results revealed significant main effects 
of year, location, and genotype on both root yield and white sugar yield. Notably, two-way and 
three-way interactions between these main effects on root yield and white sugar yield resulted in a 
significant difference. The additive main effect and multiplicative interaction analysis revealed that 
the first five interaction principal components significantly impacted both the root yield and white 
sugar yield. The linear mixed model results for root yield and white sugar yield indicated that the 
genotype effect and the genotype by environment interaction were significant. The weighted average 
absolute scores of the best linear unbiased predictions biplot demonstrated that genotypes 20, 4, 7, 
2, 16, 3, 6, 1, 14, and 15 were superior in terms of root yield. For white sugar yield, genotypes 4, 16, 
3, 7, 5, 1, 10, 20, 2, and 6 stood out. These genotypes were not only stable but also had a yield value 
higher than the total average. All key traits, which include sugar content, sodium, potassium, and 
alpha amino nitrogen, demonstrated a negative correlation with root yield. Based on the genotype 
by yield*trait analysis results, genotypes 20, 19, and 16 demonstrated optimal performance when 
considering the combination of root yield with sugar content, sodium, alpha amino nitrogen, and 
potassium. The multi-trait stability study, genotype 13 ranked first, and genotypes 10, 8, and 9 were 
identified as the most ideal stable genotypes across all traits. According to the multi-trait stability 
index, genotype 13 emerged as the top-ranking genotype. Additionally, genotypes 10, 8, and 9 were 
recognized as the most stable genotypes.

Sugar beet, due to its diverse applications and nutritional benefits, holds significant importance1–4. It is packed 
with a high concentration of sucrose5, making it a substantial source of sugar. This makes it the world second 
most cultivated crop for white sugar production, after sugarcane6. With the growing population7 and consequent 
increase in societal needs, plant breeders are striving to enhance the yield and quality of sugar beet8–11. However, 
the crop yield is determined by the genotype, environment, and genotype by environment interaction (GEI); 
Given its polygenic nature, the sugar beet yield is heavily influenced by environmental factors. As a result, sig-
nificant fluctuations in its yield can lead to instability in production9; Therefore, maintaining the yield stability 
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of genotypes has become a critical aspect of the breeding process12. The GEI plays a crucial role in determining 
the yield stability of genotypes across different environments8,13,14. This phenomenon shows that the environment 
in which a trait is expressed can affect how a given genotype (gene arrangement) affects that trait15,16. In layman’s 
words, this phenomenon explains how the expression of genetic features can change based on certain environ-
mental conditions9, resulting in various phenotypic outcomes for a genotype with the same gene organization in 
various environments. This complexity presents a significant challenge to breeding for yield increase. To address 
this, breeders can identify genotypes that consistently perform well in various environmental conditions by 
extensively testing the genotypes in locations with a range of environmental conditions13. This approach aids in 
the selection of genotypes with broad adaptability and stability11,17, ultimately leading to stability in yield increase.

Sophisticated statistical methods have been developed to study and expose patterns of GEI comprehensively. 
The model known as additive main effects and multiplicative interaction (AMMI) is a significant statistical 
method that combines the analysis of variance with principal component analysis18. The model plays a crucial 
role in examining the impact of GEI and visualizing its patterns. This model aids in identifying stable genotypes 
across varying environments19. However, the AMMI model has its limitations20,21. It assumes that the effects of 
genotypes and environments are additive, which may not always be true22. This assumption can lead to skewed 
estimates of genotype and environment effects. Furthermore, this model is designed to explore linear associations 
between genotype and environment, but non-linear associations may exist23. The best linear unbiased predictions 
(BLUP) model addresses some of the AMMI model limitations, particularly regarding non-additivity and the 
analysis of the linear mixed model (LMM) structure. The BLUP model provides estimations of the yield average 
of high-performing genotypes. To leverage the strengths of both the AMMI and BLUP models, an index called 
the stability index of the weighted average absolute scores of BLUPs (WAASB) was introduced20. This index is 
used to select superior genotypes. The combination of the AMMI model’s power and the BLUP model’s pre-
diction accuracy enhances the efficiency of both models in studying GEI20. However, when introducing a new 
cultivar, both the yield stability and the yield value are considered; As such, the WAASBY index was introduced 
based on the WAASB and yield value. This index as a measure of phenotypic stability and product yield allows 
for the selection of genotypes with high yield potential while reducing GEI. These selected genotypes can then 
be included in the cultivar introduction program.

The GEI is not the only hurdle in the breeding process aimed at enhancing yield24. Another significant obstacle 
breeders encounter is the unfavorable and negative correlation among crucial traits25–27. In sugar beet, the white 
sugar yield (WSY) is determined by a combination of quantitative and qualitative traits such as root yield (RY), 
sugar content (SC), alpha amino nitrogen (N), sodium (Na+) and potassium (K+)28–30. The correlation among 
these traits ranges from negative to positive31,32, adding complexity to sugar beet breeding programs10. Negative 
correlation among traits can cause a dilemma; when one trait is selected for improvement, it may unintentionally 
lead to a decrease in another trait33. Therefore, breeders must find a way to improve multiple traits while manag-
ing the negative correlations among them. Breeders can mitigate these negative effects by employing techniques 
like tandem selection, independent culling, and index selection approaches, thereby improving multiple traits 
at once24,34,35. However, these techniques have their own challenges and can potentially lead to biased results24,36. 
The responsibility of assigning weights to each trait in the index selection and determining the cutoff points for 
each trait in independent culling lies with the breeder. Consequently, the assigned weights and cutoff points can 
vary from one researcher to another and over time24. The Genotype by yield*trait (GYT) biplot graphic method 
has been proposed as a solution to these problems. This method assumes that yield is the most essential trait, and 
other key traits are only significant when they correlate with high yield and the superiority of a genotype should 
be evaluated based on its ability to combine high yield with other traits24. In essence, yield is the sole trait that can 
determine a genotype efficiency, and other traits are only valuable when they correlate with suitable yield levels. 
Thus, when selecting superior cultivars, the combination of yield with traits is more important than assessing 
cultivars based on each trait. An ideal genotype is one that achieves the optimal level of each trait, balancing the 
negative effect of trait correlations and demonstrating suitable yield across different environments36.

In a recent study by Olivoto et al.37, they introduced a new index called the multi-trait stability index (MTSI). 
This index is highly efficient in selecting stable genotypes in multi-environment experiments based on multiple 
traits8,11,38,39. It considers the correlation structure among traits and provides a unique selection process that is 
easy to interpret37. As a result, breeders who aim to simultaneously select for multiple traits can find it useful. The 
main objective of the study was to identify superior genotypes from a pool of promising sugar beet genotypes. In 
this regard, the study examined the influence of GEI on the yield stability of sugar beet genotypes. It also analyzed 
the correlation among critical traits that affect yield and finally, the superior sugar beet genotypes were selected.

Materials and methods
Plant materials
For this study, a total of 20 sugar beet genotypes were utilized, comprising 16 recently developed hybrids and four 
control cultivars (Table 1). The hybrids were developed at the Sugar Beet Seed Institute (SBSI), Karaj, Alborz, 
Iran, with the specific aim of introducing the resistance gene for rhizomania disease into genotypes that exhibited 
favorable quantitative and qualitative traits. From this set of hybrids, the 16 superior hybrids, as determined by 
their quantitative and qualitative traits, were chosen for further evaluations. Prior to the evaluations, the hybrids 
resistance against rhizomania disease was verified through both field and molecular assessments.

Research sites and experimental design
Phenotypic assessments of experimental genotypes were conducted over two consecutive crop years (2020 
and 2021) at five agricultural research stations located in Hamadan, Karaj, Mashhad, Miandoab, and Shiraz. 
These selected sites differed in terms of altitude, latitude and longitude (Table 2), atmospheric temperature 
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and precipitation (Tables 3), and Physical and chemical characteristics of soil (Table 4). The experiments at 
each research station were carried out using a randomized complete block design with four replications. Each 
genotype was planted in a separate plot measuring 30 m2, consisting of six cultivation rows with a length of 
10 m and a distance of 50 cm interrow. The experiments were conducted from April 10th to April 20th in both 
years. Throughout the growing season, weed control, irrigation, fertilizer application, and other field manage-
ment activities were performed based on the recommendations of experts. Additionally, regular monitoring and 
prevention of pests and diseases specific to sugar beet were conducted at each research station. From October 

Table 1.   List of examined sugar beet genotypes and control cultivars.

Genotype code Genotype Genotype code Genotype

1 SBSI 124 11 SBSI 134

2 SBSI 125 12 SBSI 135

3 SBSI 126 13 SBSI 136

4 SBSI 127 14 SBSI 137

5 SBSI 128 15 SBSI 138

6 SBSI 129 16 SBSI 068

7 SBSI 130 17 Shokoufa (check)

8 SBSI 131 18 Arta (check)

9 SBSI 132 19 Azare (check)

10 SBSI 133 20 Rosire (check)

Table 2.   Characteristics of environmental conditions at experimental research stations.

Environment code Year Location of the research station Altitude (m) Latitude Longitude

E1 2020
Karaj, Alborz, Iran 1312 35°55′N 50°54′E

E2 2021

E3 2020
Mashhad, Khorasan Razavi, Iran 1316 36°30′N 59°37′E

E4 2021

E5 2020
Miandoab, West Azarbaijan, Iran 1296 36°58′N 46°05′E

E6 2021

E7 2020
Shiraz, Fars, Iran 1484 29°32′N 52°36′E

E8 2021

E9 2020
Hamedan, Iran 1818 34°47′N 48°30′E

E10 2021

Table 3.   Weather characteristics at the experimental research stations.

Location of 
the research 
station Parameter April May June July August September October

Karaj, Alborz, 
Iran

Temperature 
(°C) 9.40–19.40 15.00–25.55 19.42–31.74 21.70–33.92 21.10–33.34 16.73–28.90 10.50–21.11

Rainfall (mm) 20.30 10.11 2.50 2.52 2.51 15.22 30.53

Mashhad, Kho-
rasan Razavi, 
Iran

Temperature 
(°C) 9.40–21.61 14.44–27.23 18.94–32.85 21.13–34.47 18.90–33.33 13.90–28.96 8.32–22.22

Rainfall (mm) 15.21 7.60 2.53 0.00 0.00 2.51 2.52

Miandoab, 
West Azarbai-
jan, Iran

Temperature 
(°C) 6.75–18.90 11.18–25.00 16.12–31.31 20.00–34.41 19.48–34.46 14.40–29.40 8.93–21.70

Rainfall (mm) 27.91 20.32 7.61 2.50 2.50 5.00 17.81

Shiraz, Fars, 
Iran

Temperature 
(°C) 10.00–23.92 15.60–30.53 30.53–35.50 21.74–37.21 20.50–36.10 16.10–32.81 10.50–26.73

Rainfall (mm) 15.22 5.00 2.52 2.52 2.51 0.00 5.00

Hamedan, Iran
Temperature 
(°C) 5.55–17.20 10.50–23.33 15.00–30.01 18.92–33.83 17.80–32.81 12.81–28.34 7.80–21.11

Rainfall (mm) 27.93 12.71 5.00 2.54 5.00 10.62 22.81
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20th to October 30th in both 2 years, the roots of four rows in the middle of the cultivation area were harvested, 
counted, and weighed, with one meter excluded from the beginning and end of the rows.

Data collection
After the field evaluations, the experimental genotypes were transferred to the quality control laboratory of the 
SBSI for the evaluation of their quality traits. The roots were washed and a pulp sample was prepared using an 
automatic machine. The sample was then stored in a freezer at − 18 °C. In due time, 26 g of the frozen samples 
were taken and mixed with 177 ml of lead (II) hydroxide acetate for three minutes in a mixer. The resulting 
solution was then passed through a sieve to obtain a clear liquid. This liquid was used in the Betalyser device 
(an automatic system for the analysis of sugar beet quality) to measure the SC, N, Na+, and K+ elements29. To 
calculate the WSY for each genotype, the molasses sugar and the white sugar content were estimated using 
Eqs. (1) and (2)30. These values, along with the RY of each experimental genotype, were then used in Eq. (3) to 
obtain the WSY28. However, all international, national and institutional guidelines have been taken into account 
in various stages of experiments.

where MS is molasses sugar (%), K+ is potassium (meq.100 g−1), Na+ is sodium (meq.100 g−1), alpha-amino-N 
is nitrogen (meq.100 g−1), WSC is white sugar content (%), SC is sugar content (%), WSY is white sugar yield 
(t ha−1) and RY is root yield (t ha−1).

Statistical analysis
Before undertaking any form of analysis, first was applied the Grubbs test40 to the data, operating under the 
assumption of normality. As well, the Bartlett test41 was employed to check the homogeneity of the variance of 
experimental errors across various years and locations. After verifying the uniformity of the variance of these 
errors, the combined analysis of variance was carried out. This analysis was performed on a random year effect, 
while the location and genotype effects were assumed to be fixed. The analysis was applied to the RY and WSY 
using Eq. (4)42.

where Yijkl is the response measured on the ijklth experimental unit (plot), µ is the overall mean, Yi is the effect 
of the ith year, Lj is the effect of the jth location, YLij is the interaction effect of the ith level of Y with the jth 
level of L, B(ij)k is the effect of the jth block within the ith location, Tl is the effect of the lth treatment, YTil is the 
interaction effect of the ith level of Y with the lth level of T, LTjl is the interaction effect of the jth level of L with 
the lth level of T, YLTijl is the interaction effect of the ith level of Y with the jth level of L and the lth level of T, 
and BT(ij)kl is experimental error.

To integrate the features of AMMI and BLUP models, the initial step involved computing the scores of these 
models for each genotype that was tested. These scores were then combined using the WAASB index, as per 
Eq. (5), resulting in a unified score that included elements from both the AMMI and BLUP modelst>.

where (Eq. 5) WAASBi is the weighted average of absolute scores of the ith genotype or environment; IPCAik 
is the absolute score of the ith genotype or environment in the kth interaction principal component (IPC); and 

(1)MS = 0.0343
(

K+ + Na+
)

+ 0.094
(

alpha amino N
)

− 0.31

(2)WSC = SC − (MS + 0.6)

(3)WSY = WSC × RY

(4)Yijkl = µ+ Yi + Lj + YLij + B(ij)k + Tl + YTil + LTjl + YLTijl + BT(ij)kl

(5)WAASBi =

∑P
k=1 |IPCAik × EPk|

∑P
k=1 EPk

Table 4.   Physical and chemical characteristics of soil at the experimental research stations.

Location of the research station Year pH EC (ds.m-1) O.C. (%) P (ppm) K (ppm) Clay (%) Silt (%) Sand (%) Texture

Karaj, Alborz, Iran
2020 7.21 0.53 0.74 8.24 596.00 37.30 41.40 21.30 Clay-loam

2021 7.30 0.77 1.01 1.97 398.00 37.30 41.40 21.30 Clay-loam

Mashhad, Khorasan Razavi, Iran
2020 7.90 1.55 0.70 12.00 261.00 21.00 57.00 20.00 Silty-clay-loam

2021 7.65 1.67 0.75 12.10 296.00 16.00 36.00 48.00 Silty-loam

Miandoab, West Azarbaijan, Iran
2020 7.30 0.83 49.00 13.00 402.00 65.00 58.00 25.00 Silty-loam

2021 7.10 0.78 56.00 17.00 521.00 61.10 55.40 23.70 Silty-clay-loam

Shiraz, Fars, Iran
2020 8.00 0.93 0.74 1.02 490.00 36.00 43.20 20.80 Clay-loam

2021 7.80 2.01 0.76 4.40 264.00 36.00 43.20 20.80 Clay-loam

Hamedan, Iran
2020 7.93 6.14 0.45 47.60 499.00 15.50 27.50 53.00 Silty-loam

2021 7.90 6.00 0.42 47.65 498.00 15.50 27.50 53.00 Silty-loam
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EPk is the magnitude of the variance explained by the kth IPC. Given that the attainment of high-performance, 
stable genotypes is a primary objective, the individual contributions of GEI were examined using a BLUP matrix. 
Following this analysis, the WAASBY index, which measures both yield average and stability, was calculated for 
each genotype as per Eq. (6)37.

where WAASBY i is the superiority index with different weights between yield and stability for the gth genotype; 
θY and θS are the weights for yield and stability, respectively; rGg and rWg are the rescaled values of the gth geno-
type for yield and WAASB, respectively. The correlation analysis of key traits was performed using the Pearson 
method. The first step in examining the GYT involved standardizing the original data. This was done following 
Eq. (7), as suggested by Yan and Frégeau-Reid24.

where Pij is the standardized value of genotype i for trait or yield-trait combination j in the standardized table, Tij 
is the original value of genotype i for trait or yield-trait combination j, Tj is the mean across genotypes for trait 
or yield-trait combination j, and Sj is the standard deviation for yield-trait combination j. The biplot representing 
the GYT was constructed using the first and second principal components (PCs) derived from the singular value 
decomposition of the standardized data. In this model, the singular value decomposition breaks down the GYT 
data into genotype eigenvalues, yield-trait combination eigenvalues, and singular values. This process is based 
on Eq. (8) as proposed by Yan and Frégeau-Reid24.

where ζi1 and ζi2 are the eigenvalues for PC1 and PC2, respectively, for genotype i; τ1j and τ2j are the eigenvalues 
for PC1 and PC2, respectively for trait j, and εij is the residual from fitting the PC1 and PC2 for genotype i on 
trait j; �1 and �1 are the singular values for PC1 and PC2, respectively. α is the singular value partitioning factor. 
The GYT biplot is created by plotting d�α1 ζi1 against d�α2 ζi2 for genotypes, and �1−α

1 τ1j/d against �1−α
2 τ2j/d for 

yield-trait combinations. This analysis focuses on four main patterns: (1) Exploring the associations between 
different yield-trait combinations, (2) Identifying the best genotype for each yield-trait combination, (3) Ranking 
genotypes based on a superiority index and evaluating their strengths and weaknesses, and (4) Ranking genotypes 
based on an ideal hypothetical genotype.

To identify the most superior sugar beet genotypes, a comprehensive evaluation of key traits such as RY, SC, 
N, Na+, and K+ is necessary. In order to assess the stability of these traits simultaneously, the MTSI index was 
calculated using Eq. (9)37.

where MTSIi is the multi-trait stability index of the genotype i, γij is the score of the genotype i in the factor j, and 
γj is the score of the ideal genotype in the factor j. The scores were calculated using factor analysis for genotypes 
and traits. Finally, stable genotypes were selected based on positive selection differentials for traits intended to 
increase and negative selection differentials for traits intended to decrease.

Results and discussion
Combined analysis of variance
The non-significance of the G statistic in the Grubbs test was determined based on the normality of the experi-
mental data for RY and WSY. The non-significant chi-square values obtained from Bartlett test for RY and WSY 
further confirmed the uniformity of experimental error variance across 10 environments (five regions in two 
years). After confirming these hypotheses, a combined analysis of variance was conducted to describe the main 
effects and quantify the interactions between different sources of variations. The mean of square of the main 
effects of year and genotype at the 1% probability level, and location at the 5% probability level, showed significant 
differences for both RY and WSY. The interaction effects of year-location, genotype-year, and genotype-year-loca-
tion at the 1% probability level, as well as genotype-location at the 5% probability level, resulted in a significant 
difference in RY. These interaction effects, except for the year-genotype interaction, had a similar impact on WSY 
as they did on RY (Table 5). The significant variations observed in experimental years, locations, and genotypes 
can be attributed to changes in environmental conditions and the genetic makeup of plants, which vary from one 
environment to another. This leads to variations in RY and WSY among different experimental genotypes in dif-
ferent environments. These findings confirm the inevitability of various interactions in agricultural research26,43. 
The GEI primarily indicates that genotypes respond differently to various locations, emphasizing the need to 
evaluate genotypes in diverse environments. Based on the obtained results from the experiment conducted by 
Sadeghzadeh Hemayati et al.9 the environment and its interaction with the genetic structure of different genotypes 
played a significant role in the phenotypic expression of WSY in sugar beet genotypes. This resulted in different 
responses in terms of WSY based on the conditions of different environments. Similarly, the study conducted 
by Saremirad and Taleghani13 indicated that GEI outweighs the quantitative and qualitative characteristics of 

(6)WAASBY i =

(

rGg × θY
)

+ (rWg × θS)

θY + θS

(7)Pij =
Tij − Tj

Sj

(8)Pij =
(

d�α1 ζi1
)

(

�
1−α
1 τ1j/d

)

+
(

d�α2 ζi2
)

(

�
1−α
2 τ2j/d

)

+ εij

(9)MTSIi =





f
�

j=1

�

γij − γj
�2





0.5
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sugar yield in sugar beet hybrids. Therefore, this interaction should be considered when breeding new hybrids, 
as it allows for decisions regarding breeding for general or specific adaptation, depending on the yield stability 
in different environmental conditions. In order to better understand and reveal the GEI, multivariate statisti-
cal methods can be more useful. These methods can provide insights into the complex relationships between 
genotypes and environments, allowing for a more comprehensive understanding of the factors influencing crop 
yield and the development of cultivars with stability and adaptability to target environments.

Integration of AMMI and BLUP models
To enhance the reliability of analysis results in multi-environment experiments and gain a more precise under-
standing of GEI, was conducted an analysis of RY and WSY data using a combination of AMMI and BLUP 
models. The RY and WSY of the experimental genotypes were significantly influenced by the effects of environ-
ment, genotype, and GEI, according to the results of the analysis of variance based on the AMMI model. These 
factors accounted for 66.41%, 2.41%, and 9.18% of the variations in RY and 60.54%, 4.50%, and 8.36% of the 
variations in WSY, respectively (Table 6). Thus, the phenotypic expression of RY and WSY is determined by the 
genotype’s genetic makeup, the field’s environmental factors, and how these factors interact. Due to the polygenic 
nature of these qualities, environmental factors, genomic regions with linked genes, and quantitative trait loci all 
continuously affect them44. The genes that affect yield and its components are highly sensitive to environmental 
conditions and exhibit an interaction between quantitative trait loci and the environment. This interaction can 
either facilitate or limit the response to selection45. Therefore, it is crucial for breeding programs to consider and 
manage these effects properly46.

The analysis of the multiplicative interaction on RY was performed using principal components analysis. The 
first five IPCs were found to have significant differences at the 1% probability level and collectively accounted for 
89.50% of the GEI sum of square. The contribution of each IPC was as follows 28.90%, 21.40%, 18.70%, 11.30%, 
and 9.20%, respectively. A similar analysis was conducted WSY, and the first, second, and third IPCs were found 
to be significantly different at the 1% probability level, while the fourth and fifth IPCs were significantly different 
at the 5% probability level. These IPCs explained 87.30% of the GEI variations, with contributions of 27.80%, 
22.40%, 15.90%, 10.70%, and 10.40%, respectively. Other studies have also investigated the GEI using different 
models. Omrani et al.47 found that the first four IPCs explained 83% of the GEI variations. Fathi et al.48 estimated 
the contribution of the first and second IPCs to be 49.10% and 22.50%, respectively, accounting for 71.60% of the 
GEI variations. Mostafavi and Saremirad49 reported that the first IPC explained about 63% of the data variation. 
Rajabi et al.8 found that the first six IPCs of the GEI had a significant effect and explained 98.80% of the total 
variations. Sadeghzadeh Hemayati et al.9 identified seven significant IPCs that explained 95.50% of the variations 
related to the GEI. Based on the results of these studies and the present study, it is clear that the first two IPCs of 
the GEI alone may not fully explain the variation. Therefore, it is recommended to combine the AMMI model 
power with the BLUP model prediction accuracy for a more comprehensive interpretation.

The likelihood ratio test (LRT) confirmed the results of the AMMI analysis. The results indicated that the 
effects of genotype, environment, and GEI were significant at the 1% probability level for both RY and WSY. 
The significant effect of GEI suggests that the experimental genotypes respond to changes in environmental 
conditions. In other words, the strengths and weaknesses of each experimental genotype are determined by the 
environmental conditions. In such situations, using BLUP analysis to estimate genetic variance components can 
provide more reliable and accurate results37. Consequently, the REML/BLUP method was used to estimate the 
values of genetic variance components for both studied traits (Table 6). The environmental variance accounted 
for the highest proportion of phenotypic variance in RY (66.78%) and WSY (71.95%). The GEI variance ranked 
second, explaining 27.48% of the phenotypic variation in RY and 15.28% in WSY. The genotypic variance ranked 
third, explaining 5.74% of the phenotypic variation in RY and 12.77% in WSY. The genotypic variance had the 
lowest share of phenotypic variance in both studied traits. This suggests that environmental factors have a greater 
impact on the expression and variation of these traits compared to genetic factors. In other words, the influ-
ence of genes in creating diversity among genotypes is low. Therefore, it can be concluded that the genotypes 
are strongly influenced by environmental conditions in terms of RY and WSY. Consequently, the efficiency of 
selection decreases, and the identification and selection of desirable genotypes become less accurate50. The low 

Table 5.   Combined analysis of variance of root and white sugar yields in experimental sugar beet genotypes. 
**: 1% probability level of significance; *: 5% probability level of significance; ns: non-significant.

Source of variation df

Root yield White sugar yield

Sum of square Mean of square Sum of square Mean of square

Year 1 17,160.54 17,160.54** 184.86 184.86**

Location 4 130,304.80 32,576.20* 3129.38 782.34*

Year × locality 4 15,725.22 3931.30** 324.82 81.20**

Error 1 30 3256.01 108.53 190.16 6.34

Genotype 19 5760.54 303.19** 270.29 14.23**

Year × genotype 19 2037.18 107.22** 35.70 1.88 ns

Locality × genotype 76 12,582.24 165.56* 286.76 3.77*

Year × locality × genotype 76 7932.13 104.37** 180.21 2.37**

Error 2 570 28,409.00 49.84 905.95 1.59
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variance of the GEI compared to the environmental variance indicates that the genetic variation has a limited 
effect on the phenotypic expression of RY and WSY in different sugar beet genotypes. This leads to low yields 
fluctuating from one environment to another. When the GEI variance is low compared to the environmental 
variance, it suggests that genetic factors have a limited influence on the phenotypic expression of desired traits51. 
This finding is important for breeders in terms of trait selection. The study by Taleghani et al.17 on sugar beet 
winter cultivation confirmed that the environment has the greatest effect on WSY, explaining 71.50% of the data 
variations. The genotype accounted for 9.80% of the justified variance, while the GEI accounted for 7.20% of 
the data variations. In the study by Basafa and Taherian52, the variance justified by GEI was 7.84%. Mostafavi 
and Saremirad49 reported that the environment, genotype, and GEI justified variances of 17.69%, 32.79%, and 
17.90% of the total sum of squares, respectively. Their study also found that genotype had the greatest variation 
in yield, indicating a high diversity of genotypes.

Heritability plays a crucial role in breeding program, helping plant breeders select plants with desirable traits 
and develop effective breeding strategies37,53. Breeders can choose which traits to target for improvement and 
what breeding techniques to employ by studying the heritability of traits54,55. The degree of agreement between 
a trait’s genotypic and phenotypic values is measured statistically as heritability. It measures the proportion of 
genetic influences that are responsible for the observed variation in a trait within a population. An estimate 
of the trait’s heritability, with a possible range of 0 to 1, is made. Low heritability is defined as a heredity value 
less than 0.2, medium heritability is defined as a heritability value between 0.2 and 0.5, and high heritability is 
defined as a heritability value larger than 0.5. In the case of RY and WSY, the results obtained showed moderate 
to high heritability. This means that the phenotype of these traits is a good indicator of the underlying genotype 
and selection based on phenotype is likely to be effective. The genotypic correlation between environments was 
found to be low. A low correlation suggests difficulties in selecting superior stable genotypes across different 
environments. In the context of RY and WSY, the low correlation indicates that the genetic effects of these traits 
were not consistent across different environments. Therefore, accurate information and details are needed to 
select superior genotypes in such cases38. Selection accuracy is another important metric in breeding programs. 
It measures the correlation between observed and predicted values37. In the case of the mentioned traits, RY and 
WSY, the selection accuracy was high, with values of 0.75 and 0.89, respectively (Table 6). These high selection 
accuracy values indicate the reliability of the model in identifying superior genotypes for these traits.

Although most genotypes variation can be explained by the first two IPCs obtained from the AMMI model, it 
is possible that some genotypes may require more IPCs. Therefore, the WAASB index can be used as a quantitative 

Table 6.   An AMMI-based analysis of variance, likelihood ratio test, and estimation of genetic variance 
components for root and white sugar yields in experimental sugar beet genotypes. **: 1% probability level 
of significance; *: 5% probability level of significance; ns: non-significant; Pro: proportion variance; Acc: 
accumulated variance.

Source of variation df

Root yield White sugar yield

Mean of square Pro. Acc. Mean of square Pro. Acc.

Environment 9 18,132.28** 66.41 66.41 404.34** 60.54 60.54

Replication (environment) 30 108.53 – – 6.34 – –

Genotype 19 303.19** 2.34 70.08 14.23** 4.50 68.20

Genotype × environment 171 131.88** 9.18 79.26 2.94** 8.36 76.57

PC1 27 241.30** 28.90 28.90 5.18** 27.80 27.80

PC2 25 192.93** 21.40 50.30 4.51** 22.40 50.30

PC3 23 183.30** 18.70 69.00 3.48** 15.90 66.20

PC4 21 121.26** 11.30 80.30 2.55* 10.70 76.90

PC5 19 109.65** 9.20 89.50 2.76* 10.40 87.30

PC6 17 59.30ns 4.50 94.00 1.76ns 5.90 93.30

PC7 15 40.90ns 2.70 96.70 1.11ns 3.30 96.60

PC8 13 43.51ns 2.50 99.20 0.84ns 2.20 98.80

PC9 11 16.34ns 0.80 100.00 0.56ns 1.20 100.00

Residuals 570 49.84 – – 1.59 – –

Total 970 253.32 – – 6.20 – –

Likelihood ratio test

 Environment 49.84** 66.78 66.78 1.59** 71.95 71.95

 Genotype 4.30** 5.74 72.52 0.28** 12.77 84.72

 Genotype × environment 20.51** 27.48 100 0.34** 15.28 100

Genetic variance component

 δ2P 74.63 2.21

 h2mg 0.56 0.79

R2 genotype × environment 0.27 0.15

 Accuracy 0.75 0.89
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measure of stability that considers these variations. Figure 1 depicts a biplot where performance traits, such as 
RY and WSY, are represented on the horizontal axis, while WAASB index values are shown on the vertical axis. 
In this biplot, the vertical line in the middle represents the total yield average in the experimental environments. 
Genotypes and environments to the right of this line have a yield value higher than the total average, whereas 
those to the left have a lower yield value. The horizontal axis in the middle of the biplot represents the average 
area of the WAASB index. The intersection of this axis with the vertical axis (yield average) divides the biplot into 
four quadrants. Based on their stability in various environments, genotypes may be categorized into the biplot’s 
several quadrants. In particular, the first quadrants of the RY biplot (genotypes 19, 8, 9, and 15, and environments 
E10, E6, E3, and E5) and the WSY biplot (genotype 11 and environments E6, E10, and E8) had genotypes and 
environments with high WAASB values and yields that were below the total average. This reveals both their very 
variable and unstable character and their yield value, which is below average. In other words, these genotypes 
and environments played a significant role in GEI, and they are not recommended for cultivation. On the other 
hand, the environments E9 and E4 in the second quadrant of the RY biplot and genotype 19 and environments 
E3, E4, and E9 in the same quadrant of the WSY biplot had high WAASB values and yields higher than the total 
average. These genotypes have good recognition ability and, when the environmental conditions are favorable, 
can achieve very high yield values. Therefore, they can be recommended for cultivation in areas with ideal con-
ditions for sugar beet growth and development. In the RY biplot, genotypes 12, 10, 11, 18, 13, and 17, as well as 
environment E7, were placed in the third quadrant. In the WSY biplot, genotypes 12, 17, 18, 14, 15, 13, 8, and 9, 
along with environments E5 and E7, were also placed in the third quadrant. These genotypes and environments 
exhibited a lower WAASB index, indicating their stability and lack of influence from environmental conditions. 
Additionally, these genotypes showed low yield values. Essentially, the mentioned genotypes had low yield and 
high stability in this quadrant. On the other hand, the environments in this quadrant had low efficiency and a 
lower separation capability due to having the lowest WAASB values among all the environments. In contrast, 
genotypes 20, 4, 7, 2, 16, 3, 6, 1, 14, and 15, along with environments E2 and E1, were located in the fourth 
quadrant of the RY biplot. Similarly, genotypes 4, 16, 3, 7, 5, 1, 10, 20, 2, and 6, along with environments E1 and 
E2, were located in the fourth quadrant of the WSY biplot. These genotypes and environments had low WAASB 
index values and higher yield values compared to the total average. Genotypes in this biplot quadrant are con-
sidered stable and optimal in terms of yield because they have minimal influence on environmental conditions 
while achieving proper yields. The environments placed in the fourth quadrant had high production capacity and 
low WAASB values among the 10 experimental environments. The WAASB index is used to identify genotypes 
with optimal and stable yield in various plants, including wheat56, soybeans57, lentils58, rice59, corn 60, and sugar 
beet9,11. Unlike the AMMI model, which considers only the first IPC, the WAASB index expresses stability based 
on all scores of the IPCs. Therefore, WAASB considers the total GEI variance in identifying stable genotypes. 
In situations where the number of significant IPCs is high and the IPC1 cannot explain most of the GEI, it is sug-
gested to use the WAASB index. This index fully applies the variance of GEI in identifying stable genotypes. The 
BLUP-based mixed model, which incorporates the WAASB index, has been shown to perform more accurately 
than the fixed-effects AMMI model in identifying stable genotypes60–63. The WAASB index has been successfully 
used, and provides useful results in identifying genotypes with optimal and stable yield.

To evaluate yield and stability with greater precision, experimental genotypes were ranked based on their 
WAASBY index scores, as depicted in Fig. 2. These scores, which take into account various ratios of WAASB 

Figure 1.   Biplot analysis of root yield (A) and white sugar yield (B) of sugar beet genotypes, evaluated by 
weighted average absolute scores of the best linear unbiased predictions (WAASB).
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index to yield, were illustrated in a heatmap for RY (Fig. 2A) and WSY (Fig. 2B). The ranking of genotypes via 
the WAASBY index can fluctuate depending on the ratio of the WAASB index to yield. The first component 
(on the left side of the diagonal line) of the WAASB index to yield ratio (WAASB/RY or WSY) pertains to 
environmental stability, while the second component (on the right side of the diagonal line) relates to yield 
(RY or WSY). Thus, in the genotype ranking, a 0/100 ratio corresponds to stability, while the same ratio is also 
assigned to yield. Indeed, moving one unit from left to right in this plot decreases the environmental stability 
component by five percent and increases the yield component, such that at the end, genotypes are ranked solely 
based on yield (0/100). Based on the WAASBY index scores, the experimental genotypes were categorized into 
four groups. The first group (green) includes genotypes 1, 2, 3, 5, 6, 14, and 16 for RY, and genotypes 1, 3, 5, 12, 
and 13 for WSY. These genotypes were identified as stable with optimal yield. The second group (red), with poor 
yield values and instability, includes genotypes 4, 12, 13, 15, and 18 for RY, and genotypes 2, 4, 6, 7, 10, 16, 19, 
and 20 for WSY. The third group (blue), which includes genotypes 7 and 20 for RY and genotypes 8, 9, 14, 15, 
and 18 for WSY, demonstrated high yield values but instability. The fourth group (black) contains genotypes 8, 
9, 10, 11, 17, and 19 for RY, and genotypes 11 and 17 for WSY, which showed poor yield values but were stable 
otherwise. In multi-environment experiments, the WAASBY index has proven to be a valuable selection index 
for both stability and yield, as it allows breeders to select genotypes with varying ratios of stability and yield 
based on their breeding program objectives. Figure 3 is particularly useful for selecting genotypes with an equal 
ratio. This figure allows for the simultaneous ranking and selection of experimental genotypes based on a 50:50 
ratio for the WAASB index and RY (Fig. 3A) and WSY (Fig. 3B). Blue circles indicate a WAASBY index above 
the total average, while red circles indicate a WAASBY index below the total average. In summary, for RY, 11 
genotypes, including genotypes 16, 20, 2, 14, 3, 7, 4, 6, 1, 12, and 5, had a higher than WAASBY index. Specifi-
cally, genotype 16 and thereafter genotypes 20, 2, and 14 had relatively higher WAASBY index values compared 
to other genotypes. For WSY, the results were largely similar to RY, with only the ranking of genotypes differing. 
On this trait, 11 genotypes, including genotypes 20, 3, 16, 4, 10, 7, 2, 5, 12, 6, and 1, had a higher than WAASBY 
index. In this case, genotype 20, followed by genotypes 3, 16, 4, and 10 had relatively higher WAASBY index 

Figure 2.   Ranking of sugar beet genotypes based on varying importance of stability and root yield (A)/white 
sugar yield (B).

Figure 3.   Calculation of WAASBY in sugar beet genotypes, considering equal weights of 50 for root yield (A)/
white sugar yield (B), and WAASB.
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values compared to other genotypes. According to these results, genotypes 16, 20, 2, and 14 for RY values and 
yield stability, and genotypes 20, 3, 16, 4, and 10 for WSY values and yield stability were identified as suitable 
genotypes. Sugar beet, a critical sugar plant that provides about 30% (approximately 42 million tons) of the world 
sugar needs (FAO, 2018), is of considerable importance, especially in light of climate change concerns and the 
need to transition from fossil fuel consumption to renewable fuels. Developing genotypes with high and stable 
performance under varying environmental conditions is a significant solution8,9,11. In light of this, the WAASBY 
index, a quantitative stability measure, is used to balance yield average and stability. This index allows for the 
selection of genotypes that have both high yield and yield stability11,64,65.

Exploring the correlation and graphical analysis of genotype by yield*trait (GYT)
The Pearson correlation coefficient was utilized to determine the degree of association between various traits. 
The values of this coefficient range from − 1 to 1. A correlation coefficient of 1 indicates a complete direct 
association between two traits, meaning that if one trait increases or decreases, the other will also increase 
or decrease proportionally. As the coefficient approaches zero, the direct association weakens, resulting in no 
linear association between the two traits. Conversely, as the coefficient approaches − 1, the inverse association 
between the two traits intensifies, leading to a complete inverse association when the correlation coefficient is 
− 1. This implies that if one trait increases, the other decreases and vice versa. The results of Pearson’s correla-
tion of various studied traits of experimental sugar beet genotypes are depicted in Fig. 4. The highest positive 
correlation between N and K+ was observed at a rate of 0.71. This high degree of correlation between the two 
traits suggests that an increase in the amount of N also results in an increase in the amount of K+. The traits of 
Na with N (r = 0.49), SC with K+ (r = 0.45), and Na+ with K+ (r = 0.41) exhibited a weak positive correlation. RY 
exhibited a negative correlation with all traits, including the SC, Na+, K+, and N. However, the highest negative 
correlation between RY and K+ (r = − 0.65) was observed, indicating that K+ decreases with an increase in RY. 
There was a weak negative correlation between RY with SC (r = − 0.44), RY with N (r = − 0.37), and RY with 
Na+ (r = − 0.19). A similar relationship between RY and SC has been reported previously66,67. The correlation of 
SC with Na was estimated to be negative but non-significant. The associations between the key traits of sugar 
beet can pose complications in the process of improving these traits. Therefore, breeders must strike a balance 
while managing the associations imposed by negative correlations between key traits. In this context, the GYT 
graphical method proves to be comprehensive and efficient24.

To comprehend the impact of genetic factors on crop productivity, was employed a method known as GYT 
graphical analysis. The results revealed that the first and second PCs accounted for 50.53% and 34.96% of the 
total variance in RY data, respectively, summing up to 85.49%. Given that these two PCs explain over 70% of 
the data variance, this affirms the high validity of the biplots obtained from this study in elucidating the varia-
tions in GYT​68. However, if the sum of the first two PCs does not account for the majority of the data variation, 
it indicates the data complex nature69. Nevertheless, this does not invalidate the biplot27. Research by Shojaei 
et al.70 demonstrated that about 50% of the variation in GYT is explained by the first two PCs. In an experiment 
conducted by Faheem et al.36, they estimated that the sum of the first two PCs was close to 85%, with the PC1 
accounting for approximately 74% and the PC2 for around 11% of the total data variations.

The quality and yield of sugar from sugar beet roots are influenced by impurities such as N, Na+, and K+. The 
N content, which is a combination of soluble amino acids and amide groups, plays a significant role in sugar 
extraction efficiency71. Although high N levels can impede sugar extraction, it is a vital factor in the storage life 
and quality of sugar beet. Hence, managing N levels, which can be affected by temperature, storage duration, 
and beet genetic diversity, is critical72. Na+ and K+ in sugar beet roots are considered molasses substances. They 
increase the solubility of sucrose, reducing its crystallization, which in turn decreases the quality of sugar beet 
and the efficiency of sugar extraction73–76. A high concentration of these elements can limit their use in certain 
applications due to their impact on the quality of molasses. Therefore, it is essential to design corrective programs 
that increase RY while also reducing the concentration of impurities. Studying the correlation between yield-trait 
combinations can identify the association among traits, aiding future experiments in creating new genotypes. 
In this context, the acute angle between the majority of vectors in a graph indicates a positive correlation among 
yield-trait combinations, mainly due to yield being a PC in these combinations24. This high correlation suggests 

Figure 4.   Pearson correlation analysis among key traits of sugar beet genotypes.
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a strong relationship among the rank of genotypes based on these combinations. The biplot (Fig. 5A) reveals a 
high positive correlation between RY/N and RY/K+. This indicates that reducing the content of one of these traits 
will likely result in a reduction in the other. There is also a weak positive correlation among these compounds 
and the combination of RY*SC. However, they show a negative correlation with RY/Na+. There is a moderate 
positive correlation between RY*SC and RY/Na+. The positive correlation between RY*SC and other compounds 
suggests that it is possible to increase the SC by reducing the N, Na+, and K+ in a genotype. However, the negative 
correlation among RY/N, RY/K+, and RY/Na+ complicates the breeding process to reduce all three impurities, 
necessitating detailed planning (Fig. 5A).

In Fig. 5B, a polygon is visible, formed by connecting genotypes 2, 12, 18, 15, 19, and 20, which are furthest 
from the coordinate origin. Perpendicular lines extending from the coordinate origin to the polygon sides helped 
determine the grouping of GYT combinations. When yield-trait combinations are positioned with genotypes at 
their apex, it suggests these genotypes yield well in terms of those combinations. In other words, these are the best 

Figure 5.   Different views of the genotype by root yield*trait biplot for yield-trait associations (A), highlighting 
genotypes with outstanding profiles (B), ranking genotypes based on their overall superiority and their strengths 
and weaknesses (C) and ranking genotypes based on the ideal genotype (D).
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genotypes with respect to yield-traits. genotypes 2 and 12 excel in the RY/Na+. For the combinations of RY*SC, 
RY/N, and RY/K+, genotypes 20, 19, and 16 respectively, are the best genotypes (Fig. 5B). Genotypes located in 
sections devoid of combinations are not desirable for any combination and are considered weaker genotypes. 
The polygonal biplot also helped group yield-trait combinations into two groups. The RY/Na+ was placed in one 
group, while RY*SC, RY/N, and RY/K+ were grouped together (Fig. 5B).

The genotypes ranking, based on the yield-trait combination, was determined using the average tester coordi-
nate biplot (Fig. 5C) and the superiority index (Table 7). The axis on the biplot, represented by an arrow originat-
ing from the coordinate’s origin, illustrates the mean of all yield-trait combinations. The axis perpendicular to this 
average axis signifies the measurement of the genotypes balance in terms of compounds. From this information, 
genotype 20 was identified as the best, followed by genotypes 19 and 16, due to their high yield average. On the 
other hand, genotypes 15, 18, and 17 exhibited the lowest yield average. These biplot results were corroborated 
by the superiority index. Various studies have been conducted24,36,70, including the present one, which concludes 
that the average tester coordinate biplot is a useful method in the GYT biplot analysis. This method provides 
valuable information about genotypes. The identification of the ideal genotype is based on the concepts of balance 
and high yield. Accordingly, the most desirable genotype is one that has the highest yield and maximum balance. 
Genotypes that are closest to this ideal are deemed superior, while those farthest are considered the undesirable. 
According to the biplot, genotypes 20, 16, 7, and 19 were identified as the best genotypes due to their minimal 
distance from the ideal genotype. Conversely, genotypes 15, 18, and 17 were identified as unfavorable genotypes 
because they were the furthest from the ideal genotype (Fig. 5D).

Multi‑trait stability index (MTSI)
Factor analysis was performed using principal component analysis, and the interpretation of the results was 
carried out after Varimax rotation. Table 8 presents the results of the factor analysis, where factors with eigen-
values greater than one were selected. The variance of each factor was expressed as a percentage, indicating its 
importance in interpreting the overall variations in the data. In this analysis, two independent factors accounted 
for a total of 78.24% of the data variations. The first factor explained 41.76% of the total variance and had an 
eigenvalue of 2.09. It had large positive coefficients for RY and negative coefficients for K+ and N. The second 
factor, with eigenvalues of 1.82, accounted for 36.48% of the variations and included large negative factor coef-
ficients for SC and Na+. The MTSI index of the studied genotypes was calculated based on the factor scores of the 
two mentioned factors. The MTSI index is used to assess the stability of genotypes, with lower values indicating 
closer proximity to the stable ideal genotype. Conversely, higher values suggest a greater distance from the ideal 
stable genotype and should not be selected. Figure 6A shows the ranking of the experimental genotypes based on 
the MTSI index, with the genotype having the highest value in the center and the genotype with the lowest value 
placed in the outermost circle. Applying a selection pressure of 20%, genotype 13 ranked first, and genotypes 
10, 8, and 9 were identified as the most ideal stable genotypes across all traits. Comparing the trait values in the 
selected genotypes based on the MTSI index with the trait values in all experimental genotypes revealed that the 

Table 7.   Standardized data of genotype by root yield*trait and superiority index for sugar beet genotypes.

Genotype Root yield × sugar content Root yield/Na+ Root yield/K+ Root yield/alpha amino N Mean superiority index

1 0.31 0.85 − 1.21 − 0.93 − 0.24

2 1.27 1.69 − 0.84 − 0.74 0.35

3 1.10 0.74 − 0.41 − 0.50 0.23

4 0.44 0.04 − 0.82 − 0.95 − 0.32

5 0.44 − 0.37 − 0.01 0.06 0.03

6 0.76 0.20 − 0.06 − 0.16 0.18

7 0.48 0.99 0.23 0.70 0.60

8 − 1.59 0.13 − 0.23 0.26 − 0.36

9 − 0.88 0.09 − 0.52 0.43 − 0.22

10 0.31 1.20 0.94 − 0.72 0.43

11 − 0.59 0.54 − 0.97 − 0.42 − 0.36

12 − 0.35 0.73 − 0.73 − 0.41 − 0.19

13 − 0.39 0.28 − 0.64 − 0.72 − 0.37

14 − 0.08 − 2.18 1.33 0.13 − 0.20

15 − 1.89 − 2.20 0.89 − 0.11 − 0.82

16 1.17 − 0.62 1.64 0.38 0.64

17 − 1.21 − 0.48 − 1.01 − 0.60 − 0.82

18 − 1.26 − 0.71 − 0.89 − 0.80 − 0.92

19 0.32 − 0.75 1.22 2.77 0.89

20 1.66 − 0.17 2.07 2.34 1.48

Mean 0.00 0.00 0.00 0.00 –

Standard deviation 1.00 1.00 1.00 1.00 –
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mean value of SC increased in the selected genotypes, while the mean values of RY, K+, N, and Na+ decreased. 
Increasing SC aligns with the goals of the sugar beet improvement programs, but reducing RY is not one of the 
objectives. The goals for Na+, K+, and N are to decrease their values, and the selected genotypes showed a sig-
nificant reduction in these traits. The selected genotypes resulted in selection differential and favorable selection 
gain in all traits except RY. Except for RY, the other traits exhibited high heritability in the selected genotypes. 
Figure 6B provides a visual representation of the strengths and weaknesses of the selected genotypes based on 
the contribution of each factor in the MTSI index. The lower the share justified by a factor (close to the outer 
edge), the closer the attributes within that factor are to the stable ideal state. Genotypes 8 and 9, which had the 
lowest value in the first factor, were close to the ideal genotype for the RY, K+, and N. Genotypes 10 and 13 had 
the lowest share of the second factor, indicating their proximity to the ideal genotype in terms of SC and Na+. 
The MTSI index has been successfully used in previous studies to evaluate yield and other agronomical traits 
in various genotypes. Sharifi, Abbasian and Mohaddesi39 applied the MTSI index to evaluate rice genotypes 
and identify superior genotypes in terms of yield, yield stability, and other agronomical traits. Similarly, Rajabi 
et al.8 used the MTSI index to identify stable sugar beet genotypes under conditions infected with rhizomania 
disease. Taleghani et al.11 also employed the MTSI index to identify ideal genotypes in terms of RY, WSY, SC, and 
extraction coefficient of sugar. The findings of these study align with the results obtained, which demonstrate 
the effectiveness of the MTSI index in identifying superior genotypes.

Conclusion
According to the results, the AMMI model demonstrated significant additive and multiplicative effects at the 
1% probability level. However, the LMM indicated that the genotype and GEI had significant effects at the same 
probability level. Consequently, relying solely on the AMMI model for analyzing the structure of the LMM would 
not be successful. In such situations, utilizing BLUP analysis can yield better and more reliable results due to its 

Table 8.   Prediction of selection differential for studied traits based on the multi-trait stability index (MTSI). 
FA: Factor, h2: Heritability, SD: Selection differential, SG: Selection gain.

Variable FA1 FA2 Communality Uniqueness’s Goal h2 SD (%) SG (%)

Root yield 0.79 0.12 0.64 0.36 Increase 0.57 − 4.03 − 2.28

K+ − 0.83 − 0.10 0.70 0.30 Decrease 0.92 − 3.57 − 3.29

alpha amino N − 0.83 0.39 0.84 0.16 Decrease 0.91 − 3.16 − 2.87

Sugar content − 0.01 − 0.94 0.89 0.11 Increase 0.91 1.46 1.33

Na+ − 0.02 − 0.92 0.84 0.16 Decrease 0.95 − 14.54 − 13.76

Mean – – 0.78 0.22 – – – –

Total decrease – – – – – – − 25.30 − 22.19

Total increase – – – – – – 1.46 1.33

Eigenvalues 2.09 1.82 – – – – – –

Variance (%) 41.76 36.48 – – – – – –

Cum. variance (%) 41.76 78.24 – – – – – –

Figure 6.   Ranking of genotypes in ascending order based on the multitrait stability index (A), and evaluation 
of selected genotypes in terms of their strengths and weaknesses represented as the ratio of each factor in the 
calculated mult-itrait stability index (B).
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high efficiency in estimating the average performance of genotypes in mixed models. By integrating the power of 
the AMMI method and the prediction accuracy of the BLUP method, it becomes possible to examine genotypic 
stability and GEI in the form of the WAASB index, while overcoming the limitations of the AMMI model. This 
comprehensive approach provides a complete picture of the GEI in sugar beet. In the selection and introduc-
tion of superior cultivars, it is necessary to consider both stability and yield value. In addition to reducing GEI, 
genotypes with high yield potential can be selected. Therefore, the WAASBY index can provide useful results. 
The results demonstrate that the environment and its interaction with the genetic structure of different genotypes 
significantly influence the phenotypic expression of RY and WSY. This leads to different responses in terms of 
RY and WSY among genotypes based on varying environmental conditions. In terms of RY values and stability, 
genotypes 16, 20, 2, and 14 were recognized as stable genotypes with high yield. Similarly, genotypes 20, 3, 16, 
4, and 10 exhibited high WSY values and stability. Consequently, these genotypes can be recommended as new 
genetic sources for sugar beet breeding programs. In such programs, cultivars with high RY, high SC, and low 
impurities are preferred over other cultivars. The correlation analysis results revealed that all key traits, including 
SC, Na+, K+, and N, demonstrated a negative correlation with RY. Genotypes 20, 19, and 16 were identified as the 
best performers when considering the combination of RY with other key traits. Furthermore, the MTSI identified 
genotypes 13, 10, 8, and 9 as the most stable genotypes. These genotypes emerged as the top-ranking genotypes, 
suggesting them as a potential candidate for further breeding programs. In total, this study provides valuable 
insights into the complex interactions between genotype, environment, and key traits in sugar beet genotypes. 
This knowledge can guide the development of effective breeding programs aimed at enhancing crop production.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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