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Following whole lung lavage (WLL), inhaled recombinant GM-CSF reduces the requirement for
further WLL in aPAP patients, resulting in greater improvement in lung function, and is safe https://
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Abstract
Rationale Whole lung lavage (WLL) is a widely accepted palliative treatment for autoimmune pulmonary
alveolar proteinosis (aPAP) but does not correct myeloid cell dysfunction or reverse the pathological
accumulation of surfactant. In contrast, inhaled recombinant granulocyte–macrophage colony-stimulating
factor (rGM-CSF) is a promising pharmacological approach that restores alveolar macrophage functions
including surfactant clearance. Here, we evaluate WLL followed by inhaled rGM-CSF (sargramostim) as
therapy of aPAP.
Methods 18 patients with moderate-to-severe aPAP were enrolled, received baseline WLL, were
randomised into either the rGM-CSF group (receiving inhaled sargramostim) or control group (no
scheduled therapy) and followed for 30 months after the baseline WLL. Outcome measures included
additional unscheduled “rescue” WLL for disease progression, assessment of arterial blood gases,
pulmonary function, computed tomography, health status, biomarkers and adverse events. Patients
requiring rescue WLL were considered to have failed their assigned intervention group.
Results The primary end-point of time to first rescue WLL was longer in rGM-CSF-treated patients than
controls (30 versus 18 months, n=9 per group, p=0.0078). Seven control patients (78%) and only one
rGM-CSF-treated patient (11%) required rescue WLL, demonstrating a 7-fold increase in relative risk
(p=0.015). Compared to controls, rGM-CSF-treated patients also had greater improvement in peripheral
arterial oxygen tension, alveolar–arterial oxygen tension difference, diffusing capacity of the lungs for
carbon monoxide and aPAP biomarkers. One patient from each group withdrew for personal reasons. No
serious adverse events were reported.
Conclusions This long-term, prospective, randomised trial demonstrated inhaled sargramostim following
WLL reduced the requirement for WLL, improved lung function and was safe in aPAP patients. WLL plus
inhaled sargramostim may be useful as combined therapy for aPAP.

Introduction
Autoimmune pulmonary alveolar proteinosis (aPAP) is an acquired disorder of myeloid cell dysfunction,
progressive surfactant accumulation, hypoxaemia, dyspnoea, innate immune deficiency and, in some
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individuals, serious infections, pulmonary fibrosis, respiratory failure and death [1–5]. Prevalence is
reported at 7–26 per million [6–8]. Pathogenesis is mediated by autoantibodies that block granulocyte–
macrophage colony-stimulating factor (GM-CSF) signalling [5, 9–11], which alveolar macrophages require
to clear surfactant [12] and neutrophils require to constitutively stimulate host defence functions [9]. An
increased serum GM-CSF autoantibody level is diagnostic of aPAP [13] but serum concentration does not
correlate with disease severity [14], a phenomenon explained by a critical threshold of autoantibodies
(5 μg·mL−1 [11, 13, 15]) above which GM-CSF-dependent functions are completely blocked and cannot
be further reduced by higher autoantibody levels [9, 15]. Most people with aPAP experience slow to
moderate progression of symptoms (dyspnoea, cough, fatigue) and reduced quality of life, while some
experience rapid progression, and a small percentage appear to improve spontaneously [16, 17].

Whole lung lavage (WLL) has remained widely accepted as therapy for pulmonary alveolar proteinosis
(PAP) since its introduction in 1963 [16, 18, 19]. However, it requires hospitalisation, a medical team to
administer and general anaesthesia. WLL involves the endotracheal isolation of each lung and
simultaneous mechanical ventilation of the non-treated lung while the treated lung is repeatedly filled with
saline, the chest is percussed to emulsify surfactant and saline, and effluent is drained to physically remove
the excess surfactant, typically, with ⩾30 L of saline per lung [16, 19]. While therapeutic effects are
evident within days and reduce disease-specific mortality [2], WLL does not stop surfactant accumulation
or correct alveolar macrophage dysfunction [20, 21] and patients with aPAP require WLL repeatedly with
a reported median time between procedures of 15 months [2].

Inhaled recombinant human GM-CSF (rGM-CSF) is a promising pharmacological treatment approach that
patients with aPAP can self-administer at home using a handheld nebuliser [22]. It reverses the
pathophysiological abnormalities of alveolar macrophages by restoring GM-CSF-dependent differentiation
and functions including surfactant clearance and host defence [23–29]. As of 2009 when the present study
was initiated, case reports and small series had shown inhaled rGM-CSF improved gas exchange in aPAP
[30–36]. However, no studies had determined the optimal dosage, treatment duration or minimal clinically
important differences in end-points for patients with aPAP, and no prospective, randomised, blinded,
placebo-controlled studies of inhaled rGM-CSF therapy of aPAP had been reported.

The initial goal of this study was to test a treatment regimen believed capable of complete resolution of
aPAP by using WLL to reduce the surfactant burden and inhaled rGM-CSF to restore alveolar macrophage
functions. While eliminating the need for WLL is considered to indicate resolution of aPAP, the effects of
rGM-CSF on the need for WLL have not been studied, partly because the long median time between
procedures suggests that a long-duration study would be necessary. Further, although pulmonary gas
exchange, pulmonary function tests, quality of life measures and biomarkers have been used as outcome
measures, none have been validated in patients with aPAP for use in clinical trials. Thus, the present study
was undertaken as a long-term, prospective, randomised, open-label, single-centre phase 2 trial with time
to subsequent WLL as the primary end-point. Results indicate inhaled rGM-CSF (sargramostim) following
WLL is safe and effective as therapy of aPAP.

Methods and materials
Study patients
Patients were eligible for inclusion if they were ⩾18 years of age and had moderate-to-severe aPAP defined
by chest computed tomography (CT) findings and lung histology or bronchoalveolar lavage cytology
consistent with PAP [2], an abnormal serum GM-CSF autoantibody test [37] and a resting peripheral
arterial oxygen tension (PaO2

) of <60 mmHg or of >60 mmHg combined with a resting peripheral oxygen
saturation (SpO2

) of <90% or a ⩾5% decline during exercise [38]. Patients were excluded if they were
pregnant, breastfeeding, had another lung disease resulting in respiratory failure (e.g. emphysema,
pulmonary fibrosis or pulmonary embolism) or other clinically significant heart, metabolic or other disease
that would interfere with the study. All participants provided written informed consent.

Study design and end-points
The study was designed by Professor Maurizio Luisetti and was approved by the independent ethics
committee of the Fondazione IRCCS Policlinico San Matteo, where it was conducted according to the
Declaration of Helsinki and Good Clinical Practice guidelines.

The study design included a screening visit to establish subject eligibility (month −3), an observation
period to establish the presence of unremitting/progressive aPAP (months −3 to −1), a pre-WLL visit to
evaluate aPAP disease severity (month −1), a baseline visit at which all patients received a scheduled
bilateral WLL (month 0) and baseline testing (approximately 1 week later), an open-label treatment period
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(months 0–10) and a follow-up period with no scheduled treatments (months 10–30) (supplementary figure
S1). Eligible patients were randomised in a 1:1 ratio to receive inhaled sargramostim (Leukine; rGM-CSF
group) or no scheduled therapy (control group) during the open-label treatment period. Inhaled
sargramostim was administered using an AKITA2 APIXNEB vibrating mesh nebuliser (Activaero, Vectura
GmbH, Gauting, Germany) [39] in two phases: a high-dose treatment-induction phase (250 μg daily,
7 consecutive days every other week for 12 weeks beginning 1 week after the baseline WLL) followed by
a 4-week washout period, and a low-dose treatment-maintenance phase (250 μg daily on days 1 and 3 of
every consecutive 14-day period for 6 months beginning 17 weeks after the baseline WLL). For ethical
reasons, all patients were eligible to receive unscheduled “rescue” WLL at any time during the trial as
necessary for aPAP disease progression, which was strictly defined by a resting PaO2

(determined at our
hospital in Pavia, Italy) of <60 mmHg or PaO2

>60 mmHg with SpO2
<90% at rest or a decline of 5%

during exercise testing.

The primary outcome measure was the time in months between the scheduled baseline WLL and the first
administration of unscheduled rescue WLL (termed “time to rescue WLL”). Key secondary outcome
measures included responses in PaO2

, alveolar–arterial oxygen tension difference (PA–aO2
), diffusing

capacity of the lungs for carbon monoxide (DLCO) as a percentage of the predicted value, ground glass
opacification (GGO) of the lungs measured by visual scoring of chest CT scans [40], serum biomarkers of
PAP (carcinoembryonic antigen (CEA), Krebs von den Lungen-6 (KL-6) antigen and cytokeratin-19
fragment (Cyfra21.1) antigen) and vital capacity (VC). Other outcome measures included the Medical
Outcomes Study 36-Item Short Form Health Survey (SF-36), serum GM-CSF autoantibody concentration
and peripheral white blood cell and platelet counts. Primary and secondary outcomes (except GGO) were
measured at each visit as described in the study calendar (supplementary table S1).

Adverse events were assessed at every study visit and during periodic telephone calls at 12 and 24 months.
Patients were questioned about the potential occurrence of suspected adverse events of special interest
including bronchospasm, bone and joint pain, cough, fever and myalgias. The potential for bronchospasm
was assessed by pulmonary function testing 20 min after the first administration of inhaled sargramostim in
each patient. Laboratory testing to assess safety included haematology tests.

Statistical analysis
The analyses were performed according to the intention-to-treat (ITT) principle. The primary end-point
was the median difference in time to rescue WLL between the rGM-CSF and control groups, compared
using the Mann–Whitney test. Primary analysis of key secondary outcomes was performed by determining
between-group differences using repeated measures ANOVA (RM-ANOVA) after adjustment for baseline
values, gender, age and the number of patients at risk at each time point. Secondary analysis was
performed by determining the between-group difference at each visit, after imputation of missing data
using the last observation carried forward method. Comparisons of the corresponding group means
(parametric data), medians (nonparametric data) or numbers (categorical data) were made using t-test,
Mann–Whitney test or Fisher’s exact test, as appropriate. All reported p-values are two-sided and have not
been adjusted for multiple testing. p-values <0.05 were considered to indicate statistical significance.
Analysis by RM-ANOVA was performed using Stata software version 14.2 (StataCorp LLC, College
Station, TX, USA) and other analyses were performed using Prism for Mac OS software, version 9.51
(GraphPad Software, San Diego, CA, USA).

Further details of the study design, interventions, outcome measures and statistical analysis are included in
the supplementary appendix and at ClinicalTrials.gov (NCT00901511).

Results
Patients
From July 2009 through to December 2012, 30 adult patients with aPAP receiving medical care at the
Fondazione IRCCS Policlinico San Matteo of Pavia were assessed for eligibility and 18 were enrolled
(figure 1). All had moderate-to-severe aPAP based on the INOUE et al. [41] PAP disease severity score
(DSS), degree of restrictive lung physiology (measured by reductions in forced vital capacity (FVC),
forced expiratory flow in 1 s (FEV1), total lung capacity (TLC) and VC), impaired pulmonary gas
exchange (measured by abnormalities in PaO2

, PA–aO2
and DLCO % predicted), degree of abnormal

surfactant accumulation (measured by visual assessment of GGO on chest CT scans), increased biomarkers
of aPAP and impaired general health status (measured by the SF-36 questionnaire) (table 1). Of the 18
patients randomised and treated, 16 (89%) completed the study; one from each group withdrew
participation for personal reasons (figure 1).
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Effects of the scheduled baseline WLL
The scheduled baseline WLL reduced the severity of aPAP lung disease in all patients as demonstrated by
improvement in the DSS, FEV1, FVC, TLC, VC, PaO2

, PA–aO2
, DLCO % predicted, all SF-36 component

scores and Cyfra21.1 concentration (table 1). Following the baseline WLL, patients in the rGM-CSF and
control groups were reasonably well matched for these variables (table 2).

Primary analysis
Progression of aPAP lung disease requiring rescue WLL, determined by strict adherence to predefined lung
function parameters, occurred less frequently in the rGM-CSF-treated group than control group as shown
by Kaplan–Meyer analysis (p=0.002; log-rank Mantel–Cox test) (figure 2 and supplementary figure S2).
Seven of nine control patients (78%) and only one of nine rGM-CSF-treated patients (11%) required rescue
WLL during the 30 months following the scheduled baseline WLL (month 0), which is a 7-fold increase
in relative risk (p<0.015; Fisher’s exact test). The primary end-point, the time to rescue WLL, was greater
in the rGM-CSF group than the control group (median 30 months (IQR 30–30 months) versus 18 months
(6–27 months); p<0.0078, Mann–Whitney) (table 3). These results demonstrate inhaled rGM-CSF
(sargramostim) following WLL reduced further use of WLL for progression of aPAP lung disease.

Effects of inhaled rGM-CSF on disease severity were evaluated as the between-group difference in key
secondary outcomes across all study visits compared using RM-ANOVA. rGM-CSF-treated patients had
greater improvement in pulmonary gas exchange than control patients as shown by the difference in PaO2

,
PA–aO2

and DLCO % predicted (table 4). The lung GGO score was numerically reduced in the rGM-CSF
group compared to the control group, but the difference was not significant (table 4). Serum biomarkers of
PAP were improved in the rGM-CSF group compared to the control group as shown by between-group
differences in CEA, KL-6 and Cyfra21.1 (table 4). Notwithstanding, no further significant improvement
was observed in lung mechanics or SF-36 general health score as shown by between-group differences in
VC and SF-36 general health score, respectively (table 4). These results demonstrate inhaled sargramostim
following WLL improved pulmonary gas exchange and biomarkers of aPAP.

Allocated to rGM-CSF group (n=9)

  Received scheduled baseline WLL (n=9)

  Received allocated rGM-CSF (n=9)

Discontinued intervention 1 month after 

receiving the scheduled baseline WLL 

(withdrew consent for personal reasons) (n=1)

Analysed (intention-to-treat) (n=9)

Completed 30-month follow-up without requiring

  rescue WLL (n=7)

 Did not complete 30-month follow-up period (n=2)

    Withdrew consent, see above (n=1)

    Required rescue WLL (n=1)

Allocated to control group (n=9)

  Received scheduled baseline WLL (n=9)

Discontinued intervention 10 months after 

receiving the scheduled baseline WLL 

(withdrew consent for personal reasons) (n=1)

Analysed (intention-to-treat) (n=9)

Completed 30-month follow-up without requiring

  rescue WLL (n=1)

 Did not complete 30-month follow-up period (n=8)

    Withdrew consent, see above (n=1)

    Required rescue WLL (n=7)

Randomised (n=18)

Assessed for eligibility (n=30)

Excluded (n=12)

  Did not meet inclusion criteria (n=12)

FIGURE 1 Screening, randomisation, treatment and follow-up of the study participants with moderate-to-severe
autoimmune pulmonary alveolar proteinosis. rGM-CSF: recombinant granulocyte–macrophage colony-
stimulating factor; WLL: whole lung lavage.
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TABLE 1 Demographics and clinical characteristics of the aPAP patients and effect of the baseline WLL

Demographic or clinical parameter Pre-WLL visit# Post-WLL “Baseline”# p-value¶

Participants (n) 18 18
Age at diagnosis (years) 40±12 – –
Gender (% female) 7 (39) – –
BMI (kg·m−2) 26±3 – –
Smoking history
Current smoker 3 (17) – –
Ex-smoker 2 (44) – –
Never-smoker 7 (39) – –

Symptoms and signs
Dyspnoea 17 (94) – –
Cough 11 (61) – –
Fever 0 (0) – –
Sputum production 0 (0) – –

PAP DSS 4.0 (2.5–5.0) 1.0 (1.0–3.0) <0.001
Spirometry and lung volumes
FEV1 (% predicted) 62±17 (n=14) 76±14 0.015
FVC (% predicted) 61±16 (n=14) 77±14 0.007
FEV1/FVC (% predicted) 98±12 (n=14) 102±9.7 0.291
TLC (% predicted) 66±8 (n=10) 76±11 (n=14) 0.022
VC (% predicted) 62±14 (n=15) 75±14 0.011

Pulmonary gas exchange
DLCO (% predicted) 41±15 (n=13) 54±13 0.008
PaO2

(mmHg) 59±15 77±14 <0.001
PA–aO2

(mmHg) 49±14 29±14 <0.001
PaCO2

(mmHg) 34±2 35±3 0.291
Radiological evaluation of the lungs
Chest CT GGO score 4.9±0.33 (n=17) – –

Haematology indices
WBC ×1000·mL−1 7.0±1.7 (n=17) 8.0±2.0 (n=17) 0.137
Platelets ×1000·mL−1 264±80 (n=17) 280 ±93 (n=17) 0.60

Serum biomarkers of aPAP
GM-CSF autoantibody (mg·mL−1) 42±54 38.9±47.9 (n=17) 0.85
Cyfra21.1 (ng·mL−1) 19±15 (n=15) 7.9±4.9 0.0046
CEA (ng·mL−1) 15±14 (n=15) 9.2±7.2 (n=16) 0.138
KL-6 (U·mL−1) 8817±6407 10 224±10 343 (n=17) 0.630

SF-36 component scores
General health 35 (23–58) (n=17) 85 (73–95) <0.0001
Health change 0 (0–25) (n=17) 88 (25–100) 0.0023
Physical function 0 (0–67) (n=17) 100 (100–100) 0.0001
Energy/fatigue 56 (42–68) (n=17) 78 (59–85) 0.0098
Pain 40 (23–48) (n=17) 75 (54–80) <0.0001
Social function 38 (13–69) (n=17) 81 (63–91) 0.0006
Emotional well-being 75 (41–100) (n=17) 100 (98–100) 0.0008
Role limitations due to physical health 45 (50–80) (n=17) 73 (60–80) 0.0002
Role limitations due to emotional problems 13 (0–44) (n=17) 100 (69–100) <0.0001

Enrolled patients had moderate or severe aPAP as indicated by the results shown for all patients in both
recombinant GM-CSF and control groups. The baseline visit occurred a median (interquartile range) of 8 (4–16)
days after the scheduled baseline WLL. Data are presented as mean±SD, median (interquartile range) or n (%),
unless otherwise indicated. Bold text indicates statistical significance. aPAP: autoimmune pulmonary alveolar
proteinosis; WLL: whole lung lavage; BMI: body mass index; PAP: pulmonary alveolar proteinosis; DSS: disease
severity score; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; TLC: total lung capacity; VC:
(slow) vital capacity; DLCO: diffusing capacity of the lung for carbon monoxide; PaO2

: arterial oxygen tension;
PA–aO2

: alveolar–arterial oxygen tension difference; PaCO2
: arterial carbon dioxide tension; CT: computed

tomography; GGO: ground glass opacification; WBC: (total) white blood cell count; GM-CSF: granulocyte–
macrophage colony-stimulating factor; Cyfra21.1: cytokeratin-19 fragment antigen; CEA: carcinoembryonic
antigen; KL-6: Krebs von den Lungen; SF-36: Short Form 36-question Health Survey. #: n<18 indicates missing
data; ¶: calculated by comparing corresponding data in patients before and after the baseline bilateral WLL
using t-test or Mann–Whitney test.
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Secondary analyses
Effects of inhaled rGM-CSF on disease severity were also evaluated by comparing secondary end-points at
each study visit. Because use of rescue WLL, an indicator of treatment failure, was greater in the control
group than the rGM-CSF group (figure 3a), imputation of missing data was used to maintain ITT analysis
and minimise selection bias.

Baseline WLL improved the PaO2
in all patients (table 1). Subsequently and compared to the control group,

the PaO2
in the rGM-CSF group was similar at baseline (month 0) (table 2), increased at the end of

rGM-CSF induction therapy (month 3) and maintenance therapy (month 10), but declined and was similar
to the control group 20 months after discontinuing inhaled rGM-CSF (month 30) (figure 3b and table 3).
Changes in PA–aO2

paralleled the changes in PaO2
(figure 3c, tables 1–3). The pattern of changes in DLCO

% predicted was similar but differences did not reach significance at any visit (figure 3d and tables 1–3).

Baseline WLL improved the restrictive lung impairment in all patients (table 1), which was similar in both
groups at baseline (month 0) (table 2). VC was similar in the groups at 3, 10 and 30 months, indicating no
significant further effect of inhaled rGM-CSF on restrictive lung impairment (tables 2 and 3).

The degree of pulmonary surfactant accumulation, measured as the GGO score, was similar among the
groups at screening, reduced in the rGM-CSF group compared to the control group at the end of rGM-CSF
induction therapy (month 3) and similar among the groups thereafter (table 3 and supplementary figure S3).

Although the serum biomarkers of aPAP (CEA, KL-6, Cyfra21.1) were numerically improved in the
rGM-CSF group compared to the control group when evaluated at each study visit, none of the differences
reached significance (supplementary figure S4). Serum GM-CSF antibody levels were not different at any
study visit (supplementary figure S5).

SF-36 health survey component scores were low (worse) at screening (month −1) and all were increased
(improved) after baseline WLL (month 0) in all patients (table 1). Compared to the control group, only the

TABLE 2 Comparability of the patient groups after the scheduled baseline WLL

End-point Control# rGM-CSF# p-value¶

Participants (n) 9 9
PAP DSS, median (IQR) 1.0 (1.0–3.5) 1.0 (1.0, 1.0) 0.29
Spirometry and lung volumes
FEV1 (% predicted) 77±11 75±18 0.82
FVC (% predicted) 76±12 78±17 0.76
TLC (% predicted) 73±6.0 (n=6) 79±14 (n=8) 0.31
VC (% predicted) 74±11 76±17 0.83

Pulmonary gas exchange
DLCO (% predicted) 52±12 55±14 0.62
PaO2

(mmHg) 72±15 82±11 0.15
PA–aO2

(mmHg) 33±15 26±12 0.28
Haematology indices
WBC (×1000·mL−1) 7.5±1.7 8.7±2.7 (n=8) 0.28
Platelets (×1000·mL−1) 290±111 269±73 (n=8) 0.64
SF-36 general health score 77±29 85±15 0.33

Biomarkers
GM-CSF autoantibody (mg·mL−1) 25±22 (n=8) 52±61 0.23
Cyfra21.1 (ng·mL−1) 9.5±6.4 5.5±1.7 0.07
CEA (ng·mL−1) 12±9 (n=8) 6.3±3.2 (n=8) 0.11
KL-6 (U·mL−1) 12 142±7049 (n=8) 8518±12 787 0.49

Enrolled patients received a scheduled, baseline WLL a median of 8 days (IQR 4–16 days) after enrolment. Data
are presented as mean±SD, unless otherwise indicated. WLL: whole lung lavage; rGM-CSF: recombinant
granulocyte–macrophage colony-stimulating factor; PAP: pulmonary alveolar proteinosis; DSS: disease severity
score; IQR: interquartile range; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; TLC: total lung
capacity; VC: (slow) vital capacity; DLCO: diffusing capacity of the lung for carbon monoxide; PaO2

: arterial oxygen
tension; PA–aO2

: alveolar–arterial oxygen tension difference; WBC: (total) white blood cell count; SF-36: Short
Form 36-question Health Survey; Cyfra21.1: cytokeratin-19 fragment antigen; CEA: carcinoembryonic antigen;
KL-6: Krebs von den Lungen. #: n<9 indicates missing data; ¶: comparison of the rGM-CSF and control groups
using t-test.
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general health score was further improved in the rGM-CSF group at the 3- and 6-month visits (p<0.05); all
other SF-36 component scores were similar between the two groups at all subsequent visits (p>0.100)
(supplementary figure S6).

Safety assessment
Inhaled rGM-CSF was well tolerated and not associated with bronchospasm or allergic or immunological
reactions in any patients (not shown). There were no deaths, serious adverse events, adverse events of
special interest or clinically meaningful adverse events related to peripheral blood white blood cell counts
(supplementary figure S7a), platelet counts (supplementary figure S7b) or other laboratory assessments,
vital signs, physical examination or electrocardiograms in either group (not shown). Progression of aPAP
was not considered an adverse event because it was expected in all patients.

Discussion
This long-term, prospective, randomised, single-centre phase 2 study in patients with moderate-to-severe
aPAP demonstrated that inhaled rGM-CSF (sargramostim) following WLL reduced the need for WLL and
improved pulmonary gas exchange, pulmonary surfactant burden and serum aPAP biomarkers, and was
well tolerated, safe and not associated with more frequent adverse events than WLL alone.

The observation that inhaled sargramostim reduced the need for WLL is an important finding of this study,
supporting its efficacy as therapy of aPAP. This conclusion is further supported by the recent IMPALA
trial in which patients with mild-to-moderate aPAP received inhaled molgramostim, a non-glycosylated
form of rGM-CSF prepared in Escherichia coli [42]. Although IMPALA did not meet its secondary
end-point related to WLL, time to first rescue WLL use during a 6-month blinded treatment period,
administration of rescue WLL was less frequent in patients receiving daily molgramostim than in those
receiving placebo [42]. Additional support comes from an uncontrolled study reporting that WLL improved
the response to inhaled sargramostim in five patients with intractable aPAP [43]. PAGE, a recently
reported randomised, double-blinded, placebo-controlled trial of inhaled sargramostim in 64 patients with
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FIGURE 2 Effect of inhaled recombinant granulocyte–macrophage colony-stimulating factor (rGM-CSF) on the
requirement for unscheduled rescue whole lung lavage (WLL) therapy. Kaplan–Meier analysis shows the
percentage of study participants in each group (indicated) who required an unscheduled rescue WLL as a
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TABLE 3 Evaluation of the time to rescue WLL, numbers of patients requiring rescue WLL and temporal
changes in key secondary outcome measures

Outcome measure Study month# Control rGM-CSF p-value

Time to first rescue WLL (months), median (IQR) NR 18 (6–27) 30 (30–30) 0.0078¶

Patients requiring rescue WLL (n (%)) NR 7 (78) 1 (11) 0.015+

PaO2 (mmHg) 3 68±10 89±9.2 0.0004§

10 73±13 92±12 0.0149§

30 71±14 82±14 0.1158§

PA–aO2 (mmHg) 3 37±12 18±8.1 0.0015§

10 34±13 18±12 0.0152§

30 35±13 24±13 0.0921§

DLCO (% predicted) 3 62±16 72±17 0.2287§

10 59±20 70±15 0.1833§

30 59±21 63±15 0.6374§

VC (% predicted) 3 78±17 80±15 0.7752§

10 78±14 82±18 0.6393§

30 77±13 79±17 0.8159§

GGO score, median (IQR) 0 5 (5–5) 5 (5–5) 0.9999¶

3 4 (4–5) 3 (2–4) 0.0332¶

10 5 (3–5) 3 (2–4) 0.0676¶

18 5 (4–5) 3 (2–4) 0.0629¶

30 5 (4–5) 4 (3–5) 0.9999¶

SF-36 general health score 3 79±18 93±6.1 0.0478§

10 72±26 84±15 0.2634§

30 71±28 88±8.7 0.1043§

Data are presented as mean±SD, unless otherwise indicated. Bold text indicates statistical significance. WLL:
(bilateral) whole lung lavage; rGM-CSF: recombinant granulocyte–macrophage colony-stimulating factor; IQR:
interquartile range; NR: not relevant; PaO2

: arterial oxygen tension; PA–aO2
: alveolar–arterial oxygen tension

difference; DLCO: diffusing capacity of the lungs for carbon monoxide; VC: (slow) vital capacity; GGO: ground
glass opacification; SF-36: Short Form 36-question Health Survey. #: month 3=end of rGM-CSF induction therapy
period, month 10=end of rGM-CSF maintenance therapy period, month 30=end of follow-up period (20 months
after completing inhaled rGM-CSF therapy); ¶: Mann–Whitney U test; +: Fisher’s exact test; §: t-test.

TABLE 4 Primary analysis of key secondary end-points

End-point Estimated difference (95% CI)
(rGM-CSF versus control)#

p-value#

Pulmonary gas transfer
PaO2

(mmHg) 9.5 (5.7–13.3) <0.0001
PA–aO2

(mmHg) −10.1 (−14.8– −5.4) <0.0001
DLCO (% predicted) 11.6 (1.9–21.3) 0.022

Pulmonary function
VC (% predicted) 2.3 (−5.3–9.9) 0.532

Radiological assessment
GGO score −0.822 (−1.7–0.01) 0.053

SF-36 general health score 4.72 (−1.88–11.33) 0.149
Serum biomarkers
CyFra21.1 (ng·mL−1) −0.24 (−0.44– −0.04) 0.022
CEA (ng·mL−1) −0.47 (−0.71– −0.22) 0.001
KL-6 (U·mL−1) −3689 (−6972– −406) 0.030

rGM-CSF: recombinant granulocyte–macrophage colony-stimulating factor; PaO2
: arterial oxygen tension; PA–aO2

:
alveolar–arterial oxygen tension difference; DLCO: diffusing capacity of the lung for carbon monoxide; VC: (slow)
vital capacity; GGO: ground glass opacification; SF-36: Short Form 36-question Health Survey; Cyfra21.1:
cytokeratin-19 fragment antigen; CEA: carcinoembryonic antigen; KL-6: Krebs von den Lungen. #: after
adjustment for baseline value, gender, age and the numbers of patients at risk at each point, the
between-group difference (95% CI) and p-value were calculated using repeated measures ANOVA.
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mild-to-moderate aPAP, did not assess rescue WLL use [44]. Differences in WLL use between the
controlled studies and this study can be explained in part by the disease severity of the patients enrolled
and duration of follow-up. Both the IMPALA and PAGE trials included patients with mild-to-moderate
aPAP [42, 44] while the present study included patients with moderate-to-severe aPAP. Compared to
current estimates of the median time between WLL procedures required by patients with aPAP of 7–
15 months [2, 45, 46], both IMPALA and PAGE employed a shorter evaluation period (6 months) [42, 44]
while the present study employed a longer period (30 months). The observed reduction in repeated WLL
use associated with inhaled rGM-CSF administration has implications for improved quality of life
including fewer hospitalisations, reduced general anaesthesia and mechanical ventilation use and related
morbidity, and the convenience of a self-administered home-based medical therapy.

The observation of improvement across multiple outcome measures (rescue WLL use, PA–aO2
, PaO2

, DLCO

% predicted, GGO score and PAP biomarkers) further supports the efficacy of inhaled sargramostim as
therapy of aPAP. The IMPALA trial showed daily administration of inhaled molgramostim improved gas
exchange (PA–aO2

, DLCO % predicted), health status (St George’s Respiratory Questionnaire total score) and
surfactant burden (GGO score), but not exercise capacity (6-min walk test distance) [42]. The PAGE trial
demonstrated inhaled sargramostim improved gas exchange (PA–aO2

) and surfactant burden (GGO score)
but not clinical measures [44].

One limitation of the present study was its small size, necessitated by the high costs of a long follow-up
period. Another was the choice of inhaled rGM-CSF dosing and administration, which was made long
before the recent reporting of information from controlled studies [42, 44]. The IMPALA trial
demonstrated daily administration of molgramostim was superior to placebo whereas daily administration
on alternating weeks was not [42]. Further, daily administration improved gas exchange, surfactant burden,
biomarkers, health status and WLL use frequency in IMPALA [42] and only gas exchange and surfactant
burden in PAGE [44]. The total amount of rGM-CSF administered to each patient in the present study
(13.5 mg, sargramostim) was less than PAGE (21 mg, sargramostim) or IMPALA (25.2 or 50.4 mg,
molgramostim). The duration of administration (66 of 252 days) was also less than in PAGE (84 of
168 days, sargramostim) or IMPALA (84 or 168 of 168 days). While “off-label” clinical use of inhaled
sargramostim suggests that less frequent/lower-dose administration (i.e. maintenance therapy) may sustain
the treatment effects achieved during more frequent/higher-dose administration (i.e. induction therapy)
[40], this approach has not been tested in controlled studies. While the use of a high-efficiency, vibrating
mesh nebuliser capable of alveolar deposition of 50% of the inhaled dose [39] may have partially
mitigated the effects of the less frequent administration used in our study, we speculate that consistent
daily administration of a relatively higher dose (250 μg·day−1) for a longer time (12 months) would have
resulted in larger improvements than those observed. Although the ethical requirement to provide
continuous access to the current standard of care (WLL) complicated the study design, it influenced the
choice of rescue WLL use as an outcome measure and the employment of a long-term follow-up period.

These results add to an increasing number of reports supporting the feasibility, safety and efficacy of
inhaled sargramostim as pharmacotherapy of aPAP.
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