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Metabolism is a dynamic network of biochemical reactions that support systemic homeostasis amidst changing nutritional, environ-
mental, and physical activity factors. The circulatory system facilitates metabolite exchange among organs, while the endocrine sys-
tem finely tunes metabolism through hormone release. Endocrine disorders like obesity, diabetes, and Cushing’s syndrome disrupt 
this balance, contributing to systemic inflammation and global health burdens. They accompany metabolic changes on multiple lev-
els from molecular interactions to individual organs to the whole body. Understanding how metabolic fluxes relate to endocrine dis-
orders illuminates the underlying dysregulation. Cancer is increasingly considered a systemic disorder because it not only affects 
cells in localized tumors but also the whole body, especially in metastasis. In tumorigenesis, cancer-specific mutations and nutrient 
availability in the tumor microenvironment reprogram cellular metabolism to meet increased energy and biosynthesis needs. Cancer 
cachexia results in metabolic changes to other organs like muscle, adipose tissue, and liver. This review explores the interplay be-
tween the endocrine system and systems-level metabolism in health and disease. We highlight metabolic fluxes in conditions like 
obesity, diabetes, Cushing’s syndrome, and cancers. Recent advances in metabolomics, fluxomics, and systems biology promise new 
insights into dynamic metabolism, offering potential biomarkers, therapeutic targets, and personalized medicine.
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INTRODUCTION

Metabolism plays a pivotal role in supporting systemic homeo-
stasis in humans. It adapts to various factors like nutritional lev-
els, surrounding temperatures, and physical exercise. A conduit 
for metabolism is the circulatory system, which enables transfer 
of metabolites between organs, resulting in dynamic shifts in the 

inter-organ metabolic cycle [1,2]. Meanwhile, the endocrine sys-
tem acts as a master conductor, releasing hormones like insulin, 
thyroid hormones, sex hormones, and cortisol, to intricately reg-
ulate the metabolism of the whole body.

Endocrine disorders, characterized by abnormal hormone se-
cretion or action, encompass a spectrum of conditions such as di-
abetes, thyroid dysfunction, adrenal disorders, obesity, and meta-
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bolic syndrome, which collectively contribute to systemic in-
flammation and a global disease burden. These diseases not only 
impact individual organ systems but also trigger a cascade of 
molecular events that reverberate throughout the entire organism, 
resulting in systemic disturbances. Understanding the relation-
ship between metabolism and endocrine disorders has emerged 
as a promising avenue for deciphering the underlying metabolic 
dysregulation in organ-organ communications.

Cancer is increasingly considered as a systemic disorder. Can-
cer metastasis is a complex process that involves manifold bio-
logical interactions and requires the metabolic reprogramming 
of cancer cells. Cancer cells reprogram metabolic pathway utili-
zation in order to meet increased bioenergetic and biosynthetic 
demands and to resist oxidative stress for growth and survival 
[3]. Cancer driver mutations coupled with microenvironmental 
nutrient availability control metabolic pathways [3,4]. Moreover, 
metabolites, when aberrantly accumulated, can promote tumor 
progression and metastasis (e.g., 2-hydroxyglutarate [2HG], fu-
marate, succinate) [5]. The development of innovative technolo-
gies over the last few decades has revealed the heterogeneity and 
plasticity of tumors and allowed us to uncover metabolic path-
ways involved in supporting tumor growth.

The metabolism research community has witnessed remark-
able advancements in quantitative and high-throughput mea-
surement tools to gain systems-level insights into various physi-
ological and pathological processes. Metabolic fluxes, defined 

as the rates at which metabolites flow through metabolic path-
ways, quantitatively describe cellular functions, energy homeo-
stasis, and overall physiological balance. In endocrine diseases, 
dysregulation of metabolic fluxes such as disrupted feedback 
mechanisms and impaired metabolic pathways go hand in hand 
with altered hormone signaling and pathogenesis. These aber-
rant metabolic profiles may serve as biomarkers and point to 
potential therapeutic targets.

Here we highlight investigations into the interplay between 
the endocrine system and systems-level metabolism. We delve 
into obesity, diabetes, Cushing’s syndrome, and cancers to illus-
trate metabolic reprogramming in disease initiation, progression, 
and therapeutic response. Recent advances in metabolomics, 
fluxomics, and systems biology promise quantitative investiga-
tions into such systemic disorders. Systems-level understanding 
of metabolism in health and disease will unlock novel biomark-
ers, therapeutic targets, and personalized medicine (Fig. 1).

INTEGRATIVE HEALTH AND SYSTEMIC 
DISORDERS

Metabolism supports the growth and development of all organ-
isms and requires coordinated regulation of many pathways. In 
mammals, metabolism contributes to systemic homeostasis. The 
advent of integrative health has brought our attention to holistic 
understanding of the systems of the human body and made a 

Fig. 1. Systems-level metabolic analysis in the context of endocrine disorders and cancer. By integrating advanced analytical techniques 
such as liquid chromatography-mass spectrometry, magnetic resonance spectroscopy, and flux analyzers and omics methods, we gain a 
deeper understanding of the complex metabolic alterations underlying endocrine disorders and cancer, paving the way for more effective di-
agnostic tools and targeted therapies. Created with BioRender.com.
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profound impact on how we approach diets and medicine for 
overall health and well-being. Obesity is a type of systemic in-
flammation accompanied by altered metabolism. Several studies 
have conducted flux analysis using several types of diets. One 
such focused on fructose diets in a rat model, which is thought to 
influence the pathologic condition of obesity [6]. However, or-
gan-organ interactions within obesity are not fully understood 
because of the complex nature of obesity-related pathophysiolo-
gy. Recently, metabolomic, proteomic, and transcriptomic data 
have been used to predict metabolic fluxes; evaluating the livers 
of fasting leptin-deficient (ob/ob) mice revealed increased glu-
coneogenic flux in obesity [7]. 

Arteriovenous metabolite gradient measurements have been 
used in obesity to study organ-specific fluxes of metabolites. 
One study using stable isotope tracing revealed that weight loss 
from calorie restriction increased glycerol and nonesterified fat-
ty acids released by adipose tissue [8]. Whole-body metabolism 
of branched-chain amino acids (BCAAs) has also been studied 
in the context of insulin resistance using high-fat diet-induced 
(HFD) and leptin receptor-deficient (db/db) obese mice as mod-
els. Isotope tracing by liquid chromatography-mass spectrome-
try (LC-MS) upon 13C valine infusion in db/db mice and 13C 
isoleucine infusion in HFD mice revealed a reduced BCAA ox-
idation state in liver and adipose tissues with a shift towards 
muscle in insulin-resistant mice [9].

Insulin is an essential hormone that regulates the metabolism 
of carbohydrates, lipids, and proteins through canonical insulin 
signaling. A prominent example of systemic disorder is diabetes 
which impairs systemic glucose homeostasis. Type 1 diabetes 
mellitus (T1DM) is a chronic immune disorder triggered by the 
destruction of insulin-producing pancreatic beta cells [10]. Type 
2 diabetes mellitus (T2DM) involves insulin resistance, impaired 
signal transduction in response to insulin stimulation, and im-
paired insulin secretion. 

Glycolysis and gluconeogenesis are functionally opposite 
metabolic pathways that together support systemic glucose ho-
meostasis. In T1DM, the absence of insulin leads to uncon-
trolled gluconeogenesis and excessive glucose production by 
the liver. In T2DM, insulin resistance in peripheral tissues dis-
rupts glycolytic flux, impairing glucose uptake and utilization. 
Additionally, dysregulated gluconeogenesis persists even in the 
presence of hyperglycemia, further exacerbating hyperglycemic 
states [11]. BCAA metabolism has also played a role with in-
creased levels exacerbating the risk of T1DM development and 
progression [12,13]. HFDs and high levels of valine, leucine, 
and isoleucine are associated with insulin resistance in T1DM 

[14]. T2DM is characterized by increased levels of BCAAs, ar-
omatic amino acids, and glutamate-to-glutamine ratio [15]. To 
link BCAA catabolism to diabetes, 3-hydroxyisobutyrate has 
been shown to regulate the trans-endothelial flux of fatty acids 
[16]. A recent study in mice, however, showed that BCAA ca-
tabolism does not affect insulin resistance even though it lowers 
fasting plasma BCAA levels [17]. Intervention studies based on 
metabolic fluxes are warranted to clarify mechanisms and ex-
plore the extent to which each of these factors leads to patho-
logic conditions of diabetes. 

To gain mechanistic insights, mathematical models of insulin 
action and diabetes progression have been developed. The glu-
cose-insulin model (GIM) integrates a system of 1,117 ordinary 
differential equations and several thousand parameters to model 
the first steps of glycolytic pathways, allowing for cell prolifera-
tion estimates in humans using labeled glucose [18,19]. Beyond 
glycolysis, whole-body organ-resolved metabolic reconstruc-
tion has recently been combined with GIM to analyze metabolic 
dysregulation with constraints tied to diet, gene expression, and 
other physiological parameters [20]. This model provides mech-
anistic insights associated with changes in metabolic fluxes due 
to exogenous insulin [21]. Other models in conjunction with 
constraint-based analysis have been used to predict metabolic 
flux profiles, showing reduced mitochondrial fatty acid oxida-
tion and oxidative phosphorylation in the pancreatic beta cells 
of diabetic patients [22].

In T2DM, a study using a rat model identified changes in the 
hepatic metabolic profile. Proton (1H) nuclear magnetic reso-
nance spectroscopy (NMR) showed rewiring of choline-betaine-
methionine and amino acid metabolism as well as a decrease in 
glycolytic activity [23]. In humans, 13C magnetic resonance im-
aging was used for noninvasive measurement of cardiac pyruvate 
dehydrogenase fluxes in T2DM patients [24]. Stable isotope trac-
ing with (U-13C6) glucose and gas chromatography-mass spec-
trometry has been performed to map metabolism in insulin-se-
creting beta cells. They found that the pentose phosphate pathway 
(PPP) was upregulated using glucose-6-phosphate (G6P) derived 
from glycogen [25]. 13C-based metabolic flux analysis (MFA) 
was used to probe the role of glucose-6-phosphatase catalytic 
subunit 2 (G6PC2), which converts G6P to glucose. In pancreatic 
beta cells, G6PC2 was shown to modulate glycolysis and the cit-
ric acid cycle, posing as a therapeutic target for enhancing insulin 
secretion [26]. Another study probed gluconeogenic flux due to 
dysregulated glucagon signaling found in T2DM. Glucagon was 
shown to stimulate mitochondrial anaplerotic flux from gluta-
mine, identifying hepatic glutaminase as a new target to treat hy-
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perglycemia [27]. In vivo studies in mice using (U-13C6) fructose 
showed that high systemic glycerate levels cause glucose intoler-
ance and damage pancreatic beta cells [28]. Maternal/fetal meta-
bolic relationship probed in a recent study revealed that fetal nu-
trient sourcing was dependent on maternal glycemic state. LC-
MS and in vivo 13C-glucose tracing showed sorbitol accumulation 
in fetal tissues and decreased neurotransmitter levels in the fetal 
brain isolated from dams with maternal hyperglycemia [29].

Cushing’s syndrome is a rare endocrine disorder that arises 
from chronic exposure to excessive glucocorticoids [30]. It may 
be caused by adrenal adenomas, pituitary adenomas, and ectopic 
sources of adrenocorticotropic hormone (ACTH) production. The 
hormonal dysregulation in Cushing’s syndrome affects endocrine 
pathways and disrupts systemic metabolism [31]. Glucocorti-
coids, primarily cortisol in humans, influence glucose metabolism 
by promoting gluconeogenesis in the liver, increasing glycogene-
sis, and modulating insulin sensitivity [32]. Excess glucocorticoid 
levels disrupt these regulatory mechanisms, leading to increased 
gluconeogenesis, insulin resistance, and impaired glucose toler-
ance. Steroid hormone-related metabolites have been identified as 
early biomarkers for different subtypes of the disease helping to 
predict progression of Cushing’s syndrome [33,34]; however, 
metabolic alterations have yet to be fully elucidated. In situ me-
tabolomics of cortisol-producing adrenal adenomas identified the 
correlation of cortisol and serotonin and tumor size with abun-
dance of fatty acids [35]. 1H-NMR-based metabolomic studies on 
pituitary adenomas from patients with Cushing’s syndrome re-
vealed metabolic heterogeneity when compared to gonadotropic 
pituitary adenomas. LC-MS has been used to subtype adrenal or 
pituitary Cushing’s syndrome by measuring dehydroepiandros-
terone sulfate levels, especially when falsely elevated ACTH is 
suspected [36]. Cushing’s syndrome patients had lower levels of 
scyllo-inositol, glycine, and phosphoethanolamine and higher 
levels of aspartate [37]. Metabolic markers can help differentiate 
pituitary adenomas of various subtypes for noninvasive diagnosis 
of Cushing’s syndrome. 

Systems-level metabolic alterations in obesity, diabetes, and 
other endocrine diseases are yet to be fully understood. The in-
complete knowledge is due to the complex nature of multi-organ 
systems, hormone-associated pathophysiology, and the heteroge-
neity of the effects across humans. To overcome this shortfall, 
comprehensive and quantitative measurements of metabolic 
fluxes using integrative omics tools in humans and model sys-
tems are needed.

METABOLISM IN THYROID AND OTHER 
CANCERS

Cancer cells exhibit metabolic reprogramming that supports their 
heightened energetic and biosynthetic demands. Thyroid cancer 
represents one of the most common endocrine malignancies, char-
acterized by abnormal growth and proliferation of thyroid follicu-
lar cells [38]. Over the past decades, substantial progress has been 
made in elucidating the metabolic alterations that underlie the de-
velopment and progression of thyroid cancer [39-41].

Metabolic insights in thyroid cancer hold clinical implications 
for diagnosis, prognosis, and therapeutic interventions. Inhibiting 
glycolysis, fatty acid metabolism, or key metabolic enzymes in-
volved in nutrient utilization have emerged as potential strategies 
to selectively target thyroid cancer cells [41]. Studies have shown 
that patients with both diabetes and thyroid cancer have smaller 
tumor sizes when treated with metformin, a drug used for T2DM 
[42,43]. A recent study investigated metabolic reprogramming in 
papillary thyroid cancer in vitro and in vivo when treated with 
metformin. Using an extracellular flux analyzer, metformin was 
shown to decrease mitochondrial respiration, respiration capaci-
ty, aerobic glycolysis, glycolytic capacity, and adenosine triphos-
phate production [44]. Metabolomics has also elucidated the 
mechanisms underlying metabolic alterations in different sub-
types of thyroid cancer. For example, kinase inhibitors dasatinib 
and trametinib were shown to alter metabolic flux in anaplastic 
and papillary thyroid cancer cells [45]. In anaplastic thyroid cells 
in mice, targeting glycogen metabolism by inhibiting glycogen 
phosphorylase resulted in increased glucose flux, impairment of 
PPP, reactive oxygen species accumulation, and eventual cyto-
toxicity [46].

One of the most notable metabolic alterations observed in thy-
roid cancer is increased glycolytic activity, commonly known as 
the Warburg effect. Overexpression of glycolytic enzymes at the 
rate-determining steps (i.e., glucose import and phosphorylation, 
phosphofructokinase, and lactate export) increases glycolytic 
flux [47]. Thyroid cancer overexpresses hexokinase and has mi-
tochondrial defects, which contribute to heightened glycolysis 
[48,49]. These defects have been studied in oncocytic thyroid 
cancer, which is characterized by the accumulation of abnormal 
mitochondria in the cytoplasm. Recently, a study comparing on-
cocytic and non-oncocytic thyroid cancer, showed higher glu-
cose uptake and rerouting of glutamine to glutathione for redox 
homeostasis in the oncocytic cell line to compensate for its de-
fective mitochondrial function [50]. 1H-NMR spectroscopy has 
been used to show that oxidative stress alters the metabolic pro-
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file in thyroid cancer, with increases in lactate and aromatic ami-
no acids and a decrease in citrate [51].

A recent study elucidated the role of one-carbon metabolism 
and the serine/glycine metabolic pathway in undifferentiated thy-
roid cancer using metabolomics, bulk transcriptomics, and single-
cell RNA sequencing of cells derived from human tissues [52]. 
High expression of mitochondrial serine hydroxymethyltransfer-
ase (SHMT2) is associated with low thyroid differentiation scores 
and poor clinical features in thyroid cancer. Inhibition of SHMT2 
reduced tumorigenesis in rodent models. Another study reported 
that genetic inhibition of SHMT2 led to significant inhibition of 
cell proliferation by depletion of the purine pool [53]. Quantita-
tion of systems-level metabolic fluxes remains an open challenge 
for the thyroid cancer research community.

Pheochromocytoma and paraganglioma are rare neuroendo-
crine tumors that are characterized by excessive catecholamine 
production [54]. Genetics research has led to discoveries of met-
abolic alterations associated with these cancers, particularly from 
mutations in genes in the hypoxia signaling pathways including 
hypoxia-inducible factor 2α, prolyl hydroxylase domain-contain-
ing protein 1/2, succinate dehydrogenase, fumarase, or malate 
dehydrogenase 2 [55]. A mutation in these genes results in accu-
mulation of succinate, fumarate, and/or 2HG leading to tumori-
genesis [56]. New technologies have been used to quantify meta-
bolic changes and discover biomarkers; succinate accumulation, 
in particular, has been a useful marker in characterizing both tu-
mor type and therapeutic response [57-59]. NMR was used to 
uncover that high succinate-low glutamate tumors also had high 
levels of methionine [60]. Furthermore, targeted metabolomics 
by LC-MS was used to quantify lipid and amino acid metabolic 
changes in catecholamine-producing tumors from human blood 
plasma [61]. Recently, serum metabolome profiling of adrenal 
steroids based on LC-MS and machine learning algorithms has 
suggested a promising one-step diagnostic approach for the clas-
sification of adrenal tumor subtypes [62]. Further study of meta-
bolic pathways involved in adrenal tumors may open up new 
therapeutic strategies. 

Tumors arise from mutations within proto-oncogenes and tu-
mor suppressor genes. These genetic mutations directly regulate 
the expression and activity of metabolic enzymes, and the abnor-
mal metabolism of cancer cells also directly affects tumor signal 
transduction pathways and cellular reactions. Based on this con-
cept, the next-generation anticancer therapeutics examined in 
many studies and clinical trials target cancer-specific or muta-
tion-specific metabolic phenotypes. Tumors carrying somatic 
mutations in BRAF and RET genes (constituting the BRAF-like 

subtype) exhibit a marked extracellular signal-regulated kinase 
(ERK)-induced transcriptional signature, and tumors carrying ei-
ther mutations in RAS genes or Pax-8–peroxisome-proliferator-
activated receptor-γ (PPAR-γ) fusion protein (PPFP) display a 
more pronounced induction of phosphoinositide 3-kinase (PI3K) 
pathway [63]. In the last decade, alteration of distinct oncogenes 
has been associated with different tumor cell capacity to undergo 
metabolic reprogramming, which has emerged as a strong driv-
ing force that impacts drug responsiveness and tumor aggres-
siveness.

RAS mutation promotes the Warburg effect and activates ana-
bolic pathways [64,65]. Increased efforts have gone into eluci-
dating the molecular underpinnings of altered metabolism in 
cancer. Oncogenic KRAS promotes glycolytic flux by upregu-
lating several key glycolytic enzymes such as hexokinase 1 and 
2, enolase 1 (ENO1), and lactate dehydrogenase-A (LDHA) [66-
68]. KRAS also induces the hexosamine biosynthesis pathway 
that provides precursors for lipid and protein biosynthesis and 
the nonoxidative PPP to support increased nucleic acid biosyn-
thesis [69,70]. RAS-driven cancer cells also alter glutaminolysis 
and rewire the tricarboxylic acid (TCA) cycle, which generates 
cellular energy and regulates stress granule (SG) formation. 
KRAS-mutant cancers upregulate glutaminase and NF-E2-relat-
ed factor 2 (NRF2)-regulated antioxidant genes to drive SG for-
mation, an indicator of chemoresistance [70,71]. This connec-
tion of the KRAS-NRF2 axis and glutaminolysis suggests a po-
tential approach to counteract mutant KRAS-mediated drug re-
sistance. Given that the process of SG accumulation is incom-
pletely understood, elucidating the precise underlying mecha-
nisms and metabolic links in RAS-driven cancer will determine 
the feasibility of SG-based therapeutic strategies. 

A common mutation found in thyroid cancer is BRAFV600E [72-
74]. BRAFV600E mutations occur in multiple cancers, such as lung 
cancer, renal cancer, colorectal cancer, and multiple myeloma. 
Overexpression of BRAFV600E showed decreased mitochondrial 
respiration but increased aerobic glycolysis [75]. Data supporting 
the use of BRAF/mitogen-activated extracellular signal-regulated 
kinase (MEK) inhibitors that target BRAFV600E mutations in the 
mitogen-activated protein kinase pathway have begun to emerge; 
however, most responses targeting BRAFV600E have been often 
short-lived and drug resistance is inevitable [76]. Thus, exploring 
the metabolic reprogramming in BRAF mutant cancer is neces-
sary to overcome these issues. In melanoma, activated BRAF 
promotes metabolic reprogramming by suppression of oxidative 
phosphorylation through the mitochondrial master regulator 
PPAR-γ coactivator 1α (PGC1α) [77]. Additionally, a study on 
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slow-cycling, chemotherapy-resistant BRAFV600E-mutated mela-
noma showed that oxidative phosphorylation enzymes were up-
regulated, and consequently, their inhibition resulted in cell death 
[78]. Treatment with an oxidative phosphorylation inhibitor also 
improved survival and decreased the development of brain me-
tastases in BRAF/MEK inhibitor-resistant mice [79]. In a mouse 
model of BRAFV600E-driven lung cancer, Atg7 deletion initially 
provided an advantage in tumor growth due to the induction of 
oxidative stress. However, at later stages of tumorigenesis, loss 
of autophagy led to metabolic crisis resulting in defective mito-
chondria, reduced tumor growth and the conversion of adenomas 
and adenocarcinomas to oncocytomas [80]. In colorectal cancer, 
BRAFV600E-mutated tumors expressed high levels of glycolytic 
enzyme ENO2 and knockdown of ENO2 led to the inhibition of 
proliferation and migration of BRAFV600E-mutated cancer cells 
[81]. Inhibition of ENO2 resulted in enhanced sensitivity to ve-
murafenib, a selective inhibitor of BRAFV600E. Thus, targeting 
mutation-dependent metabolic dysregulation can counteract drug 
resistance, providing a unique opportunity for identifying novel 
therapeutic strategies.

Metabolic reprogramming in the tumor microenvironment 
that houses cancerous and immune cells has become an impor-
tant consideration for cancer treatment. Failure of T cells to pro-
tect against cancer is thought to result from lack of antigen rec-
ognition, and tumor cells and tumor-infiltrating lymphocytes are 
known to compete for glucose within the tumor niche [82]. Im-
mune checkpoint blockade antibodies directly altered by tumors 
have been shown to dampen glycolysis by inhibiting mammalian 
target of rapamycin (mTOR) activity and decreasing expression 
of glycolysis enzymes. Moreover, activated cytotoxic CD8+ T 
cells require metabolic shift from oxidative phosphorylation to 
aerobic glycolysis to maintain effector function [83], and serine 
metabolism is suggested as an indispensable part of T cell growth 
and function [84]. A combination of bioenergetic profiling and 
13C-glucose tracing has been used to study the metabolism of 
CD8+ T cells responding to infection [85]. Physiologically acti-
vated CD8+ T cells displayed greater rates of oxidative metabo-
lism, higher bioenergetic capacity, differential use of pyruvate, 
and prominent flow of 13C-glucose carbon to anabolic pathways, 
including nucleotide and serine biosynthesis. Quantitative eluci-
dation of metabolic reprogramming during immune responses 
in cancer patients is an important future objective. Mapping 
metabolic fluxes in cells that constitute tumor microenviron-
ment and across tissues that are involved in cancer-associated 
systemic inflammation will render cancers increasingly sur-
mountable.

CONCLUSIONS

The role of insulin in controlling metabolic fluxes has been ex-
tensively studied. However, flux control in response to glucocor-
ticoids and thyroid hormones is less well understood. A compre-
hensive understanding of the metabolic fluxes underlying endo-
crine diseases is crucial for the development of targeted therapeu-
tic interventions. By elucidating the metabolic alterations in dis-
eases at a systems level, we can identify potential biomarkers for 
early detection, prognosis, and monitoring of disease progression. 
Additionally, studying the intricate metabolic networks and path-
ways involved in endocrine disorders can unveil novel therapeu-
tic targets, enabling the development of personalized treatment 
strategies that address the underlying metabolic dysregulation.

Endocrinological disorders frequently have a genetic basis, 
with mutations in specific genes contributing to their develop-
ment. Advances in genomics have enabled the identification of 
numerous genetic variants associated with these disorders. How-
ever, the relationship between these genetic variations and the 
resulting metabolic phenotypes is often intricate and multifacet-
ed. Also, while omics technologies can unveil the molecular ab-
errations responsible for disruptions in hormone production, se-
cretion, and signaling, the translation of such findings into ob-
servable metabolic phenotypes can be challenging due to the in-
tricate nature of hormone regulation. The interplay between ge-
netics, molecular mechanisms, and metabolic outcomes is fur-
ther complicated by individual variability and environmental in-
fluences.

Aging is a complex biological process characterized by the 
gradual deterioration of various physiological functions and an 
increased susceptibility to diseases. The endocrine system plays 
a critical role in regulating various metabolic processes, and its 
dysregulation can contribute to age-related metabolic changes. 
Age-related changes in insulin sensitivity and secretion can dis-
rupt glucose homeostasis [86,87]. Thyroid function tends to de-
crease with age, leading to a decrease in metabolic rate and po-
tential weight gain and changed metabolic pathways [88,89]. 
Moreover, dysregulation of cortisol secretion, often seen in 
chronic stress, can contribute to metabolic disturbances and ac-
celerated aging [90]. Integrative health approaches also play a 
pivotal role in addressing the challenges of aging by promoting 
a comprehensive understanding of physical, mental, and emo-
tional well-being, which can be essential for maintaining health 
as individuals grow older.

Advances in in vivo MFA using stable isotope tracers have fa-
cilitated assessment of differences in metabolic pathway utiliza-
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tion in tissues and quantification of systemic turnover rates of cir-
culating metabolites and their contribution to multiple organs 
[91-94]. To bridge the gap between omics data and metabolic 
phenotypes in endocrinological disorders, interdisciplinary ap-
proaches are crucial [95]. Integrating omics data with clinical ob-
servations, longitudinal studies, and functional assays can pro-
vide a more holistic understanding of the disease mechanisms 
and their metabolic consequences. Additionally, computational 
modeling and systems biology approaches can help unravel the 
complex relationships between genetic variations, molecular 

pathways, and metabolic outcomes. Integrating metabolic net-
work analysis and pathway enrichment tools provides a valuable 
resource to conduct systems-level analyses, enabling the explora-
tion of metabolic alterations, pathway dysregulations, and the dy-
namic rewiring of metabolic networks (Table 1) [96-114]. As 
technology and knowledge advance, researchers are working to-
wards unraveling the intricate connections between genetics, mo-
lecular biology, and the clinical realities of endocrinological dis-
orders, ultimately leading to improved diagnostics, targeted ther-
apies, and personalized medicine. 

Table 1. Metabolic Networks and Pathway Analysis Tools

Tool Applications in endocrine disorders and cancer

Metabolic  
network  
reconstruction

Metabolic reconstructions (e.g., Recon3D [96]) Provides a detailed metabolic network model for studying metabolic  
alterations

Supports integration of multi-omics data

Human Metabolome Database (HMDB [97]) A valuable resource for annotating metabolomics data and linking  
metabolites to pathways

KEGG (Kyoto Encyclopedia of Genes and Genomes [98]) Provides a wide range of metabolic pathway maps and gene annotations 

HumanCyc [99] Provides a comprehensive collection of metabolic pathways and  
enzymatic reactions in humans

Biochemical Genetic and Genomic (BiGG) models [100] Offers a repository of curated metabolic models for various organisms

Metabolic  
network  
analysis tools

Constraint-Based Reconstruction and Analysis  
(COBRA) toolbox [101]

Allows constraint-based modeling and flux analysis of metabolic  
networks

Pathway tools [102] Software for pathway/genome databases and systems biology research 
that supports the construction and visualization of metabolic pathways

Isotopomer Network Compartmental Analysis  
(INCA 2.0) [103]

Software that performs steady-state metabolic flux analysis and  
isotopically non-stationary metabolic flux analysis

Metran [104] Software for performing 13C-metabolic flux analysis, tracer experiment 
design, and statistical analysis

13CFLUX2 [105] Facilitates the measurement and modeling of carbon fluxes in metabolic 
pathways in vivo

mfapy [106] Offers a user-friendly interface for performing flux balance analysis and 
metabolic modeling, focusing on data analysis procedures

Pathway  
enrichment  
analysis

MetaboAnalyst [107] Facilitates pathway enrichment analysis using metabolomics data

Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) [108]

Useful for gene enrichment analysis to identify overrepresented  
pathways and functions

Enrichr [109] Performs gene set enrichment analysis (GSEA) to identify enriched  
pathways and processes

Metabolomics Pathway Analysis (MetPA) tool [110] Focuses on the interpretation of metabolomics data in the context of  
metabolic pathways

Network  
visualization

Search Tool for the Retrieval of Interacting Genes/ 
Proteins (STRING) [111]

Provides protein-protein interaction networks, helping visualize  
connections between genes and proteins

OmicsNet [112] Integrates multi-omics data (e.g., genomics, proteomics, metabolomics) 
and visualizes molecular interactions

Cytoscape [113] Helps visualize metabolic networks and omics data in a network context

MetExplore [114] Facilitates the visualization and interpretation of metabolomics data  
in the context of genome-scale reconstructed metabolic networks
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