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Harnessing uncertainty in radiotherapy auto-segmentation quality assurance 

We have read with great interest the article by Outeiral et al. [1], in 
which the authors propose a simple metric for optimizing quality 
assurance in deep learning (DL) auto-segmentation workflows. We 
commend the authors for their insightful analysis using two meticu-
lously curated MRI datasets. Through this study, the authors have pro-
bed into the relatively underexplored yet clinically relevant domain of 
uncertainty estimation in auto-segmentation. 

One of the key contributions of this study is the reappropriation of 
standard DL outputs as a quality indicator to identify cases that clini-
cians should review further. The authors achieve this by applying an 
empirically derived threshold to the softmax output of their DL network, 
computing the mean of the thresholded score map (termed the HiS 
metric), and correlating it with standard geometric quality indices. 
When juxtaposed with a mean entropy — a commonly used measure of 
model output uncertainty — HiS consistently demonstrated a stronger 
correlation with the geometric indices, suggesting its superior ability to 
stratify cases needing additional review. We applaud the authors’ efforts 
for their novel contributions and would like to note some potential ca-
veats that could pave the way for future research directions. 

Conventional large DL networks often yield overconfident pre-
dictions which can result in poor model calibration [2], meaning the 
predicted probabilities do not align with the true underlying data. This 
discrepancy could undermine the reliability of these outputs in detecting 
out-of-distribution data, a critical aspect of quality assurance systems. 
Notably, the direct use of softmax outputs as measures of model un-
certainty is a point of contention within the DL community [3,4]. 
However, moderately sized standard DL networks have the potential to 
exhibit well-calibrated performance [5]. Therefore, it is unclear whether 
calibration had a major impact on Outeiral et al.’s analysis using a 
standard ��nnU-Net architecture. In contrast, Bayesian DL approaches 
have been observed to be well-calibrated and may circumvent these 
issues [6]. Specifically, the application of approximate Bayesian tech-
niques, such as Monte Carlo dropout [7] or deep ensembles [8] (Fig. 1), 
is relatively simple compared to conventional solutions. While these 
methods demand a slightly higher computational cost, they could be 
considered for investigating HiS in future studies. Importantly, ensem-
bling (e.g., through cross-validation schemes) is becoming increasingly 
common for many DL solutions [9]. We have previously benchmarked 
ensembling under a U-net framework for uncertainty estimation in 
oropharyngeal cancer auto-segmentation and have shown its efficacy 
[10]. Interestingly, Outeiral et al. use cross-validation within their study 
for robustness analysis; merging their cross-validation outputs into an 
ensemble could have improved calibration when employing their HiS 
metric. Of note, alternative methods that allow for calibrated uncer-
tainty estimates, such as conformal prediction [11], may also show 

promise for auto-segmentation and should be further investigated. 
Finally, we would like to note that the proposed HiS metric, if used to 

measure uncertainty, may be unable to disentangle epistemic uncer-
tainty (i.e., intrinsic model uncertainty) and aleatoric uncertainty (i.e., 
extrinsic statistical uncertainty) [12]. While the same can be said of 
general measures of entropy, there exist alternative entropy-related 
uncertainty metrics, like expected entropy and mutual information, 
that could distinguish the source of the uncertainty when combined with 
an approximate Bayesian approach [10,13]. Moreover, when the dis-
tribution of DL network parameters is assumed to be a delta distribution, 
e.g., in a conventional DL network, the epistemic uncertainty is 
implicitly assumed to be non-existent. Therefore, depending on the 
specific auto-segmentation use case, alternative uncertainty metrics, or 
combinations of uncertainty metrics, may be more suitable. 

An increasing number of studies have begun to apply uncertainty 
estimation to the quality assurance of radiotherapy-related auto-seg-
mentation [10,14,15–23]. The study by Outeiral et al. serves as a 
cornerstone contribution to this crucial literature. We eagerly anticipate 
further advances in this clinically significant field of work. 
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