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Abstract

Background: Acute ST‐elevation myocardial infarction (STEMI) is a leading cause of

mortality and morbidity worldwide, and primary percutaneous coronary intervention

(PCI) is the preferred treatment option.

Hypothesis: Machine learning (ML) models have the potential to predict adverse

clinical outcomes in STEMI patients treated with primary PCI. However, the

comparative performance of different ML models for this purpose is unclear.

Methods: This study used a retrospective registry‐based design to recruit

consecutive hospitalized patients diagnosed with acute STEMI and treated with

primary PCI from 2011 to 2019, at Tehran Heart Center, Tehran, Iran. Four ML

models, namely Gradient Boosting Machine (GBM), Distributed Random Forest

(DRF), Logistic Regression (LR), and Deep Learning (DL), were used to predict major

adverse cardiovascular events (MACE) during 1‐year follow‐up.

Results: A total of 4514 patients (3498 men and 1016 women) were enrolled, with

MACE occurring in 610 (13.5%) subjects during follow‐up. The mean age of the

population was 62.1 years, and the MACE group was significantly older than the

non‐MACE group (66.2 vs. 61.5 years, p < .001). The learning process utilized 70%

(n = 3160) of the total population, and the remaining 30% (n = 1354) served as the

testing data set. DRF and GBM models demonstrated the best performance in

predicting MACE, with an area under the curve of 0.92 and 0.91, respectively.

Conclusion: ML‐based models, such as DRF and GBM, can effectively identify high‐

risk STEMI patients for adverse events during follow‐up. These models can be useful

for personalized treatment strategies, ultimately improving clinical outcomes and

reducing the burden of disease.
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1 | BACKGROUND

Acute ST‐elevation myocardial infarction (STEMI) is a major cause of

morbidity and mortality worldwide, with primary percutaneous coronary

intervention (PCI) being the preferred treatment option.1 Despite the

significant advances in treatment, some patients still experience adverse

clinical outcomes, such as cardiogenic shock, heart failure, and death.

Early identification of patients at high risk of adverse clinical outcomes is

critical for improving clinical outcomes and reducing the burden of

disease. Machine learning (ML) models have shown great potential in

identifying high‐risk patients and predicting adverse clinical outcomes in

various medical conditions, including STEMI.2 However, the comparative

performance of various ML models for predicting adverse clinical

outcomes of STEMI patients treated with primary PCI remains unclear.

Therefore, in this study, we aim to compare the performance of various

ML models, including Logistic Regression (LR), Distributed Random Forest

(DRF), Gradient Boosting Machines (GBMs), and Deep Learning (DL) for

predicting adverse clinical outcomes of STEMI patients treated with

primary PCI. By leveraging large data sets of clinical and imaging data, we

aim to identify the most accurate and reliable machine‐learning model for

predicting adverse clinical outcomes of STEMI patients. Our findings may

help improve the early identification of high‐risk patients and facilitate

personalized treatment strategies to improve clinical outcomes and

reduce the burden of disease.

2 | MATERIALS AND METHODS

2.1 | Study design and patient selection

In this retrospective study conducted in Tehran Heart Center (THC),

Tehran, Iran, from 2011 to 2019, all consecutive hospitalized patients

diagnosed with acute STEMI, who were treated by primary PCI, were

recruited. A total number of 6340 patients entered at first with a

diagnosis of STMEI, 1286 subjects were excluded from the study as

they were not undergone PCI and were managed either with medical

treatment or scheduled for coronary artery bypass grafting (CABG)

surgery regarding their coronary disease complexity. Also, 540

patients were excluded due to remarkable missing data in our

registration system. Eventually, 4514 subjects were enrolled in the

study for further analysis. All patients had at least 1‐year post-

discharge follow‐up. In general, the follow‐ups were conducted three

times: 1‐, 6‐, and 12‐month following hospital discharge. None-

theless, our analysis exclusively utilized data from 1‐year follow‐up

assessments as the final outcome. All employed models were trained

with the specific objective of predicting major cardiovascular events

occurring within this 1‐year timeframe.

2.2 | Study endpoints

The main endpoint of the present study was a composite of the

major adverse cardiovascular events (MACEs) during 1‐year follow‐up,

including myocardial infarction, emergent revascularization, hemodynamic

instability, and all‐cause mortality. Hemodynamic instability was defined

as low systolic blood pressure that needs inotrope therapy and/or

mechanical ventilation in the course of their admission.

2.3 | Statistical analysis

As it is illustrated in Table 1, continuous and categorical variables were

represented as mean and frequencies, respectively. Statistical analysis

was performed with independent samples t test for continuous numerical

variables. Also, the χ2 test and Fisher exact test were done to evaluate the

relationship between categorical variables and final adverse outcomes as

appropriate. The significance level for all of the statistical analyses was

determined as a p value of lower than .05.

2.4 | Data extraction and processing

Demographics and clinical and paraclinical variables were extracted

from Electronic Health Records. A total number of 156 initial

variables were identified for each patient. Based on our primary

analysis (explained in Section 2.6), eventually, we retained 50 of the

most important variables for further model developments.

2.5 | Missing data

We had missing data in several variables for several situations. Our

approach to missing data was a combination of two methods: (1)

imputation or (2) data removal. If the variable was significant for the

prediction process and the missing values were minimal, we used the

K‐nearest neighbor (KNN) approach to impute data. This is a common

strategy for dealing with missing data that effectively imputes the

predicted values instead of the missing ones while having less of an

influence on the final analysis than other traditional methods. On the

other hand, if the number of missing values was substantial and the

variable was not significant enough, the variable may be deleted.

2.6 | Feature selection

The next step was to choose the best variables for model

development (after data preprocessing and missing value manage-

ment). In this step, which is called “feature selection,” we used two

methods: first, regarding traditional statistical analysis, we deter-

mined the variables that had significant differences between the two

groups; second, we utilized the more precise method, L1 regulariza-

tion (or Lasso regression) method, which is one of the best methods

for feature selection in data science. L1 regularization lets us find the

most important variables for the prediction of final results. Using this

method and the traditional analysis, we eventually determined 50

variables that were more important for model development.
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TABLE 1 Demographic, diagnostic, and procedural characteristics of the study patients.

Total population (95% CI
for mean)

Non‐MACE group
(n = 3904)

MACE
group (n = 610) p Value

Age (year) 62.1 (61.8–62.5) 61.5 66.2 <.001

Sex (male, %) 77.5 78.0 74.3 .042

BMI (kg/m2) 27.2 (27.8–28.5) 27.9 26.6 .032

Risk factors

FH (%) 17.5 18.2 13.4 .004

DM (%) 41.8 40.2 51.8 <.001

HTN (%) 46.3 45.7 50.5 .029

DLP (%) 53.7 49.7 52.2 .032

C/S (%) 46.0 45.2 46.1 .727

O/A (%) 16.2 16.1 16.6 .813

Past medical history

Previous STEMI (%) 4.1 3.7 7.0 <.001

Previous non‐STEMI (%) 2.0 1.8 3.6 .005

CHF (%) 2.9 2.1 8.2 <.001

DHF hospitalization (%) 1.5 5.2 0.9 <.001

CVA (%) 3.5 2.8 7.4 .001

COPD (%) 1.9 1.8 2.6 .150

CKD (%) 1.8 1.2 6.1 <.001

ESRD (on dialysis) (%) 0.2 0.1 1.0 .001

Prior CPR (%) 2.0 1.7 3.9 .001

Previous PCI (%) 10.7 10.2 14.1 .006

Previous CABG (%) 5.6 5.3 7.5 .029

Echocardiography

LVEF (%) 41.2 (40.9–41.4) 41.7 38.0 <.001

Significant VHD (%) 1.3 0.9 4.1 <.001

RV function (%)

Normal 66.8 68.2 57.5 <.001

Mildly impaired 27.0 26.6 29.8

Moderately impaired 5.7 4.9 11.1

Severely impaired 0.5 0.3 1.5

Electrocardiogram

AF rhythm (%) 1.0 0.7 2.6 <.001

High degree AVB (%) 0.9 0.7 1.8 .017

LBBB (%) 1.2 1.1 2.1 .046

RBBB (%) 3 2.9 3.9 .163

LVH criteria (%) 0.1 0.1 0.2 .582

Q wave (%) 29.4 28.9 32.3 .094

Frequent PVC (%) 1.0 0.9 1.3 .373

(Continues)
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2.7 | Model development

To create prediction models for a data set of 4514 patients, the data

were randomly divided into three categories: a training set compris-

ing 56% of the total population (n = 2528), a validation set comprising

14% of the total population (n = 632), and a testing set comprising

30% of the total population (n = 1354). Four prediction models were

developed using the R programming language, including the Gradient

Boosting and DRF models, which fall under the Ensemble Machine

Learning methods, a DL model, and an LR model. These models were

trained using the training set, and their hyperparameters were tuned

using the validation set. Finally, the models were fitted onto the

testing set to determine their performance metrics, which were

compared to identify the most accurate model.

2.8 | The ensemble machine learning methods

Ensemble ML methods are a type of algorithm that employ

multiple learning techniques to achieve superior predictive

accuracy than that which can be achieved by using any individual

learning algorithm alone. Several popular contemporary ML

algorithms are, in fact, ensemble learners, including the Random

Forest (RF) and GBM. Bagging, as used in RF, and boosting, as

utilized by GBM, are two methods of ensembling that operate by

consolidating a group of weak learners, such as a decision tree,

into a single, powerful learner.

GBM is a popular machine‐learning algorithm used for both

regression and classification problems.3 It is an ensemble method that

combines the predictions of multiple weaker models to make a more

accurate prediction. The basic idea behind gradient boosting is to

train a sequence of models, where each subsequent model learns to

correct the mistakes made by the previous model. In other words,

each new model is trained to minimize the errors of the previous

model. The final prediction is then made by combining the predictions

of all the models.

DRF model is another algorithm belonging to the ensemble ML

method that uses an ensemble of decision trees to perform

classification or regression tasks.4 It is called “distributed” because

the model is trained using a distributed computing system, which

allows for parallel processing of the data. RFs are known for their

high accuracy and robustness against overfitting, as well as their

ability to handle large data sets. They work by building multiple

decision trees on randomly sampled subsets of the data and

combining their predictions to make a final prediction. In a DRF,

these decision trees are built on different nodes of the computing

system, allowing for faster and more efficient training.

2.9 | The LR model

The LR model is a typical method for predicting the class of a

categorical type variable (the “target variable”) using independent

variables (the “predictors”). LR employs the log odds (the logarithm of

TABLE 1 (Continued)

Total population (95% CI
for mean)

Non‐MACE group
(n = 3904)

MACE
group (n = 610) p Value

Laboratory tests

WBC (×103/dL) 11.34 (11.2–11.4) 11.1 12.3 <.001

Hb (g/dL) 14.9 (14.8–15.0) 15.0 14.4 <.001

PLT (×106/dL) 243.3 (241.1–245.5) 242.9 246.2 .372

Cr (mg/dL) 1.01 (1.00–1.03) 0.9 1.1 <.001

Procedural parameters

P‐D time (min) 530.2 (507.7–552.7) 534.4 503.3 .355

D‐D time (min) 77.8 (75.8–79.8) 78.3 74.7 .229

P‐D time (min) 608.0 (585.3–630.8) 612.7 578.0 .307

Lesion length (mm) 28.0 (27.7–28.9) 27.6 30.8 .003

IIb/IIIa in administration (%) 50.8 51.4 47.0 .045

In‐stent thrombosis (%) 1.0 1.0 1.1 1.000

Abbreviations: AF, atrial fibrillation; AVB, atrioventricular block; BMI, body mass index; C/S, cigarette smoker; CABG, coronary artery bypass grafting;
CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; Cr, creatinine; CVA, cerebrovascular events; D‐D time, door‐to‐device time;
DHF, decompensated heart failure; DLP, dyslipidemia; DM, diabetes mellitus; ESRD, end‐stage renal disease; FH, family history; Hb, hemoglobin; HTN,
hypertension; LBBB, left bundle branch block; LVEF, left ventricular ejection fraction; LVH, left ventricular hypertrophy; O/A, opium addiction; P‐D time,

pain‐to‐device time; P‐D time, pain‐to‐door time; PLT, platelets; PVC, premature ventricular contraction; RBBB, right bundle branch block; RV, right
ventricle; VHD, valvular heart disease; WBC, white blood cells.
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the odds) to estimate the probability of one target out of two possible

outcomes (binary LR), and the class of the target variable is

determined based on this probability.5

2.10 | The DL model

The DL model utilizes weights assigned during a learning process to

connect nodes in consecutive layers. The output from the layers is

the probability of the target variable, which is then converted to the

predicted class based on previous learnings. Although the DL method

is primarily used for developing prediction models on large data sets,

it can also be applied to data sets of any size. In such cases,

techniques should be implemented to augment the training data set

and improve the final estimations.5 The DL model employed in this

study is based on a multilayer perception (MLP) method, which is

particularly suited to tabular data. The model comprises four layers,

including an input layer, two hidden layers (each containing ten

nodes), and an output layer.

2.11 | Model evaluation

We evaluated the predictive power of the models on a single testing

data set. Many factors should be considered for this purpose (called

“performance metrics”), such as the area under the curve (AUC) of

the receiver operating characteristic (ROC) curve, accuracy, sensitiv-

ity, specificity, F1‐score, and the Matthews Correlation Coefficient

(MCC) of the model. The “f1‐Score” is a statistical index that

represents the harmonic mean of the Precision and Recall measures.

It is widely used in evaluating the performance of classification

models. On the other hand, The MCC is a more powerful index for

assessing the accuracy of a system, ranging between −1 and +1,

where +1 indicates the most accurate prediction without any chance

effect or errors. The formula for MCC is based on Formula‐1, and it

provides a comprehensive measure of the classification system

performance that considers true and false positives and negatives.

Formula 1. The MCC Equation

MCC = (TP × TN + FP × FN)/√ ((TP + FP) × (TP + FN)

× (TN + FP) × (TN + FN)).

3 | RESULTS

The demographic, diagnostic, and procedural characteristics of the

enrolled patients are depicted in Table 1. The whole data set is

divided into two groups: the MACE group (n = 610) versus the non‐

MACE group (n = 3904). The mean age of the total population was

62.1 years, while people in the MACE group were significantly older

than the non‐MACE group. (66.2 vs. 61.5 years, p < .001). Most of the

population in both groups was male, with slightly higher rates in the

non‐MACE group (78.0% vs. 74.3%, p = .042). Moreover, the mean

body mass index in patients with a MACE was remarkably lower than

those without any MACE in their follow‐up (26.6 vs. 27.9 kg/m2,

p = .032). Regarding the prevalence of cardiovascular risk factors in

group subjects, including diabetes, hypertension, dyslipidemia, and

family history of premature ischemic heart diseases, all were

significantly higher in the MACE group. Furthermore, people in the

MACE group had more past history of different cardiovascular

diseases, such as STEMI, NSTMEI, congestive heart failure (CHF),

hospitalization for decompensated heart failure (DHF), cerebro-

vascular events (CVA), chronic kidney disease (CKD), and

end‐stage renal disease (ESRD), and previous history of coronary

revascularization, including PCI and CABG. In terms of cardiac

function and structure, mean left ventricular ejection fraction (LVEF)

was remarkably lower in the MACE group (38.0% vs. 41.7%, p < .001),

and right ventricular function was more impaired in this group as

well (p < .001).

The important point is that, as the primary PCI protocol for

STEMI patients in our center is identical for all scenarios, all the pain‐

to‐door, door‐to‐device, and pain‐to‐device times were similar

between the two groups. However, the mean lesion length was

higher in the MACE group compared with the non‐MACE group (27.6

vs. 30.8 mm, p = .003).

3.1 | Models performance

To assess the performance of models in predicting adverse outcomes

in a particular population, an evaluation of performance metrics is

necessary. These metrics for our four models are presented inTable 2

and provide a basis for comparing the performance of various

models. Such an analysis enables the selection of the most suitable

model for predicting adverse outcomes in the given population.

Obviously, the two models that were based on the ensemble

methods, the GBM and the DRF models, are better than the two

other models according to all parameters.

3.2 | The learning curves

The learning curve is a graphical representation of the performance

of ML models during training and validation of the data, and it is a

crucial tool for understanding how well a model is learning from the

data. The learning curve shows the relationship between the training

set size and the model's performance. As the size of the training set

increases, the performance of the model on the training data usually

improves, while the performance on the validation set tends to

plateau. This indicates that the model has learned the patterns in the

training data too well, leading to overfitting, which reduces the

generalization performance on the unseen validation data. Therefore,

finding the right balance between the size of the training set and the

complexity of the model is crucial for achieving good generalization

performance.
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The learning curves for the two models are presented in

Figure 1. By examining the overall trends of the training and

validation curves for these models, it was observed that the DRF

model exhibits better performance in terms of decreasing the

difference between the two curves. Conversely, the GBM model

demonstrates an initial divergence between the curves during the

early stages of the learning process. While the performance

metrics for these models are comparable in our testing data set, it

is anticipated that in a larger testing data set, the DRF model

would outperform the GBM model.

4 | DISCUSSION

In the medical field, ML is often employed to create predictive models

for complex data sets, due to its ability to handle high‐dimensional

relationships between features. In this study, we aimed to predict the

occurrence of 1‐year MACEs of the STEMI patients who were

treated with primary PCI, using four ML models: Gradient boosting,

DRF, DL, and LR. The performance of each model was then

compared, with DRF model exhibiting the highest AUC value,

surpassing that of the other models.

The Global Registry of Acute Coronary Event (GRACE) and the

Thrombolysis in Myocardial Infarction (TIMI) risk scores are currently

the most widely used scoring systems for predicting the outcomes of

STEMI patients.6–11 However, despite their popularity, these score

systems have limitations as they do not include important predictors

such as echocardiographic parameters and laboratory data, which

may reduce their effectiveness in subgroups of patients. In such

cases, ML‐based models that rely on electronic medical records and

artificial intelligence can provide a more comprehensive approach to

outcome prediction. These ML‐based models can capture a greater

number of variables and complex relationships between features,

thereby improving the accuracy and specificity of STEMI outcome

prediction.

In 2023, Kasim reported that ML models developed using ML

feature selection demonstrated superior performance compared to

the conventional risk score, TIMI (AUC: 0.81). Among the individual

ML models, SVM Linear with selected features exhibited the best

performance, outperforming even the best‐performing stacked EL

model (AUC: 0.934, confidence interval [CI]: 0.893–0.975 vs AUC:

0.914, CI: 0.871–0.957). Additionally, the women‐specific model

demonstrated better performance than the general non‐gender‐

specific model (AUC: 0.919, CI: 0.874–0.965). These findings indicate

TABLE 2 Performance metrics of different machine learning models.

Model AUC Sensitivity Specificity F1 score Accuracy MCC

Gradient Boosting Machine 0.91 0.70 0.95 0.82 0.96 0.81

Deep Learning 0.86 0.66 0.94 0.72 0.93 0.68

Logistic Regression 0.85 0.52 0.94 0.65 0.92 0.64

Distributed Random Forest 0.92 0.71 0.95 0.81 0.95 0.80

Abbreviations: AUC, area under the curve of ROC plot; MCC, Matthew's correlation coefficient.

F IGURE 1 The learning curves of the two ensemble models.
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the potential for ML models to improve risk stratification for patients

with cardiovascular disease and may contribute to personalized

medical decision‐making.12,13

In a noteworthy study by Aziz et al., it was demonstrated that ML

algorithms have superior predictive performance over the traditional

TIMI score system. Notably, the TIMI score system underestimates

the risk of mortality. The study showed that 90% of nonsurviving

patients were classified as high risk (>50%) by the ML algorithm, in

contrast to 10%–30% of nonsurviving patients by TIMI. These results

indicate that ML algorithms may provide a more accurate and reliable

risk stratification approach in clinical settings.14

The study conducted by Bei Shi revealed that in previous studies,

ML methods had displayed superior predictive ability for short‐term

mortality after STEMI, with XGBoost exhibiting better performance

than other ML models in patients with anterior wall STEMI. Gradient

boosted tree (GBT) methods, including XGBoost, RF, and CatBoost,

demonstrated similar AUC values according to the study conducted by

Zhixun Bai.15 However, following model optimization, the CatBoost

model displayed more accurate predictive ability in the latter study

conducted by Bei Shi. The CatBoost algorithm, one of the three

mainstream GBT ML methods, is based on an asymmetrical decision

tree algorithm (oblivious trees) with only a few parameters and

supports class variables while achieving high accuracy. Its primary

focus is to address the efficient and reasonable handling of category

features. Moreover, a new method was proposed to account for

gradient deviation (gradient bias) and prediction partial (prediction shift)

problems to improve the algorithm's accuracy and generalization ability.

As a new algorithm released in 2017, CatBoost can effectively prevent

overfitting and account for category features in clinical practice, which

has aroused widespread interest due to its high training accuracy.

Recent studies have demonstrated its high accuracy in predicting

short‐term mortality after STEMI.

According to the study conducted by Sherazi et al., their soft

voting ensemble (SVE) exhibited superior performance when com-

pared to other ML models such as RF and GBMs. The observed

difference in performance was statistically significant, indicating the

potential of SVE as a powerful tool for predictive modeling.16

In 2021, Lee et al. conducted a survey of approximately 14000

patients with STEMI and non‐STEMI (NSTEMI) to evaluate the

performance of ML models in predicting patient mortality compared to

traditional models (TM). The study found that ML models exhibited

comparable performance to TM in predicting mortality for STEMI patients

at in‐hospital, 3‐ and 12‐month follow‐up intervals. In contrast, the ML

models outperformed TM in predicting mortality for NSTEMI patients,

with AUCs of 0.889, 0.849, and 0.860 for in‐hospital, 3‐ and 12‐month

mortality, respectively, compared to AUCs of 0.873, 0.795, and 0.808 for

TM. These findings suggest that ML models may be a valuable tool for

predicting mortality in NSTEMI patients.17

One of the main advantages of RF models is their ability to

handle larger data inputs, nonlinear variables, and variable interac-

tions, and avoid overfitting. In our study, we developed a risk

stratification model for the mortality of patients with acute

myocardial infarction using DL from a large perspective national

registry. The results of the accuracy test showed that the deep‐

learning model had excellent performance in predicting prognosis and

outperformed the conventional risk‐prediction model.

4.1 | Study limitations

There were some limitations to this study that should be considered

when interpreting the results. First, the fact that it was a single‐

center study may affect the generalizability of the findings. However,

it is important to note that the Tehran Heart Center is a highly

regarded referral hospital in Iran, with a diverse patient population.

Second, the retrospective nature of this study poses concerns in the

interpretation of its results and extending the applicability of the

prediction models. Third, the sample size used in this study was not

large enough to allow for precise testing and training of the model.

The low event rate meant that the power of the study was not high

enough, and further research with a larger sample size is required in

this field. At last, the lack of external validation is another limitation.

The absence of external validation, wherein model performance is

assessed on previously unseen data, can lead to reduced general-

izability. In ML studies, particularly those involving complex models,

the lack of external validation can result in overfitting, where the

model fits noise in the training data rather than capturing underlying

patterns. Incorporating diverse validation data sets, using cross‐

validation techniques, and conducting replication studies are some

strategies to address this problem. As our clinic is one of the few

national referral centers with a well‐structured registry system for

primary PCI patients in the country, we were unable to obtain other

structured data for accurate external validation of our models;

nevertheless, we evaluated our models with a testing data set that

was not seen during the learning process of the models.

5 | CONCLUSION

Our study has led us to the conclusion that ML‐based models can be

an effective tool for identifying STEMI patients who are at the

highest risk of developing adverse events during follow‐up. The field

of personalized medicine is one that stands to benefit greatly from

these algorithms, as they can aid physicians in detecting high‐risk

patients earlier and taking appropriate preventive measures. By

leveraging the predictive power of ML algorithms, physicians can

make more informed decisions about patient care, potentially leading

to improved outcomes.
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