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Abstract
Liver is one of the most common sites for metastases, which can occur on account of primary tumors from
multiple sites of origin. Identifying the primary site of origin (PSO) of a metastasis can help in guiding
therapeutic options for liver metastases. In this pilot study, we hypothesized that computer extracted handcrafted
(HC) histomorphometric features can be utilized to identify the PSO of liver metastases. Cellular features,
including tumor nuclei morphological and graph features as well as cytoplasm texture features, were extracted
by computer algorithms from 175 slides (114 patients). The study comprised three experiments: (1) comparing
and (2) fusing a machine learning (ML) model trained with HC pathomic features and deep learning (DL)-based
classifiers to predict site of origin; (3) identifying the section of the primary tumor from which metastases were
derived. For experiment 1, we divided the cohort into training sets composed of primary and matched liver
metastases [60 patients, 121 whole slide images (WSIs)], and a hold-out validation set (54 patients, 54 WSIs)
composed solely of liver metastases of known site of origin. Using the extracted HC features of the training
set, a combination of supervised machine classifiers and unsupervised clustering was applied to identify the
PSO. A random forest classifier achieved areas under the curve (AUCs) of 0.83, 0.64, 0.82, and 0.64 in
classifying the metastatic tumor from colon, esophagus, breast, and pancreas on the validation set. The top
features related to nuclear and peri-nuclear shape and textural attributes. We also trained a DL network to serve
as a direct comparison to our method. The DL model achieved AUCs for colon: 0.94, esophagus: 0.66,
breast: 0.79, and pancreas: 0.67 in identifying PSO. A decision fusion-based strategy was deployed to fuse
the trained ML and DL classifiers and achieved slightly better results than ML or DL classifier alone (colon: 0.93,
esophagus: 0.68, breast: 0.81, and pancreas: 0.69). For the third experiment, WSI-level attention maps were also
generated using a trained DL network to generate a composite feature similarity heat map between
paired primaries and their associated metastases. Our experiments revealed that epithelium-rich and moderately
differentiated tumor regions of primary tumors were quantitatively similar to paired metastatic tumors.
Our findings suggest that a combination of HC and DL features could potentially help identify the PSO for
liver metastases while at the same time also potentially identify the spatial sites of origin for the metastases
within primary tumors.

Keywords: digital pathology; machine learning; deep learning; quantitative histomorphometric image analysis

Received 1 February 2023; Revised 14 August 2023; Accepted 28 August 2023

No conflicts of interest were declared.

© 2023 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley &
Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

http://wileyonlinelibrary.com
https://orcid.org/0000-0001-5748-0330
mailto:cche349@emory.edu
mailto:joseph.willis@case.edu
mailto:anantm@emory.edu
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

A common diagnostic dilemma among surgical patholo-
gists is to identify the primary site of origin (PSO) for
a newly diagnosed metastatic adenocarcinoma [1].
Adenocarcinomas are the most common cancer subtype
which metastasize to the liver [2,3]. Since many currently
successful therapies are tumor site specific, it is para-
mount to identify the PSO for metastatic disease [4].
Pathologists generally rely on morphological and
immunohistochemical assessments to define or confirm a
primary source for the metastasis [5,6]. Based on pathol-
ogy assessment alone, the site of origin for up to 20%
of metastatic tumors to the liver, the majority being
adenocarcinomas, cannot be identified [2]. With an ever-
increasing number of high-quality antibodies for immu-
nohistochemistry (IHC) as well as the increasing
availability of molecular technologies [7–9], a majority of
the metastatic tumors’ site of origin can be identified [10]
though at the expense of ever-increasing costs and turn-
around times which prohibit the adoption of these new
technologies in low-cost scenarios [5,10]. These technolo-
gies are also tissue destructive, often leading to tissue
block depletion before critical assays, such as assessment
of biomarkers predictive of response to targeted therapies,
can be performed. Thus, there is an unmet clinical
need for tissue nondestructive and efficient approaches to
identifying the PSO associated with a metastatic tumor.
With the increased availability of digitized whole slide

images (WSIs) and computational power, computerized
assessment of WSI including deep learning (DL) and
handcrafted (HC) approaches has been widely used for
disease characterization. Multiple studies have demon-
strated the utility of HC features in defining molecular
phenotype and correlating with clinical outcomes across
different cancer types [11–14] using histomorphometric
features from both cancerous as well as adjacent
noncancerous stromal and intratumoral inflammatory
components [15,16]. A DL-based assistive tool devel-
oped by Lu et al [17] automatically identified the site of
origin of tumors using only H&E-stained histology
slides. Although various algorithms have been deployed
to improve the interpretability, the DL-based approach’s
black-box nature represents a challenge in explaining the
rationale behind the classifier’s decision process which
also impedes quality control assessments, including iden-
tification of individual result inaccuracies – important for
potential clinical implementation. Thus, an approach
based on the decision fusion of HC features and DL
models was developed to identify PSO.
In this study we sought to demonstrate the ability of

histomorphologic features, specifically in so far as they

relate to cellular features of nuclei shape and texture,
spatial graph-based feature [11,18,19], as well as cyto-
plasm texture from H&E-stained WSIs, (1) to identify
the site of origin of liver metastases; and (2) to explore
the potential ‘subclone’ regions of primary tumors that
show morphological similarities to their corresponding
metastases, suggesting a link to tumor heterogeneity.

Methods

Dataset description
Primary adenocarcinomas along with their corres-
ponding liver metastasis, and liver metastases without
corresponding primary tumors from four sites of origin,
breast (ductal type only), colon (standard /NOS type
only), esophagus, and pancreas, were obtained from
University Hospitals Cleveland Medical Center and dig-
itized using Ventana iScan HT scanner at �40 (0.25 μm
per pixel) under an Institutional Review Board-approved
protocol (02-13-42C). We collected 180 WSIs from
118 patients; 5 WSIs from 4 patients were excluded due
to impaired image quality or misclassification as liver
metastasis, unpaired primary, leaving a final dataset of
175 WSIs from 114 patients with primary cancer
(n = 60) or liver metastases (n = 115) (see supplementary
material, Figure S1 and Table S1). These comprised
121 WSIs from 60 patients with matched primary and
metastatic cancers and 54 WSIs from liver metastasis
from patients whose primary origin was known.
Tumor regions were manually identified by BM and
JW. HistoQC [20], a digital image quality assessment
tool, was then applied to the WSIs for artifact and
pen-marker detection. Patches with artifacts including
but not limited to pen markings, blurriness, and
bubbles were excluded from the analysis.

Methodological design
The final dataset consisted of 175 H&E-stained
WSIs (114 patients) with primary cancers, matched or
unpaired liver metastases from the colon (59 images),
esophagus (43 images), breast (36 images), and pancreas
(37 images). A combination of supervised machine learn-
ing (ML)-based classification and unsupervised clustering
was then applied to identify the tumors’ site of origina-
tion using the fore-mentioned histomorphometric features
from the acquired WSIs. A DL-based model was trained
to serve as a direct comparison to the HC-based
approach. We also fused the decisions generated by the
trained ML and DL models together to evaluate whether
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this combined model could better identify the site of
origin of liver metastases. Histomorphometric feature
analysis of metastatic cancers was then compared with
their initial primary to define the likely ‘clone of origin’
of the metastasis on a small number of primary-
metastasis pairs. An overview of the methodological
design is illustrated in Figure 1.

Image analysis and nuclear segmentation
StarDist, a DL-based cell segmentation approach was
deployed to segment nuclei from the individual image
patches [21,22]. Epithelial and stromal components
within each patch were segmented by a pre-trained DL
model [12]. As the goal was also to assess histomor-
phometric image features associated with the

cytoplasm, masks of tissue regions corresponding to
cytoplasm were generated by first dilating the bound-
ary associated with the nuclei masks, and then
subtracting the nuclei masks from the dilated masks.
Finally, tumor-infiltrating lymphocytes (TILs) were
detected using a pre-trained ML model [15]. The TIL
classifier, which was trained using seven features
derived from texture, shape, and color attributes of
the segmented nuclei, was deployed to classify the
individual nuclei as TILs or non-TILs [15]. Nuclei
identified as TILs or as occurring within the stroma
region were excluded from the final nuclei mask.
A kernel density map was generated using the two-
dimensional (2D)-PCA embedding of the extracted
features. The top 20 percentile regions with highest
estimated kernel density were chosen as the most

Figure 1. Illustration of workflow. (A) Biopsies were prepared and digitized into WSI at UHCMC. WSIs were dissected into
2,048 � 2,048 pixel2 patches based on tumor masks annotated by an experienced pathologist. Within the annotated tumor region,
nuclei were segmented by the StarDist algorithm. The epithelial region was segmented by a pre-established model. Cytoplasm masks
were generated by dilating the nuclei masks. TILs and nuclei within the stromal region were removed from the nuclei mask. Nuclear and
cytoplasm histomorphometric features were extracted. The features were then evaluated to identify the site of origin of each tumor via
supervised classification and other unsupervised approaches. (B) Workflow for experiment 2. Four paired metastases and primary tumors
were randomly selected (one pair for each organ site). To increase the resolution of the resulting heat map, WSIs were dissected into
256 � 256 pixel2 patches. Histomorphometric features were extracted for both primary and metastatic patches. Principal component
ananlysis (PCA) was then applied to metastatic patches to select the most representative patches. Next, the most representative patches
were averaged to acquire the metastatic signal, which was utilized as the Query Image for the CBIR classifier. The CBIR then calculated
the Euclidean distance between each primary patch and the metastatic signal and retrieved patches with the lowest distance. The
similarity was then calculated as the reciprocal of the distance to generate the final similarity heat map.
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representative samples for a given WSI [23]; these
tiles were employed for the subsequent pathomic
analysis (supplementary material, Figure S2).

Feature extraction
A total of 13 512 features from eight feature families
were extracted from the segmented cancer nuclei.
These eight feature families are: (1) nuclei shape and
morphology; (2) nuclei Haralick texture; (3) cytoplasm
Haralick texture; (4) cell cluster graphs (CCGs); (5) fea-
ture-driven local cell graph (FeDeG); (6) local cellular
diversity (CCM); (7) fractal dimension (FD); and
(8) cell run length. Shape features included major/
minor axis ratio, area, as well as invariant moment,
Fourier descriptor, and length/width ratios to reflect the
morphological differences among tumor nuclei origi-
nating from different organ sites. A total of
312 Haralick-based texture features from within the
nuclei and cytoplasm were captured (supplementary
material, Table S3). CCGs were also constructed to
capture basic shape features of tumor nuclei within the
local neighborhood [13]. FeDeG [19] was calculated to
investigate the interaction between different cell
graphs. Furthermore, CCM [11] features were extracted
to reflect the morphological differences among tumor
nuclei originating within local CCGs from different
organ sites. Full feature descriptions are included
within the supplementary material, feature description
section. Pearson correlation coefficient was calculated
for features in the training sets (T1 and T2) and used to
remove highly correlated features (correlation coeffi-
cient >0.95) in T1 and T2. These identified correlated
features were subsequently removed from V1 and V2.
To normalize the feature values, extracted features were
min–max normalized separately in the training sets
(T1 and T2) and hold-out validation sets (V1 and V2).

Experimental design

Experiment 1: evaluating HC approaches for
predicting site of origin
For experiment 1, unpaired liver metastases were
selected as part of hold-out validation set, V1 (54 WSIs:
colon – 16; esophagus – 11; breast – 12; pancreas – 15;
see supplementary material, Figure S1), while the
remaining paired primary and liver metastases were used
as the training set, T1. To prevent information leakage,
images obtained from the same patient were not present
within the training and validation set simultaneously.
Three-fold cross-validation (CV) was used to train the

classification models, MHC. For each iteration, three
sub-training sets, Sftrain f � 1,2,3½ �ð Þ, that consisted of
two-thirds of the original dataset were randomly
selected from T1. The remaining cases were included
in the corresponding validation set Sfval f � 1,2,3½ �ð Þ.
Next, two feature selection methods were utilized to
identify the top 10 most discriminative features out of
the Sftrain. The selected features were used to train three

classification models, Mf
HC f � 1,2,3½ �ð Þ, for each itera-

tion to identify the tumor’s site of origin. Area under
the receiver operating characteristic curve (AUC) on
Sfval was calculated for each fold and iteration. The
final AUC was reported as the average of AUC across
each fold and iteration. Finally, the model with the
highest averaged AUC, MHC, was selected and evalu-
ated on the hold-out validation set.
Uniform Manifold Approximation and Projection

(UMAP) [24] was applied to reduce the dimensionality
of the selected features. The resulting low-dimensional
embedding of image patches was then subsequently
clustered via hierarchical clustering. The violin plots
of the top features identified via feature selection from
each feature family were also plotted. Paired Student’s
t tests were invoked to identify whether features
were distributed differently among the four organ
sites. To further evaluate the features, a Content-Based
Image Retrieval (CBIR) model was evaluated on
the hold-out validation set, V1. Each WSI within
V1 was represented by the selected top 10 features
(supplementary material, Table S2). The algorithm
loop through V1 with each time one WSI was selected
as the query image. After that, the Euclidean distances
between the query image and the remaining WSI
within the V1 were calculated. Subsequently, the class
of each query image was determined by the class of
the closest WSI. The precision–recall (PR) curve and
the area under PR curve (AUPRC) were also reported.

Experiment 2: integrating HC and DL approaches
A modified version of DenseNet [25] model, MDL,
was trained to classify the site of origin of tumor
metastasis from colon, breast, esophagus, or pancreas.
The customized DenseNet consisted of four dense
blocks, where each dense block had two layers
and a growth rate of k= 32. The model has 415 554
learnable parameters and accepts 256� 256 pixel [2]
image patches with a corresponding site of origin as
input. The structure of the network is plotted in
supplementary material, Figure S3. The training and
validation process was performed using the same train-
ing and hold-out validation set (T1 and V1) used by
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ML classifiers (supplementary material, Figure S1).
Thirty percent of the training sets were randomly
selected and used as test set to select the model with the
best performance. The training patches were augmented
by rotating each patch by 180�, randomly flipping the
image horizontally or vertically, and assigning color or
gray scale to the patches [26]. The classifier outputs
from the individual patches from the same patient were
averaged to obtain the per-patient aggregated output.
The network was trained on a RTX 2080Ti GPU for
100 epochs with CUDA 10.0 and cuDNN 7.6.5 opti-
mized by Adam optimizer built into Pytorch and a fixed
batch size of 128. The cross-entropy error function was
used. The model that achieved the lowest loss on the test
set was selected as the trained model.
To harness the power of both DL features and

histomorphologic features, a fused model, Mfused, was
created by combining the decision made by MDL and
MHC. After the probability of each WSI was generated
by MDL and MHC, the model outputs were fused
together into a single vector with each column
representing the probability of current WSI originated
from each organ site (colon, esophagus, breast, and
pancreas). The final classification was given by identi-
fying the highest probability within the final fused
probability vector (supplementary material, Figure S4).
The AUC of Mfused was reported and compared with
the AUCs of MDL and MHC respectively.

Experiment 3 – identifying site of metastasis in the
primary tumor
WSIs were partitioned into image patches of size of
256 � 256 pixel [2] at a magnification level of �40.
For this experiment, only nuclei texture and morpholog-
ical features (a total of 376 features) were extracted.
The total number of features was then reduced to 10 via
Wilcoxon ranked sum test (WRST; 5 features
corresponding to nuclear shape and 5 to nuclear texture,
detailed information is listed in supplementary material,
Table S2). The Euclidean distance between patch-wise
features from the metastases and their corresponding
primary tumor regions for four selected cases (one
tumor pair from each organ site) was calculated. The
similarity was then calculated as the reciprocal of calcu-
lated distances for each patch. Finally, similarity heat
maps were generated by stitching the patches together
with the associated similarity distance and overlaying
these measurements on the corresponding WSIs. To
qualitatively evaluate the similarity heat map, regions of
interests (ROIs), including focal regions of moderately
or poorly differentiated carcinoma (colon) and epithelial
or stromal rich regions, were visually identified by an

experienced pathologist. We then calculate the averaged
similarity within each identified ROI to reveal regional
similarity of these epithelial components with the
corresponding metastatic tumor.
In order to generate visual attention maps for the DL

algorithm, new training and hold-out validation sets, T2
and V2, were re-generated with a patient train–test ratio
of 75:38. This was done since the original training set
V1 was comprised solely of metastasis cases. WSIs
were randomly selected to enter the hold-out validation
set regardless of their primary or metastasis status
(60 WSIs: colon – 14; esophagus – 12; breast – 15;
pancreas – 19; primary cancers – 17; metastases – 43.
See supplementary material, Figure S1), while the
remaining cases were used for training. To generate the
attention map, a DL model was trained to classify
WSIs into primary or metastatic categories. A Guided
Grad-CAM [27] was deployed to generate the attention
map revealing the metastatic activation map on four
selected cases. The WSI-level attention maps were
generated by stitching attention maps at the patch level.

Experimental results

Experiment 1 – evaluating HC approaches for
predicting site of origin
In general, the model trained using a combination of
WRST and the random forest classifier had the best
performance out of all combinations of feature ranking
methods and classifiers using top 10 features selected
from all feature families. Across different combina-
tions of feature ranking methods and classifiers, the
highest AUCs for colon: 0.80, esophagus: 0.74, breast:
0.67, and pancreas: 0.71 were achieved using a combi-
nation of WRST and the random forest classifier over
the 100 iteration of CV on T1. Using WRST as the
feature selection method, the performance of the
models with the highest AUCs during the CV training
phase was reported on V1 (Table 1). MHC achieved
high AUC in classifying tumors from the colon (0.83)
and breast (0.82). The MHC had an intermediate per-
formance for esophagus (0.64) and pancreas (0.64).
To further demonstrate the utility of each HC fea-

ture family, the classifiers were trained using the top
10 features selected from each individual feature fam-
ily and the AUCs evaluated on the V1 are reported in
Table 2. CCM features demonstrated the highest clas-
sification value among all eight feature families,
followed by Haralick texture features extracted from
the nuclei. Across all feature families, the highest per-
formance of the classifier was achieved on the colon
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tumors with an AUC of 0.85, using features
corresponding to both basic nuclei shape and cyto-
plasm texture. The classifiers trained using FD features
achieved the highest AUCs in classifying the esopha-
geal and breast tumors (0.62 and 0.77, respectively).
The highest AUC (0.78) in classifying pancreatic
metastases was achieved using CCM features.
Figure 2A shows the 2D UMAP embedding of the

validation set using the top 10 most selected features
over 100 iterations of CV across all feature families.
Tumors originating from breast, colon, esophagus, and
pancreas were colored by green, red, blue, and orange,
respectively. Subclusters from each organ site were visu-
ally identified and highlighted using bounding boxes
with the corresponding color code. These subclusters
could be readily identified for tumors from all organs
within the 2D embedding. Since the UMAP embedding
clearly illustrates the presence of two clusters of breast
cancers (highlighted with a green bounding box in
Figure 2A), we also acquired ER, PR, and HER2 status
of these cancers, and plotted the 2D UMAP embedding
with the corresponding molecular information. The
resulting embedding is illustrated in Figure 2B and
supplementary material, Figure S5A,B, with ‘+’ or ‘�’
signs representing tumors with positive or negative
molecular status for ER, PR, or HER2, respectively.
However, from the embedding it is clear that the breast
tumors did not appear to cluster based off the molecular
data. The hierarchical clustering-based heat map using
the embedding of the top 10 most selected features from
all feature families is illustrated in Figure 3A. When
setting the number of clusters at four, the only distinct
cluster identified was the colon cluster, 14 of the
17 WSIs in the cluster correspond to colon cancer.
Based on the 2D UMAP embedding, we performed an
agglomerative clustering assessment by setting the num-
ber of clusters to be identified as four. The contour of
each identified cluster was also plotted for better visual
representation in Figure 3B. When comparing Figure 3B

with Figure 2A, the colon cluster identified by the algo-
rithm (red cluster in Figure 3B) mirrors the cluster identi-
fied visually (highlighted by bounding boxes in
Figure 2A), while the orange cluster identified in
Figure 3B contains a majority of the pancreatic WSIs
within the hold-out validation set. However, the agglom-
erative clustering failed to identify separate and distinct
clusters for breast and esophageal tumors.
Supplementary material, Figure S6 shows the PR

curve and AUPRC of the CBIR classifier built using
the top 10 commonly selected features over 100 itera-
tions of CV from all feature families (supplementary
material, Figure S6A) and CCM (supplementary mate-
rial, Figure S6B). For the usually best performed colon
tumors, the CBIR classifier only yielded an AUPRC
of 0.49 (all feature families) and 0.57 (CCM).
Figure 4 shows the violin plots of the most com-

monly selected feature over the 100 iterations of CV
from all feature families (Figure 4A) and CCM
(Figure 4B). The most commonly selected feature
from all feature families was from FeDeG family [19],
which emphasizes the local cell graph’s mean area.
Based on Student’s t test, the colon tumors have a
significantly different distribution when compared with
pancreatic tumors. As for Figure 5B, the most com-
monly selected CCM feature characterizes the nuclei
intensity range within the local cell graph. The t test
demonstrated that the colon tumors had a different
distribution when compared with tumors from other
organ sites. However, breast, esophageal, and
pancreatic tumors failed to show any significance in
the distribution of the top selected feature. A more
detailed description for the top 10 features and distribu-
tion of the top 3 features are shown in supplementary
material, Table S2 and Figure S7 respectively.

Experiment 2 – integrating HC and DL approaches
In comparison with the performance of MHC, the
trained DL model, MDL, achieved better performance

Table 1. Averaged AUC of ML classifiers trained using top HC
features selected from all features over the training set.

Training set Validation set

AUC LDA QDA RF ML DL ML + DL

Colon 0.78 0.77 0.80 0.83 0.94 0.93
Esophagus 0.61 0.64 0.74 0.64 0.68 0.71
Breast 0.40 0.60 0.67 0.82 0.79 0.81
Pancreas 0.61 0.61 0.71 0.64 0.69 0.72

Based on the mean AUC over CV, models trained using RF + WRST were
selected and evaluated on the hold-out validation set. The result of the DL
model as well as the fused model is also reported. The machine learning model
with the highest performance on the training set is highlighted in bold.
LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; RF,
random forest.

Table 2. AUC of ML classifiers trained using top HC features in
different feature families on validation set.
WRST Colon Esophagus Breast Pancreas

Nuclei morphology 0.85 0.51 0.65 0.55
Cell run length 0.59 0.59 0.53 0.71
Cytoplasm texture 0.85 0.57 0.70 0.52
Fractal dimension 0.76 0.62 0.77 0.51
FeDeG 0.75 0.55 0.45 0.62
Nuclei texture 0.79 0.59 0.76 0.62
Local cell diversity 0.77 0.55 0.71 0.78

The feature families that achieved the highest AUC on each organ site are
highlighted in bold.
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on the classification of colon tumors (0.94), and com-
parable performance in identifying tumors from esoph-
agus (0.68), breast (0.79), and pancreas (0.69). Using
the decision fusion strategy described above, the fused
model, Mfused, achieved a slightly better results than
ML or DL classifier alone on the validation set (esoph-
agus: 0.71, breast: 0.81, and pancreas: 0.72). Mfused

had a comparable performance (AUC: 0.93) in

identifying metastatic tumors originated from colon
when comparing with MDL (AUC: 0.94).

Experiment 3 – identifying site of metastasis from
within a primary tumor
For four selected primary-metastasis pairs (one pair
for each organ site), the similarity between metastatic

Figure 2. 2D UMAP embedding. (A) Top 10 most selected features from all feature families. (B) ER status of breast cases. Tumors
originated from breast, colon, esophagus, and pancreas are colored with green, red, blue, and orange respectively. Green ‘+’ or ‘�’
signs are used to represent positive or negative tumor with corresponding molecular status. To highlight the IHC status of breast
metastases, metastases from other organ sites are lowlighted.

Figure 3. Hierarchical clustering of top 10 most selected feature from all feature families that generated maximum cluster separation.
(A) Heat map of the 3D embedment with true class labels is shown on the bottom of the plot. (B) Agglomerative clustering analysis
results when set the number of clusters to be identified into four. Color scheme for cancers as in Figure 2. B, breast; C, colon; E,
esophagus; P, pancreas.

7 of 13Identifying site of origin for liver metastases

© 2023 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2024; 10: e344



Figure 4. Violin plots of top feature selected (A) from all feature families and (B) from CCM. Student’s t test was applied to the
normalized feature. Organs with significant differences in the distribution of the most selected feature was labeled with *p < 0.05;
**p < 0.01; or ***p < 0.001.

Figure 5. Similarity heat map of a selected colon case. Euclidean distances between the metastatic signal and patches from its
corresponding primary tumor were calculated using the CBIR classifier. Similarity was then calculated as the reciprocal of the calculated
distance and overlaid as a heat map (A). Guided Grad-CAM attention map was generated by DL model to highlight important region to
classify tumor as metastasis. ArI-based pathology predicts origins of metastases from paired primary (B). The magnification of
pathologist-identified moderately differentiated (in green) and poorly differentiated (in red) regions is also plotted in panel (C). A patch
with a cooler color represents lower similarity between the image patch and its corresponding metastatic slide.
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and corresponding primary tumors was calculated
and overlaid on top of the original WSIs as heat maps.
A representative case from a colon cancer primary is
illustrated in Figure 5A. The trained DL model’s
performance on hold-out validation is shown in
supplementary material, Figure S8. The attention map
corresponding to the metastases activation map as
engendered by the DL model is illustrated in Figure 5B.
A similarity map and an attention map of moderately
and poorly differentiated regions are highlighted by
green and red bounding boxes and in a higher resolu-
tion in Figure 5C. Patches from the primary and
corresponding metastatic tumors identified to have the
highest similarity are illustrated in supplementary mate-
rial, Figure S9A. In a representative breast case
(Figure 6 and supplementary material, Figure S9B),
patches located within the regions of primary tumor
with high epithelial content demonstrated a higher simi-
larity with the metastatic tumor compared with patches
of primary tumor located in regions with high stromal
components. This observation is also consistent with
the selected primary tumors from all four organ sites
(supplementary material, Figures S10–S13). This obser-
vation aligns with our expectations and serves as a form
of quality control for our methodology. Given that the
features of metastatic tumors are extracted from epithe-
lium, it is anticipated that these tumors would exhibit
greater resemblance to epithelial-rich primary tumors.
In the similarity map illustrated in Figure 5C, poorly
differentiated tumor cluster regions had lower similarity
to the metastatic tumors compared with the moderately
differentiated cluster regions in the same tumors (see

also supplementary material, Figure S10). Also illus-
trated in supplementary material, Figure S9B are the
top three primary patches with the highest similarity to
metastatic regions, all of these image patches corre-
spond to epithelial rich (stromal poor) tumor regions.

Discussion

Adenocarcinoma represents almost 75% of all liver
metastasis cases with primary sources with the most
common primary sites of origin being colon, breast,
pancreas, and esophagus [2,3]. However, the site of
origin for approximately 4.1% of metastatic liver
tumors and up to 15.6% of adenocarcinomas cannot
be identified [2]. Despite advances in molecular tech-
niques and IHC, the cost in both time and money as
well as the tissue destructive nature of molecular
assays represent technological limitations, especially
in resource scarce and low- and middle-income
country settings. Computational approaches using
digitized WSIs offer distinct advantages including low
cost of implementation, scalability and, most impor-
tantly, non-tissue destructive tissue assays using H&E
images of routinely acquired diagnostic pathology
slides. Given the need to define tumor sites of origin
to direct cancer specific therapies, and to preserve
what are often small tissue specimens for advanced
molecular testing, digital pathomics technologies have
a potentially important role to play in these patients.
Computational approaches using digitized WSIs

offer distinct advantages including low cost of

Figure 6. Similarity heat map of a selected breast case. Euclidean distances between the metastatic signal and patches from its
corresponding primary were calculated using the CBIR classifier. Similarity was then calculated as the reciprocal of the calculated
distance and overlaid as a heat map (A). The magnification of the raw WSI, generated similarity heat map, as well as attention map are
also plotted in panel (B). Patches with cooler colors in the similarity map represent lower similarity between these patches and the
corresponding metastatic slide. The attention map highlighted region with higher importance to classify tumor as metastasis.
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implementation, scalability and, most importantly,
non-tissue destructive tissue assays using H&E images
of routinely acquired diagnostic pathology slides.
In this work, we constructed a dataset consisting of

paired liver metastatic tumors and corresponding pri-
mary adenocarcinomas derived from four common
PSO of liver metastases. Models were trained using
either a HC- or DL-based approach to identify PSO of
liver metastases. By fusing the decisions generated by
the HC and DL classifiers together, we also created a
fused model. The trained model was then evaluated on
a hold-out validation set comprised solely of liver
metastases without corresponding primary tumor. We
demonstrated that the fused DL + HC classifier
slightly outperformed classifiers trained via HC or DL
approaches alone. This work demonstrates the feasibil-
ity of a combined computational pathology approach,
which harnesses the strengths of both HC and DL for
the identification of a site of origin in clinical samples
of liver metastases for four common cancers.
Histomorphometric features have been widely used to

risk-stratify tumors and have yielded reliable
performance in characterizing various cancer types [11–
13,15,28–30]. This work extends the use of histomor-
phometric features to the identification of the origin of
tumors. Among the various feature families considered
in this work, CCM features yielded the highest classifi-
cation value, followed by texture features of the nuclei.
The most selected features were from the FeDeG family,
features that reflect the spatial architecture of individual
cancer cells. These CCM and FeDeG features likely
reflect the morphological and glandular differences of
nuclei with sites of origin. In addition, cytoplasmic tex-
ture further enabled discrimination between tumors of
different origins. Despite substantial research demon-
strating the value of TILs and carcinoma-associated
stroma (CAS) being prognostic for various cancer types
[31–35], we intentionally excluded TILs and CAS from
our analysis as these were not unique to certain primary
tumors and no literature was identified to help support
the case that these features are associated with PSO.
Additionally as part of a proof of concept demonstra-

tion, we were able to illustrate the utility of the HC
approach to suggest the intratumoral site of origin of can-
cer metastases in a set of paired primary/metastatic
tumors. While the approach needs to be validated via
molecular-based approaches, this approach could have
the potential for defining cancer subclone populations
with varying biological profiles directly from H&E slides.
The metastatic signal mapped back to the

corresponding primary tumors implies that the meta-
static tumor was more similar to moderately
differentiated tumor regions as opposed to poorly

differentiated regions. We also identified that the met-
astatic signal was more similar to the image patches of
the primary tumor from the epithelium rich regions
compared with stromal-rich regions. We note that find-
ings from experiment 3 are somewhat exploratory and
preliminary and consequently we abstain from drawing
too many conclusions from these findings. However,
these initial results do suggest to the need to
correlate these morphometric findings with spatial
transcriptomics to get at the molecular underpinning of
our observations.
The work of Lu et al [17] is the closest work related

to our study. Both studies focused on identifying the
origin of tumors using computational pathology. Lu
et al utilized multi-task, multi-instance DL methods to
predict the origin of metastases in 18 different cancers.
Their model also deployed an attention-based, multiple-
instance learning algorithm to identify those regions
with higher importance. While our model had a lower
performance when compared directly with the work of
Lu et al, our approach also did not have the benefit of
the large number of training cases employed in the Lu
et al study. A benefit of our approach lies in that we
demonstrated the utility and inclusion of interpretable
image features, our preliminary results indicate that the
combination of the interpretable image features with the
DL classifier enables more accurate prediction com-
pared with a DL or HC classifier alone.
Our work does have its limitations. The dataset size

was a major limitation of this work, with only
175 cases from 114 patients. In experiment 2, we did
not see a statistically significant improvement in the
combination of the HC and DL approaches, this how-
ever may be on account of the limited sample size
considered in this study. However given the comple-
mentarity of the two categories of approaches, we
expect that on larger, powered datasets, fusion strate-
gies, such as deep orthogonal fusion, could demon-
strate superiority over either individual classifier [36].
The manual delineation of the tumor regions on the
WSIs was yet another limitation of the study and we
will look to apply automated approaches for tumor
segmentation in future studies. Given the constraints
of the 256 � 256 pixel [2] patch size, we primarily
utilized features at the cytological level in our third
experiment. We acknowledge that the inclusion of
higher level features such as architectural or slide-level
ones could potentially enhance the accuracy of our
results. Nevertheless, our choice of a smaller patch
size was intentional, as it allows for the generation of
more detailed heat maps. It is a conscious trade-off we
made to balance between detailed feature extraction
and heat map resolution clarity.
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An additional limitation of this study is the
necessity to use biopsy samples for the majority of
liver metastases analyzed as well as for a significant
number of cancer primaries. The latter were
chosen to avoid primary cancers that had undergone
preoperative chemoradiation – an accepted practice in
breast, pancreas, and esophageal oncologic practice.
Intrinsically, biopsies provide less information than re-
section slides as the spatial and anatomical orientation
were lost during the procedure. However, due to the
scarcity of paired primary and metastatic tumor
samples, it is impossible for us to exclusively use
resection WSIs. Another limitation of this study is the
absence of external, independent validation sets which
restricts our ability to thoroughly test the generalizabil-
ity of the trained models. Moreover, the investigation
focused primarily on adenocarcinomas derived from
four common sites of liver metastases. Future work
will include a broadening of the scope of the study by
including diverse cancer types, such as gastric adeno-
carcinoma and cholangiocellular carcinoma. Moreover,
the use of external open image sources such as The
Cancer Genome Atlas will be pursued to enhance the
robustness and validity of the findings. By addressing
these limitations, we aim to improve the predictive
power and clinical utility of our pathomics approach.
In conclusion, we present an approach combining

DL with HC histomorphometric features to identify the
site of origin of metastatic liver tumors. Since our
approach requires only H&E-stained WSIs, it is tissue
non-destructive and cheaper compared with molecular
assays. We also demonstrate that our approach can
potentially be used to spatially identify the likely site of
origin of a metastasis by direct comparison of matched
primary-metastasis pairs. Future work will validate
these features on multi-site, multi-institutional datasets
and extend the approach to additional tumor sites.
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