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Abstract

Bacterial (meningococcal) meningitis is a devastating infectious disease with outbreaks occurring 

annually during the dry season in locations within the ‘Meningitis Belt’, a region in sub-Saharan 
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Africa stretching from Ethiopia to Senegal. Meningococcal meningitis occurs from December to 

May in the Sahel with large epidemics every 5–10 years and attack rates of up to 1000 infections 

per 100,000 people. High temperatures coupled with low humidity may favor the conversion of 

carriage to disease as the meningococcal bacteria in the nose and throat are better able to cross 

the mucosal membranes into the blood stream. Similarly, respiratory diseases such as influenza 

and pneumonia might weaken the immune defenses and add to the mucosa damage. Although 

the transmission dynamics are poorly understood, outbreaks regularly end with the onset of the 

rainy season and may begin anew with the following dry season. In this paper, we employ a 

generalized additive modeling approach to assess the association between number of reported 

meningitis cases and a set of weather variables (relative humidity, rain, wind, sunshine, maximum 

and minimum temperature). The association is adjusted for air quality (dust, carbon monoxide), as 

well as varying degrees of unobserved time-varying confounding processes that co-vary with both 

the disease incidence and weather. We present the analysis of monthly reported meningitis counts 

in Navrongo, Ghana, from 1998–2008.
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1. INTRODUCTION: MENINGITIS IN AFRICA

Meningitis is endemic across the Sahel region of Africa. In locations within the ‘meningitis 

belt’, a region in sub-Saharan Africa stretching from Ethiopia to Senegal (Figure 1), 

outbreaks of meningococcal meningitis (Neisseria meningitides) occur annually during the 

dry season (Lapeyssonnie 1963; Greenwood 1999). Meningococcal meningitis typically 

occurs between December and May in the Sahel, with large, periodic epidemics every 2–10 

years. The historical attack rates range from 10 to 1,000 infections per 100,000 people, 

with a case fatality rate of approximately 10 % (Greenwood et al. 1987; Moore et al. 

1989). Although there are several subtypes of Neisseria meningitides, called serogroups, 

most epidemics are attributed to the meningococci of serogroup A. The levels of endemicity 

observed regularly in the Sahel region would be considered epidemic in the developed world 

(Molesworth et al. 2003).

The dynamics of the transmission of meningitis in the Sahel are poorly understood, 

and likely the result of a myriad of interacting factors, such as new strain introduction, 

population susceptibility to a new serogroup, previous infections which may predispose 

a person to meningitis, socio-economic status, migration, and environmental conditions. 

Nonethe-less, several studies point to the importance of weather-related influences on 

disease-transmission. Early research by Lapeyssonnie (1963) noted the occurrence of 

epidemics during the dry, dusty season, and it is hypothesized that high temperatures 

coupled with low humidity may favor the conversion of benign meningococcal meningitis 

bacteria in the nose and throat to a pathogenic by damaging the mucosa and lowering 

the immune defense (Greenwood et al. 1984; Moore 1992; Greenwood 1999). Since then, 

several other researchers have hypothesized links between weather and meningitis, most 

notably Cheesbrough et al. (1995), Molesworth, Cuevas, and Thomson (2002), Besancenot, 
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Boko, and Oke (1997), Molesworth et al. (2003). Sultan et al. (2005a, 2005b, 2005c, 2007), 

Yaka et al. (2008), Roberts (2008), Thomson et al. (2006), and Cuevas et al. (2007). It is 

fairly well accepted that outbreaks in areas of hyperendemicity tend to end abruptly with the 

increased humidity associated with the onset of the rainy season, and may begin anew with 

the following dry season.

Importance of the relationship between weather and meningitis is particularly high-lighted 

within the context of climate change, where global warming and altered precipitation 

patterns may indicate favorable conditions for meningitis spread in the future. Based on 

the ensemble mean of 21 models, the near-surface temperatures in sub-Saharan Africa are 

projected to continue warming at a rate of about 0.25–0.35 degree Celsius per decade, 

with temperatures at the end of the 21st century about 3 degree Celsius warmer than at 

the beginning of the century (Christensen et al. 2007; Trenberth et al. 2007). Rainfall 

projections based on ensemble means of two most recent IPCC AR4 models are highly 

uncertain (Christensen et al. 2007), with half of the models projecting an increase, and half 

decrease in the annual rainfall for the region. Consequently, the decreasing rainfall trends 

and more severe drought conditions that were observed in the region during the 20th century 

(Trenberth et al. 2007) may continue in the 21st century.

In addition to weather variables (such as relative humidity) thought to be related to 

meningitis incidence, disease and pollution may contribute to incidence of meningitis. It 

has been observed that outbreaks of meningitis are often preceded by high incidence of 

respiratory diseases such as pneumococcal pneumonia, which may weaken the immune 

system and further damage the mucous membranes (Moore et al. 1990). In the northern 

region of Ghana, Hodgson et al. (2001) found that exposure to smoke from cooking fires 

increased the risk of contracting meningococcal meningitis. This increased risk suggests 

that exposure to elevated concentrations of air pollutants, such as carbon monoxide (CO) 

and particulate matter, may be linked to illness. However, more research is needed to better 

understand other potential sources of pollution and their relative contributions to illness. 

Sources of air pollutants in the region occur at local scales (e.g., cooking, local dust) 

and regional scales (e.g., biomass burning, large-scale dust events), and their linkages to 

meningitis are not well understood.

The current efforts in controlling meningitis are mostly focused on vaccination, and 

therefore identifying populations at risk using epidemiological and microbiological 

surveillance as well as forecasting systems, remains a public health priority. As a part of that 

effort, understanding the role that weather variables play in a meningitis outbreak is crucial. 

Reliable weather forecasts may be used to guide vaccine allocation before the meningitis 

season starts, and coordinate other intervention strategies. However, as an infectious disease, 

meningitis is spread through contact, and consequently, behavior of the population, contact 

networks, and social activity are all expected to be related to incidence of meningitis. 

These “societal and behavioral processes”, may also be related to weather, as they are often 

seasonal in nature. For example, farm workers often migrate from northern to southern 

Ghana during the Sahelian dry season to help with the harvest in the south (Hayden et al. 

forthcoming). Hence, these processes are potentially time-varying confounders, and failure 
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to account for them could result in biased estimates of weather effects, and potentially futile 

interventions.

The research presented in this paper is a step toward the goal of understanding the 

association between several key weather variables and meningitis outbreaks, and providing 

a basis for further development of reliable disease activity forecasts in an effort to 

reduce the spread of meningitis. This paper focuses on assessing the relative impact of 

environmental factors, including weather, on meningitis, via a generalized additive model 

(GAM) framework, linking meningitis case counts to a set of weather variables (relative 

humidity, rain, wind, sunshine, maximum and minimum temperature), while adjusting for 

several air quality variables (dust, CO emissions from fires) as well as for the unobserved 

time-varying confounding processes. We present the results based on 11 years of meningitis 

outbreak and meteorological data in Navrongo, Ghana (Figure 1).

2. DATA

The data were collected by researchers (and co-authors) at the Navrongo Health Research 

Centre (NHRC). The NHRC is located in Navrongo, near Ghana’s northern border with 

Burkina Faso, in the Kassena-Nankana District (KND) of the Upper East Region of Ghana 

(Leimkugel et al. 2007), as shown in Figure 1. The savannas of Sahelian Africa, where KND 

is situated, experience two main weather seasons: wet season from June to October and a 

dry season for the rest of the year. The population size is approximately 140,000, and most 

inhabitants live in rural areas, except for approximately 20,000 residents who live in the city 

of Navrongo (Nyarko et al. 2002).

The epidemiological data included total monthly counts of meningitis and pneumonia each 

month over the 11-year period, from 1998 to 2008. The cases were laboratory-confirmed 

at the Navrongo Health Research Centre, which serves as the reference laboratory for 

the Upper East Region of Ghana. The meteorological data were collected from the local 

Navrongo weather station which is operated by the Ghana Meteorological Services. Weather 

variables included daily dust status, number of sunshine hours, maximum and minimum 

temperature, relative humidity, rain quantity, and wind speed. Given that meningitis case 

counts were aggregated on the monthly scale, the weather data were provided as monthly 

totals or averages (percents in the case of categorical variables, such as dust). All data were 

collected and entered into an electronic database by the NHRC researchers. In addition 

to the observed weather variables, the CO emission estimates (in grams of CO per day) 

were produced by the Fire Inventory model (FINNv1; Wiedinmyer et al. 2011), developed 

at the National Center for Atmospheric Research (NCAR). The FINNv1 was used to 

generate daily CO emission estimates for a small area of Northern Ghana, based on satellite 

observations of active fires. These daily CO values were averaged for each month to form 

the monthly average “CO per day” variable used in the analysis.

Little is known about other processes related to the spread of meningitis as an infectious 

disease, such as migration, social contacts, and overall population health and immunity 

levels. Human migration patterns vary during the year, and are largely driven by harvesting 

schedules. Ghana also has a meningitis vaccination campaign, which varies from year to 
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year in its success rate. Between 1997 and 2002, yearly vaccination was available to the 

entire KND district, while between 2003 and 2005 the vaccine was available to smaller 

groups (Leimkugel et al. 2007). For the purposes of our analysis, all these patterns can be 

considered time-varying confounders, while their yearly averages can be viewed as a part of 

the fixed year-specific factors, discussed in more detail in the next section.

3. GENERALIZED ADDITIVE MODELS FOR MENINGITIS

In order to estimate the effects of important weather variables with minimal bias, adjustment 

for the many confounders that may be related to both meningitis and to the weather variables 

is necessary. This includes confounders that are relatively unchanging during the year (such 

as population characteristics, or whether a vaccination campaign was in place), as well as 

those that change during the course of the year (behavioral and social factors, migration, 

vaccine uptake over time, etc.).

To estimate the effects of weather variables and adjust for possible static and time-

varying confounders, we employ the generalized additive modeling framework (Hastie and 

Tibshirani 1999). While generalized additive models have been widely used as a standard 

method in studies of air pollution and health over the last decade (see for example Schwartz 

1994a, 1994b; Dominici et al. 2000, 2004; Peng, Dominici, and Louis 2006; Zibman 2009), 

the current paper presents one of the first instances of using GAM in the arena of infectious 

diseases.

As a more flexible alternative to generalized linear models, generalized additive models 

(GAM) are capable of flexibly modeling the relationship between incidence and weather, 

by including a semiparametric smooth function of time as a proxy for time-varying 

confounding processes. These time-varying confounders include complex social and 

behavioral processes (e.g. vaccination uptake and migration) and health patterns (respiratory 

illness, influenza, immunity) which co-vary with both the meningitis incidence and with 

weather. These processes are assumed to vary slowly relative to the weather predictors of 

interest, and will thus tend to capture more the seasonal variation in incidence. For example, 

relative humidity can change drastically from month to month, but processes like migration 

tend to change more slowly as they are likely linked to seasonal variation.

3.1. Model Specification

We use GAM to assess the association between reported meningitis outbreak severity 

and a set of weather variables (relative humidity, rain, wind, sunshine, maximum and 

minimum temperature), while adjusting for several air quality proxy variables (dust, CO), as 

well as for the unobserved time-varying confounding processes. Time-varying unobserved 

confounders are proxied by a flexible function of time, modeled as a low-degree cubic spline 

that slowly varies over time. The coefficients of the spline bases were estimated jointly with 

the other parameters in the model. As the outcomes in our model are the monthly counts 

of reported meningitis cases, the log was chosen as the link function (Hastie and Tibshirani 

1999).
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The outcome modeled is the monthly number of lab-confirmed reported meningitis cases, 

Yjt (where j = 1,…,11 denotes the year, and t = 1,…, 12 denotes the month within each 

year). The outcome Yjt is modeled as a Poisson distributed random variable with the mean μ 

jt, where

log μjt = g t + Xjtβ . (1)

Here, g(t) is a smooth function of time across the 12 months that estimates the effect of all 

unobserved time-varying confounding processes, related both to the incidence of meningitis 

and to the weather. Note that this function also captures the seasonality effect in a flexible 

way. In some models, attempts to deal with seasonality involve including a fixed effect 

indicator for each month, or a sine function over the course of 12 months. Our function g(t) 
can be viewed as a smoothed analogue of the month-specific effects.

The function g(t) is assumed to have the same shape each year. However, we allow each 

year to have its own fixed intercept, capturing the differences in incidence between years 

that are due to static unobserved confounders such as population changes, population health, 

serogroup prevalence, vaccination campaigns, and general socio-economic conditions in the 

region.

In addition to the year-specific intercepts, the vector of coefficients β contains the effects 

of weather and pollution variables and exposures collected in the covariate matrix Xjt: total 

monthly rain amount (in millimeters), maximum daily temperature for the month (degree 

Celsius), monthly average relative humidity measured at 3 pm (percent), monthly average 

number of sunshine hours in a day, monthly average of daily wind speed (kilometers per 

hour), percent of days with dust, and CO emissions from fires (grams CO per day). We 

will also examine the interaction between temperature and relative humidity. The pairwise 

scatterplots of variables are shown in Appendix.

Besides the variables describing the physical environment, we also consider including the 

number of cases of pneumonia in the preceding months as a proxy for respiratory health. 

This variable will be used to test the hypothesis that weakened immune system and damaged 

mucosa ultimately play a role in meningitis incidence.

4. RESULTS

4.1. Full GAM

We start with the full model, which includes all weather and pollution covariates, year-

specific intercepts, and the year-long smooth function of time, g(t), represented by cubic 

splines. This function is taken to represent yearly seasonality, and the basic seasonality 

shape is assumed to stay the same each year. The year-specific intercepts accommodate 

differential baseline risk from year to year, due to strain-specific and average population 

characteristics that do not vary over the course of the year.

A subset of variables (CO emissions, humidity, rain, minimum temperature, wind speed, and 

pneumonia cases) thought to have a longer-term effect on the risk of meningitis are lagged, 
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allowing us to understand the relationship between these variables and meningitis incidence 

in the months that follow. Only the first two lags (values from the previous month and from 

two months ago) were considered. The best set of lags for all variables was chosen based 

on the AIC criterion, based on the model with g(t) with 4 degrees of freedom. The first lag 

was found to be most significant for all variables except pneumonia, for which the second 

lag was the most powerful predictor of meningitis incidence. The variables whose effect is 

thought to be more immediate, such as dust (under the assumption that it irritates the throat 

immediately), maximum temperature (under the assumption that it causes dehydration and 

discomfort), and sunshine (generally associated with temperature) were not lagged.

The model was fit by maximizing the penalized log-likelihood. The estimated linear effects 

for the full model are summarized in Table 1. We fit two versions of the full GAM models: 

one with a very flexible 8-degree-of-freedom function of time over 12 months, and the other 

with a more rigid 4-degree-of-freedom function of time. As expected, the more degrees of 

freedom the yearly function g(t) has, the more variance is allowed to be explained by the 

time-varying confounders. However, the stronger predictors are expected to remain strong 

across the models with different smoothness assumptions about g(t).

As we see from Table 1, the higher levels of current month temperature, sunshine, percent 

of dusty days, as well as previous month’s CO emissions and wind, tend to co-occur with 

the higher meningitis incidence. On the other hand, higher levels of previous months’ 

minimum temperature, relative humidity and rain are associated with lower levels of 

meningitis incidence. All estimated weather effects preserve their signs in the two models, 

and maximum temperature, relative humidity, dust and CO emissions seem most persistently 

associated with incidence. As expected, the significance of the predictors is slightly higher 

in the 4-degree model, although the results from the two models appear to be qualitatively 

the same.

More specifically, the 4-degree model estimates that for every one degree Celsius increase 

in monthly average maximum temperature, holding other variables constant, the log of the 

mean number of meningitis cases increases by 0.181—or equivalently, the mean number 

of cases increases approximately by 20 %. Consequently, a 10 degree Celsius increase in 

the monthly average maximum temperature is associated with the 6-fold increase in the 

mean monthly number of meningitis cases, holding all other variables in the model constant. 

Similarly, every one percent increase in relative humidity is associated with approximately 

2.7 % decrease in the log of mean number of cases in the 4-degree model, holding all else 

constant, implying a 72 % reduction in expected monthly meningitis counts with every 20 

% increase in relative humidity. Given that the relative humidity was observed to range 

between 6 % and 73 % during the course of the year, this magnitude of change is not 

uncommon.

The most significant predictors in the full model seem to be the current month maximum 

temperature, total number of days with dust, the previous month average relative humidity 

at 3pm, as well as burning biomass as captured by the CO emissions from fires. It is 

interesting to note that the burning precedes the dust from the Sahara by one or two 

months. It is possible that the previous month CO emissions are capturing in part the past 
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cumulative effects of other variables, as they are a result from a model using a variety of 

meteorological and physical processes from preceding months in addition to the satellite 

observations of burning biomass. Furthermore, most other air pollutants directly emitted 

from fires will roughly scale to CO, so the CO emissions in our model may be acting as 

a proxy for other pollutants related to smoke. Current month CO, minimum temperature, 

rain and humidity were not significantly related to the incidence, given other variables in the 

model. Similarly, previous month maximum temperature, sunshine, and dust, as well as the 

interactions between relative humidity and temperature, were not found to be significant.

Pneumonia cases were most significant when lagged by 2 months, given other variables in 

the model. This variable, like CO, may also be capturing to some degree the cumulative 

negative effects of other previous months’ variables. Interestingly, pneumonia cases appear 

to be almost orthogonal to the rest of the variables in the model: removing it from the model 

resulted in negligible change in the estimated coefficients.

The model fit is best illustrated in Figure 2. Apart from failing to capture very small 

outbreaks, year-specific intercepts and time-varying g(t) allow the model to track the actual 

number of cases over the course of 11 years very closely. There is very little difference in 

fitted values between the GAM models with 4 and 8 degrees of freedom.

The smooth function of time, g(t), was fit with cubic smoothing splines, first with 4 and 

then with 8 degrees of freedom. These estimated functions of time (without year-specific 

intercepts) are given in Figure 2. It is notable that the basic shape of the estimated function 

is relatively stable across the two models: after the first quarter (January–March), it appears 

to be roughly linearly decreasing for the rest of the year. That corresponds to the higher 

underlying risk of meningitis from January until March, and then a continual decay (given 

all the other predictors in the model) from April to December. This estimated unobserved 

effect captures the auto-correlation and seasonality of the meningitis epidemic, and matches 

the conventional wisdom about the epidemic seasonality.

Note that g(t) is not required to “wrap around”, and thus we do not require December’s 

estimate to be close to January’s estimate. The g(t) function is instead allowed to be 

shifted up and down for each year by the value of the year-specific intercept, mitigating the 

December–January gap. There is much variation in the incidence from year to year, which 

can perhaps best be captured by the range of the year-specific intercepts (relative to the first 

year): they range from −8.9 to 0.33 (on the log scale). This strongly suggests that there are 

factors that vary from year to year, such as average immunity, serogroup prevalence, vaccine 

availability, among others, which influence the size of the epidemic.

4.2. Reduced GAM

Results thus far suggest that a more parsimonious GAM model with fewer predictors 

might be appropriate. To that end, we fit a reduced GAM with the 4-degree-of-freedom 

semiparametric g(t), without some of the redundant or collinear variables. Common sense 

suggests that Navrongo rain is redundant if temperature and humidity are in the model. 

Likewise, sunshine is related to temperature. From Appendix and Table 1, it appears that 

wind speed and sunshine are not powerful predictors, given other variables in the model. In 
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fact, rain, wind speed and sunshine are strongly related to dust, humidity, and temperature. 

We will thus require the final model to contain current maximum temperature and dust, past 

month’s humidity and CO, and pneumonia from two months prior as the predictors. The 

other 4 variables will be selected into the model based on the overall AIC.

The results from the winning reduced model (among 16 candidate models) with 4 degrees 

of freedom are shown in Table 2. The model fit and estimated g(t) are shown in Figure 

3. As we see, the results from the restricted model are qualitatively similar to the full 

model, with maximum current month’s temperature now even more significantly related 

to the meningitis incidence. Relative humidity and minimum temperature from previous 

month still appear to act “protectively” as they are negatively associated with meningitis 

case counts. Current month’s percent of dusty days, and CO emissions from last month are 

both still positively associated with meningitis counts, although dust is not as significant in 

the reduced model as it was in the full model. Similarly, pneumonia from 2 months ago 

appears to be significantly positively associated with meningitis incidence.

4.3. GAM with Lagged Predictors

We also consider alternative versions of GAM that use only lagged predictors. Although the 

best model with only lagged variables is not as powerful in terms of explaining variation 

in the case counts as the best model with both current and lagged predictors (the deviance 

is greater by 50 %), a model that uses lagged variables could be used for (very) short-term 

prediction of the behavior of the outbreak within the epidemic season. To this end, we 

propose two 4 degree-of-freedom models—the first one using only the weather and pollution 

variables, and the second one with the pneumonia counts added. Due to strong dependence 

between minimum and maximum temperatures from the same month given the other 

variables in the model, we have excluded previous month’s maximum temperature, as the 

previous month’s minimum temperature appears to have a stronger effect on incidence. In 

fact, replacing previous month’s maximum temperature with the average number of sunshine 

hours appears to result in a stronger model (reducing the deviance by 15 %), while leaving 

all other effects approximately unchanged. Excluding dust and wind speed also changes the 

fit of this model by a minute amount (deviance further changes by approximately 1 %). 

Given these results, we present only the best reduced model with lagged covariates. Adding 

pneumonia seems to contribute significantly to the model, changing the deviance by 8 %. 

The results are shown in Table 3, and Figure 4.

4.4. Generalized Linear Model (GLM) Alternative

Given the GAM results above, it appears that a two-piece linear function might be a fairly 

decent approximation of g(t) in almost all different models. With such a relatively simple 

form of g(t), fitting a generalized linear model (GLM) might be a reasonable alternative. 

In a GLM, the function g(t) would not be modeled by splines any longer, but instead as a 

parametric (piece-wise linear) function of time, with one slope from January to March, and 

another slope from April to December.
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The GLM model we employ is Poisson regression, with the log link, as before. The 

outcome, case counts, Yjt is again modeled as a Poisson distributed random variable with the 

mean μjt, where

log μjt = α1tI t < 4 + α2t + Xjtβ . (2)

Here, α1tI t < 4 + α2t is a piece-wise linear function of time across the 12 months, with slope 

α1 + α2 for the first three months (January through March) and slope α2 for the remainder 

of the year. This piece-wise function of time now captures the effect of unobserved time-

varying confounders, somewhat less flexibly than g(t). The estimated main effects from 

the best GLM fit are shown in Table 4. This model is qualitatively similar to the previous 

models in this analysis, with one notable exception: here, the previous month’s rain appears 

more significant than the previous month’s minimum temperature. Given that the two 

variables are highly correlated, we keep the previous month’s rain variable and leave out 

minimum temperature. Model fit is shown in Figure 5, indicating little difference in the fit 

values from earlier models.

4.5. Model without Weather and Pollution Predictors

The large span of the estimated year-specific intercepts and robustly good fit of the GAM 

and GLM models beg the question of whether the weather variables in fact contribute to our 

efforts to understand meningitis in a substantial way. To answer that question we looked at 

the model without any weather and pollution predictors—only the year-specific intercepts 

and the smooth function of time with 4 degrees of freedom. The deviance of this model was 

about 75 % higher than of the best reduced GAM model with weather predictors (presented 

in Table 2), and approximately 150 % higher than the full GAM model (presented in Table 

1). When we added pneumonia counts, the deviance of that model was 45 % higher than of 

the best reduced GAM model with weather predictors, and approximately twice the deviance 

of the full GAM model.

The fitted values and g(t) for the two models without weather and pollution predictors are 

shown in Figure 6. As can be seen, the basic shape of the estimated g(t) functions is more 

pronounced though it remains qualitatively similar to the estimated g(t) from the full GAM 

model, capturing the seasonal behavior of meningitis. However, the fitted values for this 

model are not matching the observed meningitis counts as closely as before. In particular, 

the peaks are not well described, and three out of four large peaks are underestimated by 

approximately 10 % and 40 %. Weather and pollution seem to influence the severity of 

meningitis outbreaks in a consistent way from year to year, and this is particularly visible (as 

expected due to the nature of log-linear models) during large outbreaks.

5. DISCUSSION

In this paper we have carried out a generalized additive model analysis of meningitis 

outbreaks in Navrongo, Ghana, aiming to estimate in an unbiased way the effects of weather 

variables such as rain, relative humidity, temperature, and air quality variables including dust 

and CO emissions, on meningitis incidence.
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The models adjusted for different degrees of time-related confounders, in order to examine 

the persistence of weather predictors under different amounts of confounding adjustment. 

All models pointed to the relevance of weather and pollution variables, and particularly 

persistent were the effects of current month’s average maximum temperature, previous 

month’s relative humidity, and previous month’s CO emissions due to fires. It appears that 

weather is robustly responsible for explaining some of the variation in meningitis counts, 

and its effect is, as expected due to the nature of log-linear models, especially visible during 

large outbreaks. Accounting for weather can improve our estimates of average laboratory-

confirmed meningitis counts by up to 40 %.

Adjustment for the confounding variables is particularly relevant when evaluating possible 

strategies for intervention, and their costs and benefits. For example, with the estimate of 

the relative humidity effect, the expected reduction in meningitis incidence due specifically 

to intervention aimed at household mechanisms for increasing humidity, could be evaluated. 

Similarly, one could compare the expected benefits of that intervention with another aimed 

at decreasing dust and pollution via increasing household ventilation or via addition of 

cooking stoves with better combustion properties.

Note that in general, the generalized additive framework is not meant to be used for 

prediction of future epidemic size. These models are used to estimate the relative “net” 

impact of specific weather and pollution variables on the size of the epidemic, without 

the influence of confounders. Consequently, these models can be used to evaluate the 

impact of interventions on weather-related variables (such as decreasing the temperature 

and increasing relative humidity for example) on the expected meningitis incidence. They 

can also be used to assess the impact of climate change on the future meningitis disease 

outbreaks.

Our results indicate that interventions aimed at reducing temperature, dust, smoke and CO 

exposure, or increasing relative humidity and ventilation via some household intervention 

mechanism, may reduce the public health burden of meningitis outbreaks, especially during 

large outbreaks. These results are in agreement with empirical evidence: the people from 

rural Ghana recognize meningitis as a disease of “hot and dusty” days. However, although 

we have no concrete biological explanation for why current maximum temperature is so 

strongly associated with meningitis, the persistence of this relationship in a variety of 

models is noteworthy. Temperature may be a proxy for other variables such as food quality, 

weakened immunity, or perhaps a biological mechanism that is, as of yet, undocumented. 

In addition, it is possible that prolonged periods of high temperature may change individual 

behavior in ways that enhance meningitis spread. Further research is needed to shed light on 

mechanisms behind the observed temperature effect.
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APPENDIX:

PAIRWISE RELATIONSHIPS AMONG NAVRONGO VARIABLES

REFERENCES

Besancenot JP, Boko M, and Oke PC (1997), “Weather Conditions and Cerebrospinal Meningitis 
in Benin (Gulf of Guinea, West Africa),” European Journal of Epidemiology, 13 (7), 807–815. 
[PubMed: 9384271] 

Cheesbrough JS, Morse AP, and Green SDR (1995), “Meningococcal Meningitis and Carriage in 
Western Zaire—a Hypoendemic Zone Related to Climate,” Epidemiology and Infection, 114 (1), 
75–92. [PubMed: 7867746] 

Christensen JH, et al. (2007), “Regional Climate Projections,” in Climate Change 2007: The 
Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of 
the Intergovernmental Panel on Climate Change, eds. Solomon S et al., Cambridge: Cambridge 
University Press.

Dukić et al. Page 12

J Agric Biol Environ Stat. Author manuscript; available in PMC 2024 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cuevas LE, et al. (2007), “Risk Mapping and Early Warning Systems for the Control of Meningitis in 
Africa,” Vaccine, 25, A12–A17. [PubMed: 17517453] 

Dominici F, Samet JM, and Zeger SL (2000), “Combining Evidence on Air Pollution and Daily 
Mortality from the 20 Largest US Cities: A Hierarchical Modeling Strategy,” Journal of the Royal 
Statistical Society, Series A, 163 (3), 263–284.

Dominici F, McDermott A, and Hastie TJ (2004), “Improved Semiparametric Time Series Models of 
Air Pollution and Mortality,” Journal of the American Statistical Association, 99 (468), 938–948.

Greenwood BM, Blakebrough IS, Bradley AK, Wali S, and Whittle HC (1984), “Meningococcal 
Disease and Season in Sub-Saharan Africa,” Lancet, 1, 1339–1342. [PubMed: 6145036] 

Greenwood BM, Greenwood AM, and Bradley AK, et al. (1987), “Factors Influencing the 
Susceptibility to Meningococcal Disease During an Epidemic in The Gambia, West Africa,” The 
Journal of Infectious Diseases, 14, 167–184.

Greenwood B (1999), “Meningococcal Meningitis in Africa,” Transactions of the Royal Society of 
Tropical Medicine and Hygiene, 93 (4), 341–353. [PubMed: 10674069] 

Hastie T, and Tibshirani R (1999), Generalized Additive Models, London: Chapman & Hall.

Hayden MH, Dalaba M, Awine T, Akweongo P, Hodgson A, Nyaaba G, Anesaba D, Pelzman J, and 
Pandya R (in preparation for submission to the AJTMH), “Knowledge, Attitudes and Practices 
Related to Meningitis in Northern Ghana.”

Hodgson A, Smith T, Gagneux S, Adjuik M, Pluschke G, Kumasenu Mensah N, Binka F, and Genton 
B (2001), “Risk Factors for Meningococcal Meningitis in Northern Ghana,” Transactions of the 
Royal Society of Tropical Medicine and Hygiene, 95, 477–480. [PubMed: 11706652] 

Lapeyssonnie L (1963), “Cerebrospinal Meningitis in Africa,” Bulletin of the World Health 
Organization, 28, 3–114.

Leimkugel J, Hodgson A, Adams Forgor A, Pfluger V, Dangy JP, Smith T, Achtman M, Gagneux 
S, and Pluschke G (2007), “Clonal Waves of Neisseria Colonisation and Disease in the African 
Meningitis Belt: Eight-Year Longitudinal Study in Northern Ghana,” PLoS Medicine, 4 (3), 535–
544.

Molesworth AM, Cuevas L, and Thomson MC (2002), Forecasting Meningitis Epidemics in Africa, 
Liverpool: LSTM.

Molesworth AM, Cuevas LE, Connor SJ, Morse AP, and Thomson MC (2003), “Environmental Risk 
and Meningitis Epidemics in Africa,” Emerging Infectious Diseases, 9 (10), 1287–1293. [PubMed: 
14609465] 

Moore PS, Reeves MW, Schwartz B, Gellin BG, and Broome CV (1989), “Intercontinental Spread of 
an Epidemic Group A Neisseria Meningitidis Strain,” Lancet, 2, 260–263. [PubMed: 2569063] 

Moore PS, Hierholzer J, and DeWitt W, et al. (1990), “Respiratory Viruses and Mycoplasma as 
Cofactors for Epidemic Group A Meningococcal Meningitis,” Journal of the American Medical 
Association, 264, 1271–1275. [PubMed: 2117679] 

Moore P (1992), “Meningococcal Meningitis in Sub-Saharan Africa: A Model for the Epidemic 
Process,” Clinical Infectious Diseases, 14, 515–525. [PubMed: 1554841] 

Nyarko P, Wontuo P, Nazzar A, Phillips J, Ngom P, et al. (2002), Navrongo DSS Ghana. Population, 
Health and Survival at INDEPTH Sites, Accra (Ghana): INDEPTH, Vol. 1. Available at: http://
www.indepth-network.net/dss_site_profiles/navrongo.

Peng RD, Dominici F, and Louis TA (2006), “Model Choice in Time Series Studies of Air Pollution 
and Mortality,” Journal of the Royal Statistical Society, Series A, 169 (2), 179–203.

Roberts L (2008), “An ill Wind, Bringing Meningitis,” Science, 320 (5884), 1710–1715. [PubMed: 
18583588] 

Schwartz J (1994a), “Nonparametric Smoothing in the Analysis of Air Pollution and Respiratory 
Illness,” Canadian Journal of Statistics, 22, 471–487.

Schwartz J(1994b), “PM10, Ozone, and Hospital Admissions for the Elderly in Minneapolis-St. Paul, 
Minnesota,” Archives of Environmental Health, 49, 366–374. [PubMed: 7944569] 

Sultan B et al. (2005a), “Climate Drives the Meningitis Epidemics Onset in West Africa,” PLoS 
Medicine, 2 (1), 43–49.

Dukić et al. Page 13

J Agric Biol Environ Stat. Author manuscript; available in PMC 2024 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.indepth-network.net/dss_site_profiles/navrongo
http://www.indepth-network.net/dss_site_profiles/navrongo


Sultan B (2005b), “Influence of Climate Upon the Meningitis Onset in West Africa,” Medicine 
Sciences, 21 (5), 470–471.

Sultan B, Labadi K, Guegan JF, and Janicot S (2005c), “Climate Drives the Meningitis Epidemics 
Onset in West Africa,” PLoS Medicine, 2, e6. [PubMed: 15696216] 

Sultan B, Chiapello I, and Aouam M, (2007), “Le Rôle du Climat et des Aérosols sur les Épidémies de 
Méningite en Afrique de l’Ouest,” Colloque MSG, 13–14, Dijon.

Thomson MC, et al. (2006), “Potential of Environmental Models to Predict Meningitis Epidemics in 
Africa,” Tropical Medicine and International Health, 11 (6), 781–788. [PubMed: 16771998] 

Trenberth KE, et al. (2007), “Observations: Surface and Atmospheric Climate Change,” in Climate 
Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon S et al., 
Cambridge: Cambridge University Press.

Wiedinmyer C, Akagi SK, Yokelson RJ, Emmons LK, Al-Saadi JA, Orlando JJ, and Soja AJ (2011), 
“The Fire Inventory from NCAR (FINN)—A High Resolution Global Model to Estimate the 
Emissions From Open Burning,” Geoscientific Model Development Discussions, 3, 2439–2476.

Yaka P, Sultan B, Broutin H, Janicot S, Philippon S, and Fourquet N (2008), “Relationships Between 
Climate and Year-to-Year Variability in Meningitis Outbreaks: A Case Study in Burkina Faso and 
Niger,” International Journal of Health Geographics, 7, 34. [PubMed: 18597686] 

Zibman C (2009), “Methods for Confounding Adjustment in Time Series Data: Applications to Short 
Term Effects of Air Pollution on Respiratory Health,” PhD Thesis, Department of Statistics, 
University of Chicago.

Dukić et al. Page 14

J Agric Biol Environ Stat. Author manuscript; available in PMC 2024 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The African Meningitis Belt map (courtesy of CDC), and the enlarged map of Ghana, with 

the study region shaded.
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Figure 2. 
The GAM (full model) fit for the model with 4 degrees of freedom (dashed line) and the 

model with 8 degrees of freedom (full line); as can be seen, very little difference is observed 

in model fit. The estimated smooth functions of time, ĝ(t), across 12 months, show slight 

difference.
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Figure 3. 
The reduced GAM fit for the model and the estimated smooth function of time, ĝ(t) (with 4 

degrees of freedom) across 12 months.
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Figure 4. 
The fit for the 4-degree-of-freedom GAM with lagged predictors only: the model with 

pneumonia (dashed line) and without pneumonia (full line). As can be seen, the model with 

pneumonia added as a predictor shows slightly better fit. The estimated smooth functions of 

time, ĝ(t), across 12 months, show almost no difference.
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Figure 5. 
The GLM fit, with pneumonia (dashed line) and without pneumonia (full line). As can be 

seen, the model with pneumonia added as a predictor shows a slightly better fit.
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Figure 6. 
The GAM estimates for the model with 4 degrees of freedom, without any predictors (full 

line) and with pneumonia predictor added (dashed line). As can be seen, the model with 

pneumonia performs slightly better. Note that neither of the two models show as good of 

a fit as the models with weather and pollution predictors. The estimated smooth functions 

of time, ĝ(t) across 12 months, show minimal difference for the models with and without 

pneumonia.
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Table 1.

GAM model estimates for models with 8 and 4 degrees of freedom.

8 dof GAM 4 dof GAM

Predictor Coef. St. error z-stat Coef. St. error z-stat

Max temp (curr. month; degree C) 0.181 0.074 2.44 0.337 0.075 4.51

CO (prev. month; g CO/day) 0.013 0.003 3.68 0.008 0.003 2.53

% Dusty days (curr. month; %) 1.785 0.490 3.64 1 .100 0.498 2.21

Humidity at 3 pm (prev. month; %) −0.015 0.019 −0.81 −0.027 0.018 −1.46

Rain (prev. month; mm) −0.005 0.005 −1.04 −0.005 0.005 −0.99

Min temp (prev. month; degree C) −0.087 0.109 −0.80 −0.052 0.110 −0.47

Wind speed (prev. month; km/hr) 0.098 0.221 0.44 0.073 0.217 0.34

Sunshine (curr. month; hours) 0.110 0.132 0.84 0.028 0.132 0.21

Pneumonia cases (2 months ago) −0.007 0.033 −0.21 0.033 0.033 0.99
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Table 2.

Model estimates for the reduced GAM model with 4 degrees of freedom.

Predictor Coef. St. error z-stat

Max temp (current month) 0.461 0.068 6.80

Min temp (previous month) −0.103 0.082 −1.26

Humidity at 3 pm (previous month) −0.017 0.014 −1.16

% Dusty days (current month) 0.547 0.391 1.40

CO emissions (previous month) 0.006 0.002 2.61

Pneumonia cases (2 months ago) 0.082 0.027 3.01
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Table 3.

Estimates from the two 4-degree-of-freedom GAM models with lagged predictors only: with pneumonia as a 

predictor, and without.

Without Pneumonia With Pneumonia

Predictor Coef. St. error z-stat Coef. St. error z-stat

Rain (previous month) −0.017 0.005 −3.50 −0.019 0.005 −3.52

Min temp (previous month) −0.180 0.043 −4.18 −0.249 0.055 −4.53

Humidity at 3 pm (previous month) −0.040 0.017 −2.41 −0.038 0.017 −2.25

Sunshine Hours (previous month) 0.323 0.075 4.31 0.299 0.096 3.11

CO emissions (previous month) 0.005 0.002 2.20 0.005 0.002 2.55

Pneumonia cases (2 months ago) - - - 0.055 0.027 2.05
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Table 4.

Estimates for two alternative generalized linear models: with pneumonia as a predictor and without.

Without Pneumonia With Pneumonia

Predictor Coef: St. error: z-stat: Coef: St. error: z-stat:

January-March slope 0.185 0.066 2.8 0.177 0.067 2.65

April-December slope −0.271 0.057 −4.76 −0.272 0.06 −4.54

Max temp (current month) 0.413 0.066 6.27 0.414 0.068 6.12

CO emissions (previous month) 0.007 0.002 3.08 0.008 0.002 3.65

Humidity at 3pm (previous month) −0.027 0.016 −1.67 −0.033 0.017 −1.94

Rain (previous month) −0.005 0.005 −0.99 −0.005 0.005 −1.03

Pneumonia cases (2 months ago) – – – 0.062 0.026 2.37
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