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Microencapsulation of Mitragyna leaf extracts to be used  
as a bioactive compound source to enhance in vitro fermentation 
characteristics and microbial dynamics

Maharach Matra1, Srisan Phupaboon1, Pajaree Totakul2, Ronnachai Prommachart3,  
Assar Ali Shah1, Ali Mujtaba Shah4, and Metha Wanapat1,*

Objective: Mitragyna speciosa Korth is traditionally used in Thailand. They have a high 
level of antioxidant capacities and bioactive compounds, the potential to modulate rumen 
fermentation and decrease methane production. The aim of the study was to investigate the 
different levels of microencapsulated-Mitragyna leaves extracts (MMLE) supplementation 
on nutrient degradability, rumen ecology, microbial dynamics, and methane production in 
an in vitro study. 
Methods: A completely randomized design was used to assign the experimental treatments, 
MMLE was supplemented at 0%, 4%, 6%, and 8% of the total dry matter (DM) substrate. 
Results: The addition of MMLE significantly increased in vitro dry matter degradability 
both at 12, 24, and 48 h, while ammonia-nitrogen (NH3-N) concentration was improved 
with MMLE supplementation. The MMLE had the greatest propionate and total volatile 
fatty acid production when added with 6% of total DM substrate, while decreased the methane 
production (12, 24, and 48 h). Furthermore, the microbial population of cellulolytic bacteria 
and Butyrivibrio fibrisolvens were increased, whilst Methanobacteriales was decreased with 
MMLE feeding. 
Conclusion: The results indicated that MMLE could be a potential alternative plant-based 
bioactive compound supplement to be used as ruminant feed additives.

Keywords: Bioactive Compounds; Microencapsulation; Mitragyna Speciosa Korth;  
Rumen Fermentation; Ruminants

INTRODUCTION

Tropical plants are rich in bioactive compounds (BC) namely phenolic, flavonoid com-
pounds, and antioxidant capacities [1,2], which may have anti-microbial effects, especially 
in methanogen and protozoal populations, and which improve the characteristics of rumen 
fermentation [3,4]. The BC have been demonstrated to influence product quality and 
health condition that play a vital role in animal nutrition [5].
  One of the alternative sources of plants containing BC is Mitragyna speciosa Korth, a 
tropical plant in Southeast Asia including Myanmar, Malaysia, and Thailand [6]. M. speciosa 
is popularly known as Kratom in Thailand. They are traditionally used to treat tiredness, 
opioid addiction, and relieve pain [7]. The leaves of M. speciosa have shown the presence 
of BC such as flavonoids, alkaloids, glycoside, and triterpenoids [8]. This plant has been 
demonstrated to have several pharmacological properties such as antibacterial, anti-in-
flammatory, and antioxidant [9]. Accordingly, Phesatcha et al [10] reported that the Mitragyna 
leaf powder supplementation as a BC can improve rumen fermentation, whilst decrease 
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rumen protozoa, and methane production. Chanjula et al 
[11] revealed that Mitragyna leaf powder enhanced rumen 
ecology by increasing nutrient digestibility, volatile fatty acid 
(VFA, propionic acid profile), and reducing methane pro-
duction in goats. 
  Microencapsulation is an emerging technology that is 
commonly used nowadays in animal nutrition for the prepa-
ration of stable products (vitamins, minerals, fatty acids, as 
well as BC) [12]. This technique can act as a physical barrier 
to protect pharmaceuticals from harsh external environment, 
which increases the stability of the substance [13]. Among 
microencapsulation procedures, spray-drying is a practical 
approach that could produce a constant microcapsule [14]. 
However, no previous research has evaluated protection of 
BC by microencapsulation technique of Mitragyna leaves as 
a strategy to enhance their interactions with ruminal fermenta-
tion. Therefore, this study aimed at testing the susceptibility of 
microencapsulated BC from Mitragyna leaves to in vitro nu-
trient degradation, rumen ecology, and microbial diversity. 

MATERIALS AND METHODS

Animal ethics
The collection of rumen fluid from Thai-crossbred dairy 
cows was permitted by the Institute of Animals for Scientific 
Purpose Development (IAD), Thailand (number U1-06878-
2560).

Microencapsulated-Mitragyna leaves extracts 
preparation 
The plant sources were harvested at Rajamangala University 
of Technology Srivijaya (MUTSV), Nakhon Si Thammarat, 
Thailand. Fresh Mitragyna leaf was dried at 60°C. The dried 
Mitragyna was ground through a sieve opening of 1 mm 
(Cyclotech Mill, Tecator, Hoganas, Sweden). The powder 
was mixed with water and heated in a Microwave to 60°C, 
and after 35 minutes the particulates filtered out. The liquids 
were combined with tween 80 and chitosan [15], and they 
were spray-dried microencapsulated-Mitragyna leaves ex-
tracts (MMLE) by using Bǚchi B-191 Mini Spray Dryer [16]. 
The surface morphology of MMLE was observed using a 
field-emission scanning electron microscope (FE-SEM; 
model: Mira, Tescan Co., Brno, Czech Republic) according 
to Ko et al [17]. MMLE were chemically analyzed for dry 
matter (DM; number 967.03), ash (number 942.05), and 
crude protein (CP; number 984.13) following the methods 
of AOAC [18], as shown in number 973.18. Fiber fractions 
(neutral-detergent fiber [NDF] and acid-detergent fiber 
[ADF]) were determined using Ankom A200i Fibre Analyser 
(Ankom Technology Co., New York, USA); according to 
Van Soest et al [19]. MMLE were analyzed for BC especially 
total phenolic compound (TPC) using Folin–Ciocalteu re-

agent by absorbance at 765 nm [20] and total flavonoid 
compound (TFC) following the method of Topçu et al [21], 
based on colorimetric changes with a 10% aluminum chloride 
solution read at 415 nm. Moreover, the sample was analyzed 
the antioxidant capacities including 2,2-diphenyl-1-picryl-
hydrazyl (DPPH) [22], 2, 2'-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) [23], and ferric reducing antioxidant 
power (FRAP) [24], which are additional explained in Phu-
paboon et al [25].

Experimental design and treatments
The study was assigned in a completely randomized design 
(CRD). Total dietary substrates (the ratio of rice straw to 
concentrate at 60:40) were weighed at 0.5 g into the 60 mL 
bottles, then the treatments were supplemented with MMLE 
at 0%, 4%, 6%, and 8% of total DM substrate, respectively. 

Rumen fluid collection and preparation
The rumen fluid donors were four Thai-crossbred dairy 
cows (body weight, 400±10 kg). The animals consumed total 
mixed ration twice daily at 7:00 and 16:00 o'clock, and they 
had unlimited access to mineral block and clean water for 
at least 14 days following the National Research Council 
(NRC) [26] requirement for dairy cows. Samples of the ru-
men fluid were taken using a tube connected with a vacuum 
pump set through the mouth to the middle of the rumen 
and into a plastic flask. The samples were transferred into a 
bottle with thermal insulation at 39°C after being filtered 
through four layers of folded cheesecloth. Part of the prep-
aration of the medium solution (2,000 mL) contains 0.24 
mL of micro-mineral solution, 2.44 mL of resazurine, 99.0 
mL of reduction solution, 480.0 mL of macro-mineral so-
lution, 480.0 mL of buffer solution, and 950.0 mL of distilled 
water, respectively. Under constant CO2 flushing, rumen 
fluid was combined with the medium substrate at 1:2 (mL/
mL). Substrates in total (concentrate and roughage sources) 
were weighed into glass bottles (60 mL), then the respec-
tive treatments, MMLE was added at 0.00, 0.02, 0.03, and 
0.04 g DM. The bottles were capped with rubber stoppers 
and aluminum caps. Rumen inocula mixture was added 
(40 mL) to the bottles and incubated at 39°C, as described 
in Matra et al [27].

In vitro incubation
During incubation, the production of gas was recorded at 1, 
2, 4, 6, 8, 12, 24, 48, 72, and 96 h (3 bottles/treatment). The 
equation of Ørskov and McDonald [28] was used to analyze 
all gas production data; Y = a+b (1–e–ct), where Y = gas gen-
erated at time “t” (mL), a = the gas production from the 
immediately soluble fraction (mL), b = the gas production 
from the insoluble fraction (mL), c = the gas production rate 
constant for the insoluble fraction (mL/h), and t = incuba-
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tion time (h). The samples were collected separately for pH, 
microbial population, ammonia nitrogen (NH3-N), and 
VFA analyses at 12, 24, and 48 h-after incubation (2 bottles/
treatment). A portable pH meter was used to determine the 
pH (HANNA Instruments HI 8424 microcomputer, Singa-
pore). The rumen fluid instances were centrifuged at 16,000×g 
for 15 minutes after being filtered through instances cheese-
cloth, then to analyze the NH3-N concentration using micro-
Kjeldahl techniques, the supernatant was kept at –20°C [18] 
and VFA profiles (HPLC; ETL Testing Laboratory, Inc., Cor-
tland, NY, USA); according to Samuel et al [29]. Additionally, 
in vitro nutrient degradability was measured using a different 
set (2 bottles/treatment). The production of methane (CH4; 
3 bottles/treatment) was measured using GC machine (GC-
2014; Shimadzu Co Ltd., Kyoto, Japan); methane production 
(% v/v) = (Peak area/18,108)/0.3, where 0.3 = the volume of 
gas was kept in the bottle (10 mL) and 18,108 = the slope es-
timates of the standard methane graph.

Real-time polymerase chain reaction 
Approximately, 1 mL of rumen fluid from in vitro study 
was extracted for total genomic DNA (gDNA) following to 
the method of QIAamp Fast DNA Stool Mini kit (Qiagen, 
Hilden, Germany). The gDNA quality (the concentration 
at ≥50 ng/μL) was indicated by absorbance at OD260/280 
= 1.8 to 2.0 using Nanodrop spectrophotometer (Thermo 
Scientific, USA). The microbial population including Ru-
minococcus albus, Ruminococcus flavefaciens, Fibrobactor 
succinnogenes, Butyribrivio fibrisolvens, Megasphaera elsdenii, 
and Methanobacteriales were identified using the specific 
primers through real-time polymerase chain reaction (PCR) 
technique, as shown in Table 1. The real-time PCR amplifi-
cation and detection were performed by Maxima SYBR 
Green qPCR Master Mix using Chromo 4TM system (Bio-
Rad, Hercules, CA, USA), more detail of the protocols was 
demonstrated in Koike and Kobayashi [30].

Statistical analysis
The data were analyzed using the general linear model pro-
cedure following to the method of SAS [34], for a CRD; Yij = 
µ+τi+εij, where µ = overall mean, τi = treatment effect, εij = re-
sidual error, and Yij = observation. The mean values of the 
experimental treatments were compared with Tukey’s test. 
Differences between treatment means were reported as sta-
tistically different had p-values of <0.05 and <0.01. Trends 
of MMLE supplementation responses were analyzed by 
Orthogonal polynomials. 

RESULTS

Nutritive values and morphological characterization of 
MMLE
The nutritive values of MMLE were 90.1% DM, and 96.4%, 
18.6%, 72.2%, and 21.9% DM basis for OM, CP, NDF, and 
ADF, respectively. Importantly, BC contained in MMLE were 
307.8 mg gallic acid equivalent/g DM of TPC and 105.3 mg 
quercetin equivalent/g DM of TFC. In the antioxidant capacity, 
including 94.8% DPPH, 90.3% ABTS, and 34.4 mg trolox 
equivalent/g DM of FRAP), as shown in Table 2. Moreover, 
morphological characterization of MMLE, chitosan micro
particles showed that they had entirely spherical surface 
morphologies, with porous surrounding particle spheres 
interspersed with smooth and rough surfaces. The MMLE 
identified numerous particles with sizes ranging from 1.5 to 
11.0 μm in diameter (Figure 1).

In vitro gas production kinetics
The gas production results are presented in Table 3. Gas pro-
duction kinetics, including the gas production from the 
immediately soluble fraction (a), the potential extent of gas 
production (a+b), and the gas production from the insoluble 
fraction (b) were significantly different (quadratic effect; 
p<0.01) with MMLE supplementation. There was a signifi-
cant difference (p<0.05) on the gas production rate constant 

Table 1. The specific primers of rumen microbes

Species Specific primers Primer sequences (5'-3') PCR products (bp) References

Fibrobacter succinogenes Fs219f GGTATGGGATGAGCTTGC 446 Koike and Kobayashi [30]
Fs654r GCCTGCCCCTGAACTATC

Ruminococcus albus Ra1281f CCCTAAAAGCAGTCTTAGTTCG 175
Ra1439r CCTCCTTGCGGTTAGAACA

Ruminococcus flavefaciens Rf154f TCTGGAAACGGATGG TA 295
Rf425r CCTTTAAGACAGGAGTTTACA A

Megasphaera elsdenii Mef GACCGAAACTGCGATGCTAGA 128 Ouwerkerk et al [31]
Mer TCCAGAAAGCCGCTTTCGCCACT

Butyrivibrio fibrisolvens Bff CGCATGATGCAGTGTGAAAAGCTC 625 Fernando et al [32]
Bfr CCTCCCGACACCTATTATTCATCG

Methanobacteriales Mbt857f GGGCTTGCTTTGGAAACTGTT 343 Yu et al [33]
Mbt1196r CCCACCGATGTTCCTCCTAA

PCR, polymerase chain reaction; bp, base pair.
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for the insoluble fraction (c), with higher values for the 
treatment fed 6% MMLE. In addition, the cumulative gas 
production was quadratically increased (p<0.01) with MMLE 
addition (Figure 2). 

Nutrient degradability 
The MMLE had the greatest in vitro dry matter degradability 
(IVDMD) (p<0.05) at 12, 24, and 48 h of fermentation 
(quadratic effect) when supplemented with 6% of total DM 

substrate. The lowest IVDMD occurred with MMLE addi-
tion at 8% of total DM substrate. Furthermore, this parameter 
was not linearly influenced, as presented in Table 3. 

Ruminal pH and NH3-N concentration
Table 4, the ruminal pH (12, 24, and 48 h) were not affected 
(p>0.05), when increasing the level of MMLE. The ammonia 
nitrogen content (24 and 48 h) was quadratically increased 
(p<0.05 and p<0.01) when MMLE was added at 6% of total 

Table 2. Chemical composition of feed used in the experiment

Items Concentrate Rice straw MLM MMLE

Ingredients (% as fed)
Cassava chip 54.0
Rice bran meal 17.0
Palm kernel meal 13.0
Soybean meal 10.5
Urea 2.5
Sulphur 1.0
Salt 1.0
Mineral mixed1) 1.0

Chemical composition
DM (%) 90.5 89.4 93.1 90.1

-------------------------------------------------------------------- % DM --------------------------------------------------------------------
OM 92.2 85.4 94.8 96.4
Crude protein 14.6 2.4 19.7 18.6
Neutral-detergent fiber 20.5 78.9 48.0 72.2
Acid-detergent fiber 8.2 52.6 19.6 21.9

Phytonutrient compound
TPC (mg GAE/g DM) - - 306.9 307.8
TFC (mg QUE/g DM) - - 119.2 105.3

Antioxidant capacity
DPPH (%) - - 91.4 94.8
ABTS (%) - - 95.3 90.3
FRAP (mg TROE/g DM) - - 39.0 34.4

MLM, Mitragyna leaves meal; MMLE, microencapsulated-Mitragyna leaves extracts; DM, dry matter; OM, organic matter; TPC, total phenolic content; TFC, 
total flavonoid content; GAE, gallic acid equivalent; QUE, quercetin equivalent; DPPH, 2, 2-diphenyl-1-picrylhydrazyl as DPPH radical scavenging activity; ABTS, 
2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) as ABTS radical scavenging activity; FRAP, ferric reducing antioxidant power; TROE, trolox equivalent.
1) Mineral premix (contains per kg): vitamin A 10,000,000 IU; vitamin D 1,600,000 IU; vitamin E 70,000 IU; Fe 50 g; Mn 40 g; Zn 40 g; Cu 10 g; I 0.5 g; Se 0.1 g; 
Co 0.1 g.

Figure 1. Morphological characterization of microencapsulated-Mitragyna leaves extracts.
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Table 3. Supplementation of microencapsulated-Mitragyna leaves extracts on gas kinetics and nutrient degradability 

MMLE  
 (% of total substrate)

Gas kinetics1) 
Cumulative gas2) 

at 96 h
IVDMD (% DM)

a b c a+b 12 h 24 h 48 h

0 –4.1a 85.4a 0.025a 81.3a 81.2a 57.9a 62.8a 68.8a

4 –3.6b 91.1b 0.027b 87.6b 87.5b 64.1b 68.9b 73.6b

6 –3.6b 105.5c 0.034c 101.9c 101.6c 64.5b 69.1b 73.9b

8 –3.9b 81.8d 0.022d 77.9d 77.8d 60.2c 63.1c 70.8c

SEM 0.32 1.43 0.02 1.56 1.73 0.85 0.87 0.91
Orthogonal polynomials

Linear 0.13 0.05 0.11 0.13 0.09 0.17 0.19 0.60
Quadratic < 0.01 < 0.01 0.02 < 0.01 < 0.01 0.03 0.04 0.04
Cubic 0.25 0.73 0.06 0.86 0.57 0.16 0.17 0.86

MMLE, microencapsulated-Mitragyna leaves extracts; IVDMD, in vitro dry matter degradability; SEM, standard error of mean.
1) Gas production kinetics, a, the gas production from the immediately soluble fraction (mL); b, the gas production from the insoluble fraction (mL); c, the 
gas production rate constant for the insoluble fraction (mL/h); a+b, the potential extent of gas production (mL).
2) Cumulative gases at 96 h (mL/0.2 g DM substrate).
a-d Means within the same column with different letters are significantly different at p < 0.05.

Figure 2. Effect of microencapsulated-Mitragyna leaves extracts (MMLE) on cumulative gas production curves after 1-96 h of incubation. The 
treatments (T1-T4) were added with MMLE at 0%, 4%, 6%, and 8% of total dry matter substrate, respectively.
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Table 4. Supplementation of microencapsulated-Mitragyna leaves extracts on ruminal pH and ammonia-nitrogen concentration

MMLE  
 (% of total substrate)

pH Ammonia nitrogen (mg/dL)

12 h 24 h 48 h 12 h 24 h 48 h

0 6.96 6.90 6.89 9.7a 10.5a 13.1a

4 6.94 6.94 6.92 12.0b 11.7b 14.9b

6 6.96 6.95 6.91 12.6b 12.8c 16.8c

8 6.99 6.95 6.94 8.7a 9.5a 13.3a

SEM 0.01 0.01 0.02 0.25 0.23 0.46
Orthogonal polynomials

Linear 0.28 0.14 0.05 0.41 0.61 0.83
Quadratic 0.34 0.43 0.10 < 0.01 0.02 < 0.01
Cubic 0.65 0.95 0.17 0.21 0.05 0.58

MMLE, microencapsulated-Mitragyna leaves extracts; SEM, standard error of mean.
a-c Means within the same column with different letters are significantly different at p < 0.05.
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DM substrate. This concentration at 24 and 48 h was significantly 
higher (p<0.05 and p<0.01) than at 12 h by the supplemen-
tation of MMLE. 

Volatile fatty acids and methane production
The 6% MMLE had significantly (quadratic effect; p<0.05) 
greater acetate, propionate, acetate to propionate ratio, and 
total VFA production, and it had the highest propionate 
content (p<0.05) when compared with the control treatments. 
The content of butyrate did not differ (p>0.05) with MMLE 
addition. Moreover, methane production (after 12, 24, and 
48 h of fermentation) was linearly decreased (p<0.05) when 
MMLE level was increased. The supplementation of 6% 
MMLE had the lowest methane content (p<0.05) compared 

with other treatments, as shown in Table 5.

Microbial dynamics
Based on species level, MMLE supplementation was able 
to change the bacterial and archaeal population. The present 
findings showed that MMLE supplementation increased 
cellulolytic bacteria, namely Ruminococcus albus (p<0.05), 
Ruminococcus flavefaciens (p<0.05), and Fibrobactor succin-
nogenes (p<0.05). The relative abundance of Butyribrivio 
fibrisolvens increased (p<0.05) in 6% MMLE compared 
with control, while Megasphaera elsdenii was not statisti-
cally different (p>0.05) among treatments. Importantly, 
Methanobacteriales was linearly decreased (p<0.05) when 
fed the MMLE (Table 6).

Table 5. Supplementation of microencapsulated-Mitragyna leaves extracts on volatile fatty acids and methane production

MMLE  
 (% of total substrate)

VFA (mol/100 mL)
C2:C3

Total VFA 
(mmol/L)

Methane production (%)

C2 C3 C4 12 h 24 h 48 h

0 69.4a 23.7a 6.9 2.95a 67.4a 27.5a 30.8a 34.9a

4 68.5b 24.9b 6.6 2.75b 74.1b 26.6b 29.9b 34.0b

6 65.0c 26.9c 8.1 2.40c 84.8c 25.1c 28.4c 33.5c

8 69.2a 24.5b 6.3 2.85a 71.7b 24.9d 27.6d 32.3d

SEM 0.46 0.37 0.25 0.08 2.25 0.07 0.05 0.05
Orthogonal polynomials

Linear 0.42 0.53 0.88 0.50 0.37 0.02 0.01 0.01
Quadratic 0.04 0.03 0.21 0.04 0.04 0.62 0.48 0.51
Cubic 0.08 0.16 0.10 0.34 0.64 0.58 0.35 0.45

MMLE, microencapsulated-Mitragyna leaves extracts; VFA, volatile fatty acids; C2, acetate; C3, propionate; C4, butyrate; C2:C3, acetate to propionate ratio; 
SEM, standard error of mean.
a-d Means within the same column with different letters are significantly different at p < 0.05.

Table 6. Supplementation of microencapsulated-Mitragyna leaves extracts on rumen microbial population

Species Incubation 
time (h)

MMLE (% of total substrate)
SEM

Orthogonal polynomials

0 4 6 8 L Q C

Fibrobacter succinogenes 12 5.3a 5.7b 5.9c 5.6b 0.38 0.11 0.04 0.24
 (Log copies/mL) 24 5.5a 6.1b 6.3c 6.0b 0.34 0.24 0.02 0.97

48 5.7a 6.2b 6.5c 6.0b 0.26 0.62 0.01 0.69
Ruminococcus albus 12 7.3a 7.7b 8.2c 7.5b 0.55 0.21 0.03 0.69
 (Log copies/mL) 24 7.7a 7.9a 8.5b 7.8a 0.46 0.17 0.02 0.87

48 7.9a 8.1a 8.8b 8.0a 0.62 0.52 0.04 0.13
Ruminococcus flavefaciens 12 6.6a 6.8a 7.3b 6.7a 0.53 0.57 0.03 0.57
 (Log copies/mL) 24 6.8a 6.9a 7.6b 6.8a 0.44 0.24 0.03 0.94

48 6.8a 7.0a 7.9b 6.9a 0.35 0.15 0.01 0.32
Megasphaera elsdenii 12 7.1 7.0 7.0 7.0 1.19 0.78 0.62 0.69
 (Log copies/mL) 24 7.1 7.1 7.2 7.1 1.25 0.56 0.45 0.83

48 7.0 6.8 6.8 6.8 0.88 0.11 0.51 0.49
Butyrivibrio fibrisolvens 12 6.2 6.1 6.0 6.0 1.52 0.37 0.35 0.91
 (Log copies/mL) 24 6.2 6.4 6.6 6.5 0.46 0.29 0.46 0.80

48 6.2a 6.3a 6.8b 6.4a 0.34 0.28 0.01 0.88
Methanobacteriales 12 7.1a 6.9b 6.5c 6.5c 0.37 0.02 0.40 0.94
 (Log copies/mL) 24 7.2a 6.8a 6.4b 6.3b 0.56 0.03 0.70 0.45

48 7.4a 6.6b 5.9c 5.8c 0.48 0.03 0.50 0.16

MMLE, microencapsulated-Mitragyna leaves extracts; SEM, standard error of mean; L, linear; Q, quadratic; C, cubic.
a-c Means within the same row with different letters are significantly different at p < 0.05.
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DISCUSSION

In vitro gas production kinetics
In the present study, gas kinetics, especially the gas production 
rate constant for the insoluble fraction (c), were improved by 
the MMLE supplementation. It could be due to the capability 
of BC to enhance microbial growth and activity and its ability 
to bind in the contents of protein and fiber [3,35]. Accord-
ingly, Phesatcha et al [10] stated that Mitragyna leaves powder 
enhanced gas production kinetics, it's possible that it improved 
the rumen microbe and increased the substrate's capacity to 
degrade, so improving the kinetics of gas production.

Nutrient degradability 
The MMLE supplementation to the diet clearly increased 
IVDMD, which was significantly higher with the addition of 
6% of total DM substrate. This might be explained by an in-
crease in the number of microbes, which would cause more 
feed to breakdown, which was one important role of the BC 
contained in MMLE. Zhan et al [36] explained that flavo-
noids and phenolics have a range of biological effects that 
can impact ruminal microbes, which in turn increases how 
feed is degraded in the rumen. Sommai et al [37] reported 
that flavonoid extracts from Alternanthera sissoo supple-
mentation significantly increased in vitro degradability. 

Ruminal pH and NH3-N concentration
This research has shown that ruminal pH did not influence 
the treatments. For typical rumen fermentation, microbial 
growth, and microbial activity, the data were in the normal 
range (6.85 to 6.99). Accordingly, Wanapat [38] reported 
that pH ranges between 6.5 and 7.0 are optimum for microbial 
activity and growth. Strategic addition of phenolic-contain-
ing feedstuffs can enhance rumen fermentation by preserving 
a higher pH [39]. Furthermore, MMLE supplementation 
was improved NH3-N concentration both 12, 24, and 48 h. 
This may be a result of the plant-bioactive extract's potential 
to enhance the proteolysis process. Plant-based bioactive sup-
plementation increases the concentration of ruminal NH3-N, 
which was confirmed by Ahmed et al [40]. Furthermore, it 
could be a positive effect of the concentrate and MMLE con-
taining protein source at 14.6% and 18.6% CP, thus increasing 
the amount of NH3-N present as a result.

Volatile fatty acids and methane production
Under this investigation, MMLE supplementation increased 
the molarity of VFAs especially propionate and total VFA 
production, while decreased acetate production. Patra and 
Saxena [41] explained that BC may also cause a change in 
propionate produced when there is an excess of hydrogen. 
Hydrogen is used to create propionate instead of being the 
major substrate for the methane production pathway [42]. 

These findings agree with Totakul et al [43] who revealed 
that the Cnidoscolus leaves pellet supplementation signifi-
cantly increased propionate concentration, while decreased 
acetate to propionate ratio. Propionate content typically in-
creases when rumen methanogenesis is inhibited, and this 
was also shown in the current investigation. Bodas et al [44] 
demonstrated that phenolic acids and polyphenols suppress 
methanogenesis, while also improving fermentation para
meters. Therefore, phenolics and flavonoids from multi-
functional tropical plants have the potential to directly inhibit 
methanogen population and activity. Furthermore, BC in feeds 
has been demonstrated, whether in natural form or as plant 
extracts, to have an impact on the rumen's ability to reduce 
methane production by rumen microorganisms. Cellulolytic 
bacteria are among the specific microorganisms that BC 
directly affects. It causes F. succinogenes (the non-hydrogen 
producing bacteria) to produce more propionate and reduce 
the acetate to propionate ratio [45]. In this study, MMLE 
supplementation clearly decreased methane production. 
As described in Chanjula et al [11], dried Mitragyna leaves 
linearly decreased methane production and F. succinogenes 
quadratically increased when the level of Mitragyna leaves 
was added. Huang et al [46] showed that Paulownia hybrid 
leaves decreased methane production, it could be the result 
of a decline in Archaea especially methanogens due to second-
ary metabolite activities.

Microbial dynamics
In the current study, the cellulolytic bacteria population 
increased with the levels of MMLE supplementation. Con-
sequently, the phenolic and flavonoid containing in MMLE, 
compounds could influence the cellulolytic bacteria activities 
especially when MMLE was supplemented at 8% of total 
DM substrate. BC activity alters protein translocation, phos-
phorylation processes, ion gradients, electron transport, 
and other enzyme-dependent processes, which results in the 
impacted cellulolytic bacteria losing chemiosmotic control 
[47]. Nevertheless, BC should be supplemented at a suitable 
level for microbe activity, especially cellulolytic bacteria. F. 
succinogenes, R. albus, and R. flavefaciens have been identified 
as the main cellulolytic bacterial species in the rumen and 
more these groups could improve ruminant degradation of 
fiber [48]. According to Chanjula et al [11] stated that dried 
Mitragyna leaves was enhanced F. succinogenes, R. albus, 
and R. flavefaciens. Huang et al [46] revealed that Paulownia 
hybrid leaves containing flavonoid and phenolic compounds 
increases total bacteria, as well as in particular species of B. 
fibrisolvens and F. succinogenes. This may be explained by 
the ruminal microbes' response to the flavonoids and phe-
nolics, perhaps as a result of hydrogenation, which transforms 
toxic compounds into less toxic forms [49]. Moreover, MMLE 
addition increased Butyrivibrio fibrisolvens group, while 
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reduced methanogens group (Methanobacteriales), which 
could be attributed to the availability of BC in the MMLE. 
Similarly, Phesatcha et al [10] showed that the supplemen-
tation of Mitragyna leaves reduced ruminal methanogens 
population and methane production. BC has an immediate 
impact on rumen methanogens, by interacting with the 
proteinaceous adhesin, suppressing methanogen growth, 
reducing interspecies hydrogen transfer, and inhibiting the 
methanogen-protozoa complex's formation [50].

CONCLUSION

Based on the findings, supplementation of MMLE at 6% of 
total DM substrate enhanced rumen nutrient degradability, 
fermentation end-products especially propionate produc-
tion, and decreased methanogens and methane production. 
Hence, MMLE could be an effective dietary BC and could 
have the potential to be used for ruminant feed additives.
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