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Aptamers are short single-stranded oligonucleotides that bind 
to specific targets through their three-dimensional fold-
ing structure. They are analogous to antibodies and have 

a variety of applications, including therapeutics1,2, biosensors3 and 
diagnostics4. The advantages of aptamers are that they are rapidly 
developed by in vitro generation, are low immunogenic5 and have 
a wide range of binding targets, including metal ions6, proteins7, 
transcription factors8, viruses9, organic molecules10 and bacteria11. 
Aptamers are generated by the systematic evolution of ligands by 
exponential enrichment (SELEX)12,13. SELEX involves iterations of 
affinity-based separation and sequence amplification. This iterative 
process results in an enriched pool that is analyzed for candidate 
selection. Recent advances in high-throughput sequencing have 
enabled us to conduct high-throughput SELEX (HT-SELEX) to col-
lect a vast number of aptamer candidates14–16. Current sequencing 
techniques can evaluate a limited number of reads: approximately 
106. Micrograms of a SELEX input library only contains around 1014 
copies of RNA, whereas an RNA library containing a 30 nt random 
region theoretically has 1018 (~430) unique sequences. Hence we 
can only evaluate a very small portion of the theoretical diversity, 
and thus computational approaches that efficiently process high-
throughput sequencing data are critical in aptamer development.

Several computational approaches that identify aptamers using 
HT-SELEX data have been reported. Aptamer identification tools 
utilize parameters associated with the SELEX principle, such as 
frequency, enrichment and secondary structure17–20. Although they 
are useful for identifying sequences from HT-SELEX data, vari-
ous candidates are limited by the actual sequence existence in the 
data. Simulation-based methods have been reported for sequence 
generation21–23; however, these methods require preceding motif 
information and are therefore not suitable for identifying aptamers 
against an unfamiliar target. Computational approaches have also 
been developed to predict aptamer motifs. Motif prediction is useful 
not only for candidate discovery but also for aptamer development 
processes such as truncations and chemical modifications. Several 
methods have been developed for motif detection by using second-
ary structures24, enrichment of subsequences during SELEX experi-
ments25 and emphasis on various loop regions26. In addition to these 
approaches, AptaMut utilizes mutational information from SELEX 

experiments22. As nucleotide substitutions can increase aptamer 
affinity, mutational information is beneficial for candidate discov-
ery. However, although insertions and deletions are also important 
factors for altering aptamer activity, in silico methods that deal with 
these mutations are poorly developed; thus, a method that generates 
sequences from experimental data is needed to expand the explor-
atory space, and including motif information and nucleotide muta-
tions confer an increased opportunity for aptamer discovery.

We focused on a neural network to develop a procedure for 
aptamer generation and motif finding. As reported previously, neu-
ral networks are suitable for analyzing large datasets and are com-
patible with high-throughput sequencing data. DeepBind adopts a 
convolutional neural network (CNN) to distinguish DNA motifs 
from transcription factors and find sequence motifs by visualiz-
ing network parameters27. Recurrent neural networks can also be 
used for sequence discovery28,29. Neural network-driven generative 
models are currently being applied in a broad range of research 
areas. Some examples of neural network-dependent generative 
models include deep belief networks30, variational autoencoders 
(VAEs)31, and generative adversarial networks32. For a probabilis-
tic generation of nucleic sequences, using long short-term memory 
(LSTM) was proposed to mimic sequence distribution33. Generative 
adversarial network-based sequence generation methods have also  
been proposed34.

Variational autoencoder-based compound designs have been 
reported in small molecule discovery. VAEs learn a representation 
of the data by reconstructing the input data from a compressed 
vector31. Kusner and colleagues used grammar-based VAEs and 
SMILES sequences to generate chemical structures for activity opti-
mization35, and Gómez-Bombarelli et al. used the representation 
learned by the VAE to design chemical compounds36. Unlike other 
generative models, VAEs exploit the relationship between com-
pressed feature space and inputs in a bidirectional manner; they are 
therefore suitable for visualizing similarity-oriented classifications 
and emphasizing important sequence features. Using VAEs to con-
vert HT-SELEX data into low-dimensional space would be useful 
for candidate discovery; thus, VAE-based aptamer generation sys-
tems are worth investigating. When conducting VAE modeling for 
HT-SELEX data, having a profile hidden Markov model (HMM) 
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decoder should be beneficial for aptamer discovery; it captures 
motif subsequences—robust with substitutions, deletions and inser-
tions—and can easily monitor effects from the subsequences.

Here we present RaptGen, a VAE for aptamer generation. 
RaptGen uses a profile HMM decoder to efficiently create latent 
space in which sequences form clusters based on motif struc-
ture. Using the latent representation, we generated aptamers not 
included in the high-throughput sequencing data. Strategies for 
sequence truncation and activity-guided aptamer generation are 
also proposed.

Results
Overview of RaptGen and its applications. RaptGen is a proba-
bilistic generative model that enables us to generate new aptamer 
sequences that are not included in the input SELEX dataset. To real-
ize this, RaptGen employs a VAE with a profile HMM for decoder 
distribution and embeds RNA sequences from the input dataset 
into low-dimensional latent space (Fig. 1a). Using a profile HMM 
for the decoder renders RaptGen more robust for substitutions and 
indels in RNA aptamers, thereby achieving better generative per-
formance than existing models (see the ‘Motif-dependent embed-
dings using simulation data’ section). See Methods for details on  
RaptGen’s procedures.

In this study we propose three important applications of RaptGen 
for aptamer discovery. First, a latent space learned by RaptGen is 
visualized with a sequence motif, and new aptamer sequences are 
generated for an arbitrary point in the latent space (see Fig. 1b and 
the ‘Real data evaluation with RaptGen’ section). Second, optimized 
aptamer sequences are searched in the latent space by considering 
additional experimental information, such as the binding affinity 
of a subset of sequences (see Fig. 1c and the ‘RaptGen application 
in aptamer discovery’ section). Third, RaptGen enables in silico 
the design of truncated aptamer sequences using a shorter-profile 

HMM decoder (see Fig. 1d and the ‘RaptGen application in aptamer 
discovery’ section).

Motif-dependent embeddings using simulation data. We first 
attempted to construct a VAE with an encoder and decoder appli-
cable to aptamer discovery. In the aptamer representation space, 
sequences containing the same motif should be in a neighboring area. 
Robustness against nucleotide mutations and motif positions should 
also be considered. We investigated different types of sequence rep-
resentation models to identify a desirable decoder. We constructed 
VAEs with a CNN encoder and three different types of probabilis-
tic models (the multicategorical model, autoregressive model and 
profile HMM) as a decoder. Simulation data, including ten different 
motifs, were created to assess the visualizing capability of these VAEs 
(Fig. 2a). We observed that profile HMM-embedded sequences in a 
motif-dependent manner after training the data, whereas the multi-
categorical and autoregressive models displayed indistinctive distri-
butions (Fig. 2b). The evidence lower bound (ELBO) was calculated 
to evaluate the model. Although the multicategorical model and 
profile HMM had almost the same ELBO (20.71 and 20.60), and had 
similar reconstitution errors (15.32 and 16.02) and Kullback–Leibler 
divergence scores (5.39 and 4.59), the embedding space of the mul-
ticategorical model failed to visualize a motif cluster. This is thought 
to be due to the inability of the multicategorical model to consider 
motif positions. As the nucleotide probability of each position was 
independently estimated in the multicategorical model, the same 
motifs in the shifted position might not be aligned in latent space. 
The autoregressive model had the lowest ELBO (19.50); however, the 
reconstitution error was the worst (18.32). Furthermore, the classi-
fication result was not optimal. We suppose that latent representa-
tion is dispensable in the autoregressive model as the model itself 
has context information. We also compared the different encoder 
types. Long short-term memory37 and CNN–LSTM were evaluated 
in combination with the above three decoders. Long short-term 
memory is used in character-level text modeling. The embedding 
space from the multicategorical and autoregressive models was still 
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Fig. 1 | Overall RaptGen schematic and its applications. a, RaptGen 
workflow. RaptGen is a VAE with a profile HMM for decoder distribution, 
which considers insertions and deletions. Through training, RaptGen learns 
the relationship between HT-SELEX sequencing data and latent space 
embeddings (the latent space is shown in Z in this figure). b, RaptGen 
constructs a latent space based on sequence similarity. It can also generate 
intermediate representations with no training data. c, RaptGen can propose 
candidates according to the activity distribution by transforming a latent 
representation into a probabilistic model. d, RaptGen can perform in silico 
sequence truncation using a short-profile HMM decoder.
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Fig. 2 | Results for simulated data. a, Scheme of simulation data used for 
evaluating the decoder models. Ten different motifs with a 10% chance 
of having nucleotide mutations were randomly extended to 20 bases. 
b, Embeddings of hypothetical motifs using different decoder models. 
The simulation data obtained in a were subjected to the VAE with the 
multicategorical, autoregressive and profile HMM. The resulting latent 
space is shown, where Dim1 and Dim2 are the first and second axis in 
the space, respectively. The ELBO is in the right bottom corner with the 
reconstructed error and Kullback–Leibler divergence. Each motif is plotted 
with different colors.
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inadequate using either encoder (Supplementary Section 8). Profile 
HMM created distinguishable embedding with LSTM, whereas a 
learning deficiency was observed in combination with CNN–LSTM 
(Supplementary Section 8). Collectively, we concluded that the pro-
file HMM decoder is favorable for motif-dependent embedding. A 
VAE composed of a CNN encoder and a profile HMM decoder was 
examined in the following study.

We next tested whether our VAE model could distinguish split 
motifs. Subsequence co-occurrence at distances is often observed 
in RNA due to intramolecular base-pairing and internal-loop struc-
tures38. We applied simulation data with a pair of 5 nt split motifs to 
the VAE (Fig. 3). The multicategorical model decoder was used for 
comparison. Figure 3b shows the results of embedding split motifs. 
Plots are displayed in three groups: right motif-, left motif- and 
both motif-remaining sequences. Profile HMM output sequences 
related to the motif, whereas the multicategorical model scattered 
the sequences. We sampled representative profile HMM distributions 
from each population. Profile HMM visualization shows that the yel-
low point skips the left motif. The red point skips the right motif, 
both by allocating a high probability of jumping to the deletion state 
from the matching state (Fig. 3c). Visualization of the purple point 
shows that the middle of two points has a low probability of skipping 
either of the motif fragments. The transition probability to skip the 
left motif (aM1 ,D2) and the right motif (aM10 ,D11) for right-only-, both- 
and left-only-motif models was (0.995, 0), (0.107, 0.002) and (0, 
0.987), respectively. Interestingly, the point located between these two 
motifs has a high probability of including both motifs. These results 
show that a profile HMM decoder is also applicable for split motifs. 
Hereafter, we called a VAE with a profile HMM decoder RaptGen.

Real data evaluation with RaptGen. We further evaluated RaptGen 
using SELEX sequence data obtained from our previous study20. As 
real data are more complex than simulation data, we first investigated  

the dimensions of the latent space. Raw HT-SELEX data have 30 
or 40 nt variable regions and fixed primer regions at both ends. In 
the present study, we used the variable region to create latent space. 
We tested up to twelve spatial dimensions and trained the model 50 
times on datasets A and B (Supplementary Fig. 1). For Dataset A, 
the minimum loss was in four dimensions, and the second-lowest 
was in two dimensions. For Dataset B, the minimum loss was in 
three dimensions and the second-lowest was in two dimensions. 
Loss tended to increase as the embedding dimension increased; 
however, the loss of one-dimensional space was higher than that of 
the ten-dimensional space. The lower dimension would be favorable 
for visualization, and performing Bayesian optimization would be 
advantageous, as described in later sections. We therefore adopted a 
two-dimensional space for analysis.

We next subjected two independent HT-SELEX datasets (datasets 
A and B) to RaptGen. The resulting latent embeddings are shown in 
Fig. 4 and Supplementary Section 4. We previously demonstrated that 
aptamers from datasets A and B exhibit continuous and split motifs, 
respectively. As the SELEX experiment sequences are amplified with 
specific binding motifs, we reasoned that they would form clusters 
in a latent space based on their motifs. We thus used the Gaussian 
mixture model (GMM), which hypothesizes that data consists of a 
mixture of Gaussian distributions, to classify the distributions. We 
chose ten different points representing the latent cluster center of the 
GMM (Fig. 4). We observed that sequences with an uncertain profile 
HMM such as A-GMM-2, A-GMM5 and B-GMM-0 were embed-
ded near the latent space center. Unenriched aptamer sequences 
remained after the SELEX experiments. We predicted that these junk 
sequences formed clusters in the latent space. By contrast, the near-
edge area contained sequences that emit nucleotides preferentially. 
We also confirmed that similar profiles were embedded in similar 
areas (Supplementary Section 4). These results provide support for 
the use of RaptGen to analyze high-throughput SELEX data.
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We attempted to generate the most probable sequence from the 
profile HMM of each GMM center for activity evaluation. We calcu-
lated the model state path with the highest probability and derived 
the most probable sequence according to the path. When the path 
included insertion states, we generated up to 256 sequences with 
no duplication by randomly replacing each insertion state with a 
single nucleotide and selected a sequence with the highest prob-
ability. The resulting reconstituted sequences and their probabili-
ties are shown in Fig. 4. After connecting with their fixed primer 
sequences, aptamer RNAs were produced by in vitro transcription 
and their binding activities were assessed by surface plasmon reso-
nance assay. Aptamers identified in our previous study were used 
as positive controls20. Although more than half of the candidates 
were found to have weak or no activity, some sequences such as 
A-GMM-1, B-GMM-4 and B-GMM-8 had evident binding activity. 
To determine whether these aptamers exist in the original data, we 

calculated each sequence’s edit distance from the nearest HT-SELEX 
sequence (Supplementary Table 1). It should be noted that all can-
didate sequences were not included in the original SELEX data. 
Collectively, we concluded that RaptGen enables us to generate 
aptamers from the latent space and reduces the limitations of work-
ing with actual sequence data.

RaptGen application in aptamer discovery. We proposed further 
applications of RaptGen for aptamer development. Shortening the 
aptamer length is important for industrial application. Aptamer 
truncation can reduce the cost of manufacturing and facilitate mate-
rial quality assurance. It also prevents unexpected biochemical inter-
actions. Hence, aptamers should be shortened as much as possible. 
As the profile HMM can handle variable sequence lengths, learning 
settings could diverge from the original SELEX library. For example, 
a decoder model does not require the same length of the random 
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region. We attempted to generate shorter aptamers than SELEX 
with RaptGen. We introduced a short-profile HMM with truncated 
length by 5 or 10 nt from the original SELEX design. Dataset A was 
analyzed with a 20 nt and 25 nt model (called A-L20 and A-L25), 
where the initial library was 30 nt. Dataset B was analyzed with a 
30 nt and 35 nt model (called B-L30 and B-L35), where the initial 
library was 40 nt. After creating latent space, ten sequences for each 
length were created in a GMM-dependent manner described above. 
Figure 5 shows the relative activity of proposed aptamers with their 
lengths. For Dataset A, the 28 nt candidate showed binding activity 
where the initial library was 30 nt. For Dataset B, the 29 nt candidate 
showed considerable activity compared with the original setting, 
which was 40 nt. These results suggest that RaptGen can generate a 
shorter aptamer than the experimentally expected length. We found 
that sequences with low reconstitution probability tended to have 
low binding activity and that sequences showing binding activity 
had relatively high probability (Fig. 5). This observation would be 
helpful for effective candidate selection. We observed a tendency 
of sequence extension in datasets A-L20, A-L25 and B-L35. For 
instance, in Dataset A, 26 nt sequences were generated from the 
20 nt RaptGen setting. We speculate that the profile HMM is prone 
to imitating the original length in some situations. The optimal 
truncation length was different for each dataset. We did not identify 
the cause of this difference. Further studies should be performed to 
determine efficient truncation.

In another application of RaptGen, we generated aptamers using 
activity information. Aptamer derivatives harboring nucleotide 
mutations should be distributed around the mother sequence in the 
latent space. To predict effective candidates from the neighboring 
area of an active aptamer, binding activity distribution should be 
predicted. We used a Bayesian optimization algorithm for learning 
an activity distribution. As the distribution for the Bayesian opti-
mization process is required to be of low dimension, RaptGen is 
suitable for this strategy. To implement Bayesian optimization, we 
first embedded activity data in the latent space. The sequences 
listed in Fig. 4 were reconverted into the space. Several locations 
moved from the initial GMM center (Fig. 6a,b). We used these re-
embedded positions to perform Bayesian optimization. The result-
ing predicted activity distributions are shown in Fig. 6a,b. We used 
the local penalization function to propose multiple candidates in 
parallel39. Ten profile HMMs were proposed and evaluated for their 
activity. As shown in Fig. 6a,b, candidates were generated from the 

peripheral area of the positive clone. We confirmed that new aptam-
ers incorporated nucleotide substitutions (Fig. 4). In addition, most 
of them had binding activity. Similar results were obtained for both 
datasets A and B. We further tested the hypothesis that repeated 
Bayesian optimization could support the generation of superior 
aptamers. We conducted an additional Bayesian optimization round 
(BO2) against Dataset A. After generating ten new candidates, we 
obtained an aptamer with approximately 20% greater binding activ-
ity (Supplementary Table 2 and Fig. 6c,d). These results indicate 
that RaptGen can propose aptamer derivatives in an activity-guided 
manner and can provide opportunities to optimize their activities.

The present version of RaptGen does not consider the second-
ary structure of aptamers. Secondary structure information is 
critical for identifying active aptamers19,20. In this subsection, we 
performed RNA secondary structure analyses for the aptamers 
obtained in the previous sections. Here we utilized the Rtools web-
server40 for secondary structure analyses; the results are shown in 
Supplementary Fig. 3 (Dataset A), Supplementary Fig. 4 (Dataset 
B) and Supplementary Data 1 (more detailed results for datasets A 
and B). For Dataset A, the root of the structures (that is, structures 
around 3′-part) gradually changed according to the relative activ-
ity (Supplementary Fig. 3), whereas the stem-loop region around 
the middle of the sequence was conserved. This result indicates 
that our Bayesian optimization process optimizes the root of the 
structures to increase binding abilities. For Dataset B, we observed 
that high-affinity aptamers tended to form a specific structure (for 
example, B-GMM-4, B-BO-4 and B-BO-5) compared with the posi-
tive control (Supplementary Fig. 4). To confirm the reliability of 
this analyses, we also performed RNA secondary structure analyses 
using RNAfold41 (Supplementary Figs. 5 and 6 for datasets A and 
B, respectively), where a consistent result was obtained for Dataset 
A. For Dataset B, both tools showed high-affinity aptamers tend to 
form similar structures (note that both tools also suggest that sec-
ondary structures in Dataset B are unstable, that is, including rela-
tively low base-pairing probabilities in predicted structures).

Discussion
One of the popular models for handling high-throughput sequenc-
ing data (such as the HT-SELEX data this study focused on) is a 
discriminative model that distinguishes real aptamer sequences 
from non-aptamer sequences; examples include DeepBind27 and 
DeeperBind28. In training the discriminative models, both positive  
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and negative sequences are necessary; positive sequences are usually 
shuffled to provide the negative data. As discriminative models are 
specialized for classification, they cannot generate new sequences. 
Conversely, RaptGen is a generative model that does not require 
negative data for training and can generate new aptamer sequences 
not included in the input sequences. This feature is essential for the 
three applications (see Fig. 1b–d) investigated in this study. Note 
that we compared RaptGen with DeepBind regarding motif detec-
tion performance (Supplementary Section 9). Jinho et al. proposed 
LSTM-based sequence generation using SELEX data33. However, 
they did not consider sequence cluster information. RaptGen embeds 
sequences into a feature representation space, and thus RaptGen 
could visualize sequence classification and generate representative 
sequences from each cluster (Fig. 1). Moreover, this low-dimen-
sional representation enables us to conduct Bayesian optimization, 
which is beneficial for generating variant sequences (Fig. 4). Hence, 
we believe that RaptGen is a superior generative model compared 
to LSTM. Hoinka et al. introduced several tools for aptamer discov-
ery, such as AptaCluster, AptaMut and AptaSim22. AptaCluster and 
AptaMut consider mutation information that is derived from the 
base substitution error rate of the polymerase enzyme. AptaCluster 

evaluates only actual sequencing data, whereas RaptGen can gener-
ate sequences that are not included in the sequencing data. We con-
firmed that the generated sequences did not appear in the SELEX 
experiment (see Supplementary Table 1, in which positive edit dis-
tances indicate that the corresponding sequence was not included 
in the original SELEX data). In addition, AptaMut deals with base 
substitutions but not insertions or deletions. As RaptGen has a pro-
file HMM, it can embed indel information. This capability was con-
firmed using simulation data (Fig. 2). Because of indel tolerance, 
RaptGen could also generate sequences shorter than the actual 
sequencing data (Fig. 5), whereas AptaMut does not estimate such 
virtual sequences. We therefore believe that RaptGen incorporates 
mutational information better than AptaMut. In summary, to the 
best of our knowledge, there are no other data-driven methods to 
design optimized and truncated aptamers directly from HT-SELEX 
data, and we believe that RaptGen will be a key tool for efficient 
aptamer discovery.

In this study, we demonstrated that RaptGen could propose can-
didates according to activity distribution. According to Bayesian 
optimization, a sequential construction of posterior distribution 
would allow us to optimize activity in the latent space. For another 
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instance of Bayesian optimization application, one could set the 
acquisition function to various indicators other than the binding 
activity. We could therefore generate candidates according to other 
properties of interest, including inhibitory activity against enzymes 
or protein–protein interactions. The application of RaptGen for this 
purpose is promising.

Although RaptGen helps visualize and understand sequence 
motifs, this method has computational cost due to sequence prob-
ability calculation. Compared with the multicategorical model, 
which can calculate the sequence independently by position, and 
the autoregressive model, which only needs calculation on the pre-
vious nucleotides, profile HMM requires calculation on all possible 
state paths and previous (sub)sequences. The offset calculation cost 
for multicategorical, autoregression and profile HMM is O(1), O(l) 
and O(lm), respectively, where l is the number of previous charac-
ters including itself, and m is the model length of the profile HMM. 
Profile HMM also needs to frequently calculate the costly logsum-
exp function, leading to a longer training time. Additional studies 
are necessary to improve these issues.

There are two possible extensions of RaptGen. First, as shown in 
the previous section (see the ‘RaptGen application in aptamer dis-
covery’ section), including the secondary structure in the sequence 
probabilistic model would improve RaptGen performance. In this 
direction, an alternative model such as profile stochastic context-
free grammar42 will be tested in follow-up studies. Another direc-
tion of the extension of RaptGen is to consider RNA sequences in 
all rounds in HT-SELEX experiments.

RaptGen could advance HT-SELEX data-driven RNA aptamer 
generation. As an RNA aptamer binds to the target protein by 
the structural complementarity, not by hybridization, interaction 
between the RNA and the protein is hardly predicted without bind-
ing experiments such as SELEX. Once enough number of aptamer–
protein pairs and binding data is accumulated, de novo aptamer 
design without wetlab experiments will be realized in the future. 
Additionally, simulation-based methods such as molecular dynam-
ics will also be effective to improve computational aptamer design 
(for example, optimization of aptamers43).

Methods
Overall study parameters. The VAE proposed in this study is a CNN-based 
encoder with skip connections and a profile HMM decoder with several training 
methods. Two simulation datasets containing different types of motifs were 
generated to assess the interpretability of the decoder. Two independent HT-
SELEX datasets were subjected to the VAE, and the GMM was used for multiple 
candidate selection. Furthermore, Bayesian optimization was performed based on 
the activities of tested sequences proposed by GMM, and sequences were truncated 
by shortening the model length. The process is explained in detail in the following 
sections. An overview is shown in Fig. 1.

Architecture of the RaptGen model. VAE. Variational autoencoders consist of an 
encoder neural network that transforms input sequence x into latent distribution 
qϕ(z∣x) and a decoder neural network that reconstructs the input data from latent 
representation z by learning pθ(x∣z) where φ and θ are model parameters. As VAE 
is a generative model, it can be evaluated by model evidence. However, given a 
dataset X = {x(i)}Ni=1, the model evidence pθ (X) is not computationally tractable. 
Alternatively, we can maximize the ELBO, L(θ,ϕ;X) to calculate how the model 
describes the dataset using Jensen’s inequality,

log pθ (X) ≥ L (θ,ϕ;X) =

N
∑

i=1
L

(

θ,ϕ;x(i)
)

,

where

L

(

θ,ϕ;x(i)
)

= −DKL
(

qϕ
(

z|x(i)
)

∥ pθ(z)
)

+Eqϕ

(

z|x(i)
)

[

log pθ

(

x(i)|z
)]

,
(1)

where DKL(p∣∣q) is the Kullback–Leibler divergence between distributions p and 
q. The first term on the right-hand-side is the regularization error, whereas the 
second term is the reconstruction error. Modeling this reconstruction error to suit 

the problem determines the structure of the latent space. Note that ELBO can be 
utilized as a measure to determine the optimal dimension of the latent space (that 
is, model selection)44. In this paper we refer to the negative value of ELBO as model 
loss or loss.

CNN-based encoder with skip connections. The RaptGen encoder network consists 
of a stack of convolutional layers with skip connections. Each character was first 
embedded into a 32-channel vector and went through seven convolutional layers 
with skip connections. Max pooling and fully connected layering then transform 
the vector into the distribution parameters of latent representation qϕ(z∣x). The 
structure is shown in detail in Supplementary Section 5.

Profile HMM decoder model. For modeling insertions and deletions, we used 
the profile HMM as the decoder for RaptGen. The profile HMM is a model that 
outputs by probabilistically moving from state to state (Supplementary Fig. 2). The 
profile HMM consists of match (M), insertion (I) and deletion (D) states. Each 
state emits specific outputs introduced to represent multiple sequence alignments45. 
The match state has a high probability of emitting a particular character, the 
insertion state has an equal chance and the deletion state always emits a null 
character. These probabilities are called emission probabilities. The other 
probabilistic parameter is the transition probability. This defines the likeliness of 
transition from a state to the next state. In a profile HMM, the emission probability 
eS(c) is the probability of output character c from state S, and transition probability 
aS,S′ is the probability of changing state from S to S′. These are defined as 
eS(c) = p(c∣S) and aS,S′ = p(S′|S), respectively.

As profile HMM is a model in which the state transition depends only on the 
previous single state, the sequence probability p(x) can be written by using the 
Markov chain rule:

p (x) =

∑

π

p (x, π) = p(x0:L+1, πlast = Mm+1), (2)

where π is the possible state path, πlast is the last state in the path, L is the length of 
the sequence, xj:k is the subsequence of x from the jth character to the kth character 
on both ends, x0 is a null character that indicates the start of the sequence, xL+1 
is a null character that indicates the end of the sequence, and m is the number 
of matching states in the model. It is computationally expensive to calculate the 
sequence probability for all possible paths. Introducing a forward algorithm can 
lower the computational cost to O(Lm). The forward algorithm consists of a 
forward variable defined as fSj (i) = p(x0:i , πlast = Sj), and the probability can be 
calculated recurrently by

fMk (l) = eMk (xl)
∑

S∈{M,I,D}
aSk−1 ,Mk fSk−1(l − 1),

fIk(l) = eI(xl)
∑

S∈{M,I}
aSk,Ik fSk(l − 1),

fDk (l) =

∑

S∈{M,D}
aSk−1 ,Dk fSk−1(l).

(3)

The emission probability of the insertion state does not depend on the position 
of the motif; therefore, it is set to a constant of one-quarter for RNA sequences. We 
set the probability to output the final end-of-sequence token p(xL+1∣Mm+1) to 1.

Other tested decoders. Three probabilistic models were tested: the multicategorical 
model, the autoregressive model and profile HMM. The probabilistic models 
each have different sequence probability assignments. The multicategorical model 
assigns a categorical distribution to each position of the sequence. Given the 
representation vector z and the probability of the sequence x, p(x∣z) is calculated 
by p(x|z) =

∏L
i=1 p(xi|z) =

∏L
i=1 Cat(xi|fθ(z)), where Cat is a categorical 

distribution and fθ is a neural network. The autoregressive model outputs a 
probability according to previous data. The probability of the sequence p(x∣z) 
is calculated by p(x|z) =

∏L
i=1 p(xi|x0:i−1, z) =

∏L
i=1 Cat(xi|gθ(x0:i−1, z)), 

where gθ is a recurrent neural network. The architectures of networks fθ and gθ are 
described in Supplementary Section 5.

Training techniques. State transition regularization was introduced to train 
RaptGen. Weighed regularization loss was also introduced for all VAEs, including 
RaptGen.

State transition regularization. A VAE can be trained with backpropagation 
by treating ELBO as a loss function. In addition to ELBO, a Dirichlet prior 
distribution was used on the transition probabilities to avoid unnecessary state 
transitions in the early rounds of training RaptGen. By penalizing transitions other 
than match-to-match at the beginning of the learning process, insertions and 
deletions are forced to occur less. This allows continuous motifs to be learned and 
lowers the probability of obtaining models with meaningless transitions traversing 
deletion states.

The probability of categorical variable p = {pk} sampled from a Dirichlet 
distribution is
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Dir (p|α) =

Γ
(
∑K

k=1 αk
)

∏K
k=1 Γ (αk)

K
∏

k=1

pak−1
k , (4)

where α = {αk} is the Dirichlet distribution parameter. The regularization term is 
the sum of the log-odds ratio of the training probability from the matching state 
over each position i, defined as

LM(pi , e, r) = log
( Dir (pi|α(wm))

Dir (pi|α(0))
)

= log
(

Γ(3+wm)
Γ(1+wm)

(aMi−1 ,Mi )
wm × 1

Γ(3)

)

= log
(

(2+wm)(1+wm)
2 (aMi−1 ,Mi )

wm
)

,

(5)

where pi is [aMi−1 ,Mi aMi−1 ,Ii aMi−1 ,Di ]
 which indicates the transition probabilities 

from the ith matching state, and α(wm) = [1 + wm 1 1] is the parameter representing 
the induction weight wm. To make this loss zero at a specific round R, wm was set to 
4(1 − e/R), where e is the training epoch. This regularization term was added to the 
ELBO during training.

Weighted regularization loss. The scaling param eter for the regularization was 
introduced to train the VAE. Scaling the regularization term of the loss function 
of the VAE to minimize the value in the early epoch of training improves latent 
embedding46. The scale is defined as e/E, where e is the training epoch, and E is the 
maximum number of epochs to have scaling. After the E epochs of training have 
finished, the scale is set to 1.

Training settings. All sequences in the training set were filtered first. Sequences 
with exact matching adapters, exact matching sequence design lengths, and 
sequences read more than once remained. The sequences were split into training 
and test datasets in a 9:1 ratio. The model with the smallest test loss was selected 
through iterations. For the weighted regularization loss, the maximum number to 
have scaling E was set to 50. The state transition regularization parameter R was set 
to 50 for the profile HMM decoder. Adam was used as the training optimizer with 
default parameters47. All of the networks were trained up to 2,000 epochs with early 
stopping when the test loss was not updated for 50 epochs.

RaptGen evaluation. Simulation data. For the simulation data shown in Fig. 2a, 
ten different motif sequences of length ten were generated and single nucleotide 
modification with a 10% error rate was added. In other words, each motif 
sequence had a 3.33 … % chance of deletion, insertion or modification at a specific 
position. After this procedure, sequences were randomly extended to reach 20 nt 
by adding nucleotides to the right and the left. We made 10,000 sequences in total, 
with no duplication.

For the simulation data shown in Fig. 3a, sequences containing paired motifs 
were generated. Two 5 nt motifs were made, and then one of the motifs was 
randomly deleted at a probability of 25% each. If both motifs remained, 2 to 6 nt 
were randomly inserted between the left and right motifs. Sequences were then 
randomly extended to reach 20 nt, and 5,000 of these sequences were generated.

SELEX data. SELEX data used in this study were obtained previously20. The 
sequences are available as DRA009383 and DRA009384, which we call datasets A 
and B, respectively. These SELEX were conducted using a conventional selection 
method. Briefly, the target proteins were immobilized on beads. After washing, 
bound RNA was recovered and amplified using reverse-transcription-PCR. Dataset 
A, targeting human transglutaminase 2, consists of nine SELEX rounds from 0 to 
8, and Dataset B, targeting human integrin alpha V beta 3, consists of four rounds 
from 3 to 6. The round with the smallest unique ratio U(T) with the restriction of 
U(T) > 0.5 was used, defined as

U(T) =

|{x|x ∈ D(T)}|
|D(T)|

, (6)

where D(T) are the whole sequences, read in round T. The fourth round was 
selected for each dataset.

RaptGen applications in aptamer discovery. GMM for initial sequence selection. 
We used the GMM for initial sequence selection from the obtained latent space. 
To efficiently select ten points to be evaluated, GMM was run 100 times with ten 
components, and the mean vectors of the model with the best evidence (likelihood) 
were selected.

Surface plasmon resonance assay. The surface plasmon resonance assays were 
performed using a Biacore T200 instrument (GE Healthcare) as described 
previously with slight modifications20. The target proteins of datasets A and B were 
human recombinant transglutaminase 2 (R&D systems, catalogue no. 4376-TG) 
and human recombinant integrin alpha V beta 3 (R&D systems, catalogue no. 
3050-AV), respectively. Aptamers were prepared with fixed primer regions  

and 16-mer poly(A)-tails as follows: 5′–GGGAGCAGGAGAGAGGUCAGAUG–
(variable sequence)–CCUAUGCGUGCUAGUGUGA–(polyA)–3′ for dataset  
A and 5′–GGGAGAACUUCGACCAGAAG–(variable sequence)–UAUGUGCG 
CAUACAUGGAUCCUC–(polyA)–3′ for Dataset B. Previously reported 
aptamers were used as positive controls. All evaluated sequences are listed in 
Supplementary Section 2 (Supplementary Table 3). Aptamers were prepared by in 
vitro transcription using a mutant T7 RNA polymerase and 2′-fluoro-pyrimidine 
NTPs. The running buffer consisted of 145 mM NaCl, 5.4 mM KCl, 0.8 mM MgCl2, 
1.8 mM CaCl2, 0.05% Tween20 and 20 mM Tris-HCl (pH 7.6). A 5′-biotinylated 
dT16 oligomer was immobilized to both active and reference flow cells of the 
streptavidin sensor chip (BR100531, GE Healthcare). The poly(A)-tailed RNA was 
captured in the active flow cell by complementary hybridization at a concentration 
of 300 nM and a flow rate of 20 μl min−1, with an association time of 60 s. The 
proteins were injected into the flow cells of the sensor chip at a concentration of 
50 nM and a flow rate of 20 μl min−1, with an association time of 60 s. To regenerate 
the sensor chip, bound aptamers were completely removed by injecting 6 M urea. 
Data were obtained by subtracting the reference flow cell data from the active flow 
cell data. The ratio of the protein-binding level to aptamer-capturing level was used 
as binding activity. Percent relative binding activities of positive control aptamers 
are shown in the results and discussion section. For normalization of Dataset A, 
the cycle number-dependent reduction of control aptamer binding was estimated.

Multipoint Bayesian optimization via local penalization. Bayesian optimization  
uses both the search for sequences that have not been explored to a reasonable 
extent and the utility of utilizing sequences with known affinity to select the  
next sequence for evaluation. The local penalization function is a method that  
can determine the multipoint expected improvement of candidates by considering 
the smoothness of the potential function48. As it converges faster than qEI49  
and other methods for simultaneous optimization. We used this method to 
perform multipoint optimization. Implementation was performed with the 
GPyOpt package50.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The HT-SELEX sequences are available as DRA009383 (Dataset A) and 
DRA009384 (Dataset B) in DDBJ. Source Data are provided with this paper.

Code availability
The RaptGen program is available via ref. 51.
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