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Many supercomputing centers in the world perform opera-
tional weather and climate simulations several times per 
day1. The European Centre for Medium-Range Weather 

Forecasts (ECMWF) produces 230 TB of data on a typical day and 
most of the data are stored on magnetic tapes in its archive. This data 
production is predicted to quadruple within the next decade due to 
the increased spatial resolution of the forecast model2–4. Initiatives 
towards operational predictions with global storm-resolving simu-
lations, such as Destination Earth5 or DYAMOND6, at a grid spac-
ing of a couple of kilometers, will further increase the volume of 
data. These data describe physical and chemical variables for the 
atmosphere, ocean and land in up to six dimensions: three in space, 
as well as time, forecast lead time and the ensemble dimension. The 
last dimension results from calculating an ensemble of forecasts 
to estimate the uncertainty of predictions7,8. Most geophysical and 
geochemical variables are highly correlated in all of the dimensions, 
a property that is rarely exploited for climate data compression, 
although multidimensional compressors are being developed9–12.

Floating-point numbers are the standard to represent real num-
bers in binary form; 64-bit double-precision floating-point num-
bers (Float64) consist of a sign bit, 11 exponent bits representing a 
power of two, and 52 mantissa bits allowing for 16 decimal places of 
precision across more than 600 orders of magnitude13. Most weather 
and climate models are based on Float64 arithmetic, which has 
been questioned, as the transition to 32-bit single-precision floats 
(Float32) does not necessarily decrease the quality of forecasts14,15. 
Many bits in Float32 only contain a limited amount of information, 
as even 16-bit arithmetic has been shown to be sufficient for parts 
of weather and climate applications16–19. Shannon’s information the-
ory20,21 introduced a mathematical concept to quantify information 
for the outcomes of a random variable. The information is analyzed 
in relation to the variable’s statistics or the statistical dependence 
on other variables and is often interpreted as the surprise about an 
outcome. Applied to binary numbers in simple chaotic dynamical 
systems, the information is zero for many of the 32 bits in Float3222. 
This supports the general concept of low-precision climate model-
ing for calculations and data storage, as, at least in theory, many 

rounding errors are entirely masked by other uncertainties in the 
chaotic climate system23–25.

The bitwise information content has been formulated for pre-
dictability in dynamical systems22. It quantifies how much indi-
vidual bits in the floating-point representation contribute to the 
information necessary to predict the system’s state at a later point 
in time. This technique has been used to optimize the simulation of 
simple chaotic systems on inexact hardware to reduce the precision 
as much as possible. In this Article we extend the bitwise informa-
tion content to distinguish between bits with real and false informa-
tion in data. As false information leaves the result of data analyzes 
unaffected, only the real information is meaningful to analyze and 
should therefore be preserved in data compression.

Data compression for floating-point numbers often poses a 
trade-off in size, precision and speed26–28. Higher compression 
factors for smaller file sizes can be achieved with lossy compres-
sion, which reduces the precision and introduces rounding errors. 
Additionally, higher compression requires more sophisticated 
compression algorithms, which can decrease compression and/or 
decompression speeds. A reduction in precision is not necessarily 
a loss of real information, as rounding errors that occur are rela-
tive to a reference that itself comes with uncertainty. Here we cal-
culate the bitwise real information content20–22 of atmospheric data 
to discard bits that contain no information29,30 and only compress 
the real information content. Combined with modern compression 
algorithms10,31–33, the multidimensional correlation of climate data is 
exploited for higher compression efficiency34,35.

Results
Drawbacks of current compression methods. The Copernicus 
Atmospheric Monitoring Service36 (CAMS) performs operational 
predictions with an extended version of the Integrated Forecasting 
System (IFS), the global atmospheric forecast model implemented 
by ECMWF. CAMS includes various atmospheric composition vari-
ables, such as aerosols, trace and greenhouse gases that are impor-
tant to monitor global air quality. For example, the system monitors 
the spread of volcanic eruptions or emissions from wildfires. Most 

Compressing atmospheric data into its real 
information content
Milan Klöwer   1 ✉, Miha Razinger2, Juan J. Dominguez2, Peter D. Düben2 and Tim N. Palmer1

Hundreds of petabytes are produced annually at weather and climate forecast centers worldwide. Compression is essential 
to reduce storage and to facilitate data sharing. Current techniques do not distinguish the real from the false information in 
data, leaving the level of meaningful precision unassessed. Here we define the bitwise real information content from infor-
mation theory for the Copernicus Atmospheric Monitoring Service (CAMS). Most variables contain fewer than 7 bits of real 
information per value and are highly compressible due to spatio-temporal correlation. Rounding bits without real information 
to zero facilitates lossless compression algorithms and encodes the uncertainty within the data itself. All CAMS data are 17× 
compressed relative to 64-bit floats, while preserving 99% of real information. Combined with four-dimensional compression, 
factors beyond 60× are achieved. A data compression Turing test is proposed to optimize compressibility while minimizing 
information loss for the end use of weather and climate forecast data.

Nature Computational Science | VOL 1 | November 2021 | 713–724 | www.nature.com/natcomputsci 713

mailto:milan.kloewer@physics.ox.ac.uk
http://orcid.org/0000-0002-3920-4356
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-021-00156-2&domain=pdf
http://www.nature.com/natcomputsci


Articles Nature Computational Science

variables in CAMS have a multimodal statistical distribution, span-
ning many orders of magnitude (Supplementary Fig. 1).

The current compression technique used for CAMS is linear 
quantization, which is widely used in the weather and climate com-
munity through the data format GRIB237. CAMS uses the 24-bit 
version, which encodes values in a data array with integers from 0 
to 224 − 1. These 24-bit unsigned integers represent values linearly 
distributed in the min–max range. Unused sign or exponent bits 
from the floating-point representation are therefore avoided, and 
some of the trailing mantissa bits are discarded in quantization. 
Choosing the number of bits for quantization determines the file 
size, but the precision follows implicitly, leaving the required preci-
sion or amount of preserved information unassessed.

Although linear quantization bounds the absolute error, its lin-
ear distribution is unsuited for most variables in CAMS: many of 
the available 24 bits are effectively unused as the distribution of the 
data and the quantized values match poorly (Supplementary Fig. 
2). Alternately, placing the quantized values logarithmically in the 
min–max range better resolves the data distribution. As floating-
point numbers are already approximately logarithmically distrib-
uted, this motivates compression directly within the floating-point 
format, which is also used for calculations in a weather or climate 
model and post-processing.

Bitwise real information content. Many of the trailing mantissa 
bits in floating-point numbers occur independently and at similar 
probability, that is, with high information entropy21,22. These seem-
ingly random bits are incompressible38–40, reducing the efficiency 
of compression algorithms. However, they probably also contain a 
vanishing amount of real information, which has to be analyzed to 
identify bits with and without real information. The former should 
be conserved while the latter should be discarded to increase the 
compression efficiency.

We define the bitwise real information content as the mutual 
information20,38,41–44 of bits in adjacent grid points (Fig. 1 and 

Methods). A bit contains more real information the stronger the sta-
tistical dependence to the adjacent bits is. Bits without real informa-
tion are identified when this dependence is insignificantly different 
from zero and we regard the remaining entropy in these bits as false 
information. The adjacent bit can be found in any of the dimen-
sions of the data, for example, in longitude, time or in the ensemble 
dimension. However, the same bit position is always analyzed, for 
example, the dependence of the first mantissa bit with other first 
mantissa bits in adjacent grid points.

In general, this analysis can be applied to any n-dimensional 
gridded data array when its adjacent elements are also adjacent 
in physical space, including structured and unstructured grids. 
However, data without spatial or temporal correlation at the pro-
vided resolution will be largely identified as false information due 
to the independence of adjacent grid points (Supplementary Figs. 
3 and 4 and Methods). If valuable scientific information is present 
in such seemingly random data, then the bitwise real information 
content as defined here is unsuited.

Jeffress et al. formulate the bitwise information content for simple 
chaotic systems, assuming an inherent natural uncertainty that had 
to be defined22. Their approach aims to enable reduced precision 
simulations on inexact hardware. Here we reformulate the bitwise 
real information as the mutual information in adjacent grid points 
for application in climate data compression. The quantization in the 
floating-point representation is used as an uncertainty, such that no 
additional assumption on the uncertainty of the underlying data has 
to be made. Most data compression techniques leave the choice of 
the retained precision to the user. The analysis here automatically 
determines a precision from the data itself, based on the separation 
of real and false information bits.

Many exponent bits of the variables in CAMS have a high infor-
mation content (Fig. 2), but the information content decreases 
within the first five to ten mantissa bits for most variables, such 
that many trailing mantissa bits do not contain real information. 
Exceptions occur for variables like carbon dioxide (CO2) with  
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Fig. 1 | The bitwise real information content is defined as the mutual information of bits in adjacent grid points. a, Gridded data from a Cartesian, 
curvilinear or unstructured grid. b, Binary representation of every number in the data array. c, Analysis of the bits in the same bit position but from adjacent 
grid points. d, Calculation, for every bit position, of the mutual information between adjacent grid points, which is the bitwise real information content. 
 e, A bit position contains more real information the stronger the statistical dependence to the adjacent bits is. Statistically independent bits contain only 
false information, which equals the entropy minus the real information. f, Bit positions that contain more than 99% of real information are preserved, while 
false information bits are removed by rounding to 0 to facilitate lossless compression.
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mixing ratios varying in a very limited range of 0.5–1.5 mg kg−1 
(equivalent to ~330–990 ppmv) globally. Because of the limited 
range, most exponent bits are unused and the majority of the real 
information is in mantissa bits 2 to 12.

The sum of real information across all bit positions is the total 
information per value, which is less than 7 bits for most variables. 

Importantly, the last few percent of total information is often dis-
tributed across many mantissa bits. This presents a trade-off with 
which, for a small tolerance in information loss, many mantissa bits 
can be discarded, resulting in a large increase in compressibility 
(Supplementary Fig. 5). Aiming for 99% preserved information is 
found to be a reasonable compromise.
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Compressing only the real information. Based on the bitwise real 
information content, we suggest a strategy for the data compres-
sion of climate variables. First, we diagnose the real information for 
each bit position. Afterwards, we round bits with no significant real 
information to zero, before applying lossless data compression. This 
allows us to minimize information loss but maximize the efficiency 
of the compression algorithms.

Bits with no or only little real information (but high entropy) are 
discarded via binary round-to-nearest as defined in the IEEE-754 
standard13 (Methods). This rounding mode is bias-free and there-
fore will ensure global conservation of the quantities that are impor-
tant in climate model data. Rounding removes the incompressible 
false information and therefore increases compressibility. Although 
rounding is irreversible for the bits with false information, the bits 
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Fig. 3 | Compression at various levels of preserved information. a, Water vapor (specific humidity) compressed in the longitudinal dimension.  
b, Temperature compressed in the four space–time dimensions with compression algorithm Zfp. Preserved information decreases from left to right, 
which increases the compression factors relative to 64-bit floats. The vertical level shown is at ~2 km geopotential altitude in a and surface in b, but the 
compression factors include all vertical levels.
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with real information remain unchanged and are bitwise reproduc-
ible after decompression. Both the real information analysis and the 
rounding mode are deterministic, also satisfying reproducibility.

Lossless compression algorithms can be applied efficiently 
to rounded floating-point arrays (the round + lossless method). 
Many general-purpose lossless compression algorithms are avail-
able39,40,45–50 and are based on dictionaries and other statistical 
techniques to remove redundancies. Most algorithms operate on 
bitstreams and exploit the correlation of data in a single dimension 
only, so we describe such methods as one-dimensional (1D) com-
pression. Here, we use the Zstandard algorithm for lossless com-
pression, which has emerged as a widely available default in recent 
years (Methods).

The compression of water vapor at 100% preserved information 
(16 mantissa bits are retained) yields a compression factor of 7×  
relative to 64-bit floats (Fig. 3a). At 99% preserved information 
(seven mantissa bits are retained) the compression factor increases 
to 39×. As the last 1% of real information in water vapor is distrib-
uted across nine mantissa bits, we recommend this compromise to 
increase compressibility. With this compression a 15-fold storage 
efficiency increase is achieved compared to the current method (at 
2.67×). Effectively only 1.6 bits are therefore stored per value.

Compressing all variables in CAMS and comparing error norms 
reveals the advantages of the 1D round + lossless method compared 
to the 24-bit linear quantization technique currently in use (Fig. 4).  
Owing to the logarithmic distribution of floating-point numbers, 
the round + lossless method has smaller maximum decimal errors 
(Methods and equation (15)) than the linear quantization for many 

variables. Some variables are very compressible (>60×) due to there 
being many zeros in the data—this is automatically made use of 
in the lossless compression. Compression factors are between 3× 
and 60× for most variables, with a geometric mean of 6× when 
preserving 100% of information. On accepting a 1% information 
loss, the geometric mean reaches 17×, which is the overall compres-
sion factor for the entire CAMS dataset achieved with this method. 
Furthermore, the 24-bit linear quantization could be replaced by a 
16-bit logarithmic quantization, as the mean and absolute errors 
are comparable. The decimal errors are often even lower and natu-
rally bound in a logarithmic quantization, despite there being fewer 
available bits.

The broad applicability of the bitwise real information content 
analysis for compression was tested with further datasets. Radar-
based observations of precipitation over Great Britain are similarly 
compressible using the same method (Supplementary Fig. 6), as are 
satellite measurements of brightness temperature, with a very high 
resolution of ~300 m horizontally (Supplementary Fig. 7). Even for 
anthropogenic emissions of methane or nitrogen dioxide, similar 
compression results are obtained, despite the limited spatial correla-
tion of the point sources (Supplementary Fig. 8). The bitwise real 
information content in this case is largely determined by the smooth 
background concentrations and is therefore still sufficiently high to 
preserve the point sources.

In an operational setting we recommend the following work-
flow. First, for each variable, the bitwise real information content 
is analyzed from a representative subset of the data. For example, 
a single time step can be representative of subsequent time steps 
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if the statistics of the data distribution are not expected to change. 
From the bitwise real information, the number of mantissa bits 
to preserve 99% of information is determined (the ‘keepbits’). 
Second, during the simulation, the arrays that will be archived 
are rounded to the number of keepbits (which are held fixed) 
and compressed. The first step should be done offline—once in 
advance of a data-producing simulation. Only the second step has 
to be performed online, meaning every time a chunk of data is 
archived.

The presented round + lossless compression technique separates 
the lossy removal of false information and the actual lossless com-
pression. This provides additional flexibilities, as any lossless com-
pressor can be used, and application-specific choices can be made 
regarding availability, speed and the resulting file sizes. However, 
most general-purpose lossless compression algorithms operate on 
bitstreams and require multidimensional data to be unraveled into 
a single dimension. Multidimensional correlation is therefore not 
fully exploited in this approach.

We extend the ideas of information-preserving compression to 
modern multidimensional compressors. Analysis of the bitwise real 
information content leads naturally to the removal of false informa-
tion via rounding in the round + lossless method. For other lossy 
compressors, however, the separation of real and false information 
has to be translated to the precision options of such compressors. 
Although such a translation is challenging in general, in the next 
section we present results from combining the bitwise real informa-
tion analysis with one modern multidimensional compressor.

Multidimensional data compression. Modern compressors have 
been developed for multidimensional floating-point arrays10,31,32 
that compress in several dimensions simultaneously. We will com-
pare the 1D round + lossless compression to Zfp, a modern com-
pression algorithm for two to four dimensions10. Zfp divides a 
d-dimensional array into blocks of 4d values (that is, an edge length 
of 4), which allows us to exploit the correlation of climate data in 
up to four dimensions. To extend the concept of information-pre-
serving compression to modern compressors like Zfp, the bitwise 
real information is translated to the precision options of Zfp (more 
details are provided in the Methods).

Multidimensional compression imposes additional inflexibili-
ties for data retrieval: data are compressed and decompressed in 
larger chunks, which can increase the load on the data archive. For 
example, if the data are compressed in time, several time steps have 
to be downloaded and decompressed, although only a single time 
step might be requested. Downloads from an archive might there-
fore increase if the data chunking is not well suited to typical data 
requests from users.

For 1D compression, the compressibility varies with the dimen-
sion. Longitude (that is, in the zonal direction) is more compressible 
(reaching 25× for temperature at 99% preserved information) than 
the vertical (which yields only 14×) (Fig. 5). This agrees with the 
predominantly zonal flow of the atmosphere as spatial correlation 
in the zonal direction is usually highest. For a constant number of 
retained mantissa bits, higher resolution in the respective dimen-
sions increases the compressibility as the correlation in adjacent 
grid points also increases (Supplementary Figs. 3 and 4).

For multidimensional compression it is generally advantageous 
to include as many highly correlated dimensions as possible. In that 
sense, including the hourly-resolved forecast lead time instead of 
the vertical dimension in 3D compression yields higher compres-
sion factors. The 4D space–time compression is the most efficient, 
reaching 60–75× at 99% preserved information. For temperature, 
this is equivalent to a median absolute error of 0.1 °C (Fig. 3b).

Compressing the entire CAMS dataset in the three spatial dimen-
sions with Zfp while preserving 99% of the information yields an 
overall compression factor of 24× (Fig. 4). Maximum absolute 
error and decimal errors are, for most variables, very similar to 1D 
round + lossless compression (see Methods for a discussion of why 
they are not identical). This provides evidence that a multidimen-
sional compression is preferable for higher compression factors.

The meaning of error norms is limited in the presence of uncertain-
ties in the uncompressed reference data. We therefore assess the fore-
cast error to quantify the quality of the compressed atmospheric data. 
The continuous ranked probability score51–53 (CRPS) was evaluated for 
global surface temperature using observations every 6 h as truth (Fig. 
6). The CRPS is the root-mean-square error between the observations 
and the forecast, but generalized to an ensemble of forecasts, account-
ing for both the ensemble spread and the bias. Compared to the 
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uncompressed data, no significant increase in the CRPS forecast error 
occurs for individual locations or globally at 99% and 97% preserved 
information. The usefulness for the end user of the global temperature 
forecast is therefore unaltered at these levels of preserved information 
in the compression. However, with an information loss larger than 5%, 
the CRPS forecast error starts to increase, although large compression 
factors beyond 150× are achieved.

Compression and decompression speed. To be attractive for 
large datasets, a compression method should enable compression 
as well as decompression at reasonable speeds. ECMWF produces 
data at ~2 GB s−1, including CAMS, which creates ~15 MB s−1. 
Data on ECMWF’s archive are compressed once, but downloaded, 
on average, at 120 MB s−1 by different users, such that both high 
compression and decompression speeds are important. The (de)
compression speeds obtained here are all at least 100 MB s−1 single-
threaded (Supplementary Fig. 9), but faster speeds are available in 
exchange for lower compression factors (Methods). The real infor-
mation is only analyzed once and is ultimately independent of the 
compressor choice.

A Turing test for data compression. In numerical weather predic-
tions, progress in the development of global weather forecasts is often 
assessed using a set of error metrics, summarized in so-called score 
cards. These scores cover important variables in various large-scale 
regions, such as surface temperature over Europe or horizontal wind 
speed at different vertical levels in the Southern Hemisphere. With a 
similar motivation as in ref. 54, we suggest assessing the efficiency of 
climate data compression using similar scores, which have to be passed 
similarly to a Turing test34,55. The compressed forecast data should be 
indistinguishable from the uncompressed data, or at least the current 
compression method, while allowing higher compression factors.

Many score tests currently in use represent area averages (such 
as Fig. 6d), which would also be passed with coarse-grained data. 
Reducing the horizontal resolution from 10 km to 20 km, for exam-
ple, yields a compression factor of 4×. It is therefore important to 
include resolution-sensitive score tests such as the maximum error 
in a region. Although a compression method either passes or fails 
such a data compression Turing test, there is additional value in 
conducting such a test. Evaluating the failures will highlight prob-
lems and evaluating the passes may identify further compression 
potential.

Discussion
The definition of the bitwise real information content presented 
here is based on the mutual information in adjacent grid points. 
We therefore assume a spatial and temporal coherence of data that 
will come with some autocorrelation. For vanishing autocorrelation 
in the data the real information content will drop to zero, as the 
mutual information between bits in adjacent but independent grid 
points approaches zero. In this case, the entire dataset is identified 
as false information and consequently rounded to zero. In practice, 
this only occurs with data having autocorrelation coefficients of 
less than 0.2 (Supplementary Fig. 4). If there is valuable scientific 
information in seemingly random data, then the assumption that 
the mutual information in adjacent grid points is real information 
does not hold.

Issues with the bitwise real information content can arise in data 
that was previously subject to lossy compression. Linear or logarith-
mic quantization, for example, rounds data in linear or logarithmic 
space, respectively, which is not equivalent to binary rounding in the 
floating-point format. Consequently, such a quantization will generally 
introduce non-zero bits in the mantissa of floats when decompressed. 
These bits can have some statistical dependence, appearing as artificial 

Ensemble forecast for London (51.5° N, 0° E) from 24 September 2020

4D compression: 99% information, ±0.1 °C, 61× compressed

4D compression: 93% information, ±0.4 °C, 155× compressed
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Fig. 6 | Verification of an ensemble forecast with the probabilistic forecast error based on ensemble data with and without compression. a, The 
25-member uncompressed ensemble forecast (lines) of surface temperature in London, UK from 24 September 2020 up to 15 days ahead. b, Same 
as for a but the data are compressed in 4D space–time with Zfp, preserving 99% of real information. c, Same as for b but only preserving 93% of real 
information. d, Probabilistic forecast error (CRPS) for various levels of preserved information in the compression. The global mean CRPS has been 
calculated from 1,800 × 901 grid points.
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information induced by the quantization. Such artificial information 
can be observed as small background information (that is, signifi-
cantly different from 0) or re-emerging information in the last man-
tissa bits. In this case, the information distribution across bit positions 
deviates clearly from the typical (Fig. 2) for which the information 
drops monotonically with increasing bit position in the mantissa and 
is insignificantly different from 0 thereafter.

A solution to this quantization-induced artificial information is 
to apply bitwise real information analysis in the compressed encod-
ing. The bitwise real information content, as defined here, is inde-
pendent of the binary number format, so it can also be applied to 
integers representing compressed data from quantization. In our 
case, rounding in the floating-point representation guarantees that 
the rounded mantissa bits have zero entropy and therefore zero 
information. No artificial information is therefore introduced and 
applying the rounding for floats repeatedly has no effect beyond the 
first application (idempotence).

No additional uncertainty measure has to be assumed for the 
distinction of real and false information presented here. The uncer-
tainty of a variable represented in a data array is directly obtained 
from the distribution of the data itself. Most lossy compression tech-
niques leave the choice of precision to the user, which may lead to 
subjective choices or the same precision for a group of variables. 
Instead, our suggestion that 99% of information should be pre-
served may be altered by the user, which will implicitly determine 
the required precision for each variable individually.

Lossy compression inevitably introduces errors compared to the 
uncompressed data. Weather and climate forecast data, however, 
already contain uncertainties that are, in most cases, larger than 
the compression error. For example, limiting the precision of the 
surface temperature to 0.1 °C (as shown in Fig. 3b) is well below 
the average forecast error (Fig. 6d) and also more precise than the 
typical precision of 1 °C presented to end users of a weather forecast. 
Reducing the precision to the real information content not only 
increases compressibility but also helps to directly communicate the 
uncertainty within the dataset. The uncertainty of data is impor-
tant—often neglected—information in itself.

Satisfying the requirements for size, precision and speed simul-
taneously is an inevitable challenge of data compression. As the pre-
cision can be reduced without losing information, we revisit this 
trade-off and propose an information-preserving compression. At 
the same time as current archives probably use large capacities to 
store random bits, analysis of the bitwise real information content is 
essential for achieving efficient climate data compression.

Methods
Data. The CAMS data were analyzed for one time step on 1 December 2019 12:00 
ut and bilinearly regridded onto a regular 0.4° × 0.4° longitude–latitude grid using 
Climate Data Operators (CDO) v1.9. All 137 vertical model levels were included. 
Global fields of temperature from ECMWF’s ensemble prediction system with 
91 vertical levels were used from the first 25 members of a 50-member 15-day 
ensemble forecast starting on 24 September 2020 at 0:00 ut. Bilinear regridding 
onto a regular 0.2° × 0.2° longitude–latitude grid was applied (in a similar manner 
as for the CAMS data). All compression methods here include the conversion from 
Float64 to Float32.

Only longitude–latitude grids are considered in this Article. However, the 
methodology can be applied to other grids too. For example, ECMWF’s octahedral 
grid collapses the two horizontal dimensions into a single horizontal dimension 
that circles on latitude bands around the globe starting at the South Pole until 
reaching the North Pole56. The fewer grid points of the octahedral grid reduce the 
size, but the correlation in the latitudinal direction cannot be exploited.

Bit pattern entropy. An n-bit number format has 2n bit patterns available to 
encode a real number. For most data arrays, not all bit patterns are used at uniform 
probability. The bit pattern entropy is the Shannon information entropy H, in units 
of bits, calculated from the probability of each bit pattern pi:

H =

2n
∑

i=1
pilog2pi (1)

The bit pattern entropy is H ≤ n and maximized to n bits for a uniform 
distribution. The free entropy Hf is the difference n − H.

Grid definitions. The compression methods described here were applied to 
gridded binary data. Data on structured grids can be represented as a tensor, such 
that for two dimensions the data can be arranged in a matrix A with elements aij 
and indices i, j. Adjacent elements in A, for example aij and ai+1,j, are also adjacent 
grid points. Every element aij is a floating-point number or, in general, a number 
represented in any binary format. The n bits in aij are described as bit positions, 
including sign, exponent and mantissa bits. In the following we will consider 
sequences of bits that arise from incrementing the indices i or j while holding the 
bit position fixed, for example, the sequence of bits consisting of the first mantissa 
bit in aij, then the first mantissa bit in ai+1,j, and so on. We can refer to these bits as 
bits from adjacent grid points. Every bit position in elements of A is itself a matrix, 
for example, the matrix of sign bits across all grid points.

Real information content. The Shannon information entropy20 H in units of bits 
takes for a bitstream b = b1b2 ... bk ... bl, that is, a sequence of bits of length l, the 
form

H = −p0log2p0 − p1log2p1 (2)

with p0, p1 being the probability of a bit bk in b being 0 or 1. The entropy is 
maximized to 1 bit for equal probabilities p0 = p1 =

1
2 in b. We derive the mutual 

information41–43 of two bitstreams r = r1r2 ... rk ... rl and s = s1s2 ... sk ... sl. The mutual 
information is defined via the joint probability mass function prs, which here takes 
the form of a 2 × 2 matrix

prs =
(

p00 p01

p10 p11

)

(3)

with pij being the probability that the bits are in the state rk = i and sk = j 
simultaneously and p00 + p01 + p10 + p11 = 1. The marginal probabilities follow as 
column- or row-wise additions in prs, for example, the probability that rk = 0 is 
pr=0 = p00 + p01. The mutual information M(r,s) of the two bitstreams r, s is then

M(r, s) =

1
∑

r=0

1
∑

s=0
prslog2

(

prs
pr=rps=s

)

(4)

We now consider the two bitstreams r, s being the preceding and succeeding 
bits (for example, in space or time) in a single bitstream b, that is, r = b1b2 ... 
bl−1 and s = b2b3 ... bl. As explained in the section ‘Grid definitions’, this can, for 
example, be the bitstream of all first mantissa bits in the gridded data. Considering 
r, s as the preceding and succeeding bits is equivalent to the bitwise mutual 
information in adjacent grid points. The (unconditional) entropy is then effectively 
H = H(r) = H(s) as in equation (2) and for l being very large. The conditional 
entropies H0, H1 are conditioned on the state of the preceding bit bj−1 being 0 or 1, 
respectively:

H0 = −p00log2p00 − p01log2p01

H1 = −p10log2p10 − p11log2p11
(5)

The conditional entropy is maximized to 1 bit for bitstreams where the 
probability of a bit being 0 or 1 does not depend on the state of the preceding bit, 
which is here defined as false information. With the conditional and unconditional 
entropies and p0, p1 as in equation (2) the mutual information M of succeeding bits 
can be written as

I = H − p0H0 − p1H1 (6)

which is the real information content I. This definition is similar to that in ref. 22, 
but avoids an additional assumption of an uncertainty measure. Their formulation 
similarly uses the state of bits as predictors but assesses the conditional probability 
mass function (p.m.f.) of a dynamical system as predictands. The binwidth of the 
p.m.f. is chosen to represent the uncertainty in the system, on which the bitwise 
real information strongly depends. The formulation here avoids such an additional 
assumption of uncertainty, as bits are used as both predictors and predictands in 
the conditional entropy. Consequently, the uncertainty is obtained from the data 
itself solely based on the mutual information between bits in adjacent grid points.

Equation (6) defines the real information as the entropy minus the false 
information. For bitstreams with either p0 = 1 or p1 = 1 (that is, all bits are either 
0 or 1), the entropies are zero, H = H0 = H1 = 0, and we may refer to the bits in the 
bitstream as being unused. In the case where H > p0H0 + p1H1, the preceding bit is 
a predictor for the succeeding bit, which means that the bitstream contains real 
information (I > 0).

The multidimensional real information content. The real information content 
Im for an m-dimensional array A is the sum of the real information along the m 
dimensions. Let bj be a bitstream obtained by unraveling a given bit position in 
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A along its jth dimension. Although the unconditional entropy H is unchanged 
along the m dimensions, the conditional entropies H0, H1 change as the preceding 
and succeeding bit is found in another dimension; for example, b2 is obtained by 
reordering b1. H0(bj) and H1(bj) are the respective conditional entropies calculated 
from bitstream bj. Normalization by 1/m is applied to Im such that the maximum 
information is 1 bit in I∗m:

I∗m = −

p0
m

m
∑

j=1
H0(bj) −

p1
m

m
∑

j=1
H1(bj) (7)

Owing to the presence of periodic boundary conditions for longitude, 
a succeeding bit might be found across the bounds of A. This simplifies the 
calculation as the bitstreams are obtained from permuting the dimensions of A and 
subsequent unraveling into a vector.

Preserved information. We define the preserved information in a bitstream s 
when approximating r (for example, after a lossy compression) via the symmetric 
normalized mutual information

R(r, s) =

2M(r, s)
H(r) + H(s)

(8)

where R is the redundancy of information of r in s. The preserved information P in 
units of bits is then the redundancy-weighted real information I in r:

P(r, s) = R(r, s)I(r) (9)

The information loss L is 1 − P and represents the unpreserved information 
of r in s. In most cases we are interested in the preserved information of an array 
X = (x1, x2, ..., xq, ..., xn) of bitstreams xq when approximated by a previously 
compressed array Y = (y1, y2, ..., yq, ..., yn). For an array A of floats with n = 32 bits, 
for example, x1 is the bitstream of all sign bits unraveled along a given dimension 
(for example, longitudes) and x32 is the bitstream of the last mantissa bits. The 
redundancy R(X, Y) and the real information I(X) is then calculated for each bit 
position q individually. The fraction of preserved information P is the information-
weighted mean of the redundancy:

P(X, Y) =

∑n
q=1R(xq, yq)I(xq)
∑n

q=1I(xq)
(10)

The quantity 
∑n

q=1I(xq) is the total information in X and therefore also in A. 
The redundancy is R = 1 for bits that are unchanged during rounding and R = 0 
for bits that are rounded to zero. The preserved information with bitshave or 
halfshave29,30 (that is, replacing mantissa bits without real information with either 
00…00 or 10…00, respectively) is therefore equivalent to truncating the bitwise 
real information for the (half)shaved bits. For round-to-nearest, however, the 
carry bit depends on the state of bits across several bit positions. To account for 
the interdependency of bit positions, the mutual information has to be extended 
to include more bit positions in the joint probability prs, which will then be a m × 2 
matrix. For computational simplicity, we truncate the real information as the 
rounding errors of round-to-nearest and halfshave are equivalent.

Significance of real information. In the analysis of real information it is important 
to distinguish between bits with very little but significant information and those 
with information that is insignificantly different from zero. Although the former 
have to be retained, the latter should be discarded to increase compressibility. A 
significance test for real information is therefore presented.

For an entirely independent and equal occurrence of bits in a bitstream of 
length l, the probabilities p0, p1 of a bit being 0 or 1 approach p0 = p1 =

1
2, but 

they are in practice not equal for l < ∞. Consequently, the entropy is smaller than 1, 
but only insignificantly. The probability p1 of successes in the binomial distribution 
(with parameter p = ½) with l trials (using the normal approximation for large l) is

p1 =

1
2 +

z
2
√

l
(11)

where z is the 1 −

1
2 (1 − c) quantile at confidence level c of the standard normal 

distribution. For c = 0.99, corresponding to a 99% confidence level, which is used 
as default here, z = 2.58, and for l = 5.5 × 107 (the size of a 3D array from CAMS), a 
probability 12 ≤ p ≤ p1 = 0.5002 is considered insignificantly different from equal 
occurrence p0 = p1. The associated free entropy Hf in units of bits follows as

Hf = 1 − p1log2p1 − (1 − p1)log2(1 − p1) (12)

We consider real information below Hf as insignificantly different from 0 and 
set the real information I = 0.

Dependency of the bitwise real information on correlation. The real information 
as defined here depends on the mutual information of bits in adjacent grid points. 
Higher autocorrelation in data (meaning a higher correlation between adjacent grid 

points) increases the mutual information in the mantissa bits. With higher correlation, 
the adjacent grid values are closer, increasing the statistical dependence of mantissa 
bits that would otherwise be independent at lower correlation. Consequently, the real 
bitwise information content is increased and more mantissa bits have to be retained to 
preserve 99% of real information (Supplementary Fig. 4a,b).

The increasing number of retained mantissa bits with higher autocorrelation 
in data will decrease the compression factors, as it is easier to compress bits that 
are rounded to zero. However, a higher correlation also increases the redundancy 
in bits of adjacent grid points, which favors a more efficient lossless compression. 
These two effects counteract, and compression factors only increase piecewise 
over a small range of correlations while the retained mantissa bits are constant 
(Supplementary Fig. 4c,d). Once an additional mantissa bit has to be retained to 
preserve 99% of real information, the compression factors jump back down again, 
resulting in a sawtooth wave. Over a wide range of typical correlation coefficients 
(0.5–0.9999) the compression factors are otherwise constant and no higher 
compressibility is found with increased correlation.

The compression factors can, however, depend on the range of values 
represented in binary. A shift in the mean to have positive or negative values only 
means that the sign bit is unused, which increases compression factors (compare 
Supplementary Fig. 4a,b), despite identical correlation coefficients. Although 
the correlation is invariant under multiplicative scaling and addition, the bitwise 
information changes under addition. When the range of values in data fits into a 
power of two, its real information is shifted across bit positions into the mantissa 
bits, such that the exponent bits are unused. This can be observed for atmospheric 
temperatures stored in kelvin (within 200–330 K) where only the last exponent 
bit and mantissa bits contain information (Supplementary Fig. 10). Using celsius 
instead shifts information from the mantissa bits into the exponent and sign bits.

Preservation of gradients. The preservation of gradients and other higher-
order derivatives in data is a challenging aspect of compression. Removing false 
information in data via rounding can result in identical values in adjacent grid 
points. Even if these values were not identical before rounding, they may not be 
significantly different from each other in the sense of real and false information. 
In this case, a previously weak but non-zero gradient will be rounded to zero, 
which also reduces the variance locally. In other cases, the rounding error is small 
compared to the standard deviation of the data, such that rounding has a negligible 
impact on the variance, as values are independently equally likely to be rounded up 
or down.

The preservation of gradients is illustrated in the example of analyzing 
oceanic fronts obtained from satellite measurements of sea surface temperatures 
(Supplementary Fig. 11). Identified by large horizontal gradients in temperature, 
the location and strength of oceanic fronts is well preserved using compressed data. 
However, areas of very weak gradients can largely vanish with round + lossless. In 
this case the temperatures in adjacent grid points are insignificantly different from 
each other and therefore the gradient is zero after the removal of false information. 
Weak gradients are better preserved with Zfp compression at similar compression 
factors, but its block structure becomes visible.

Rounding. With round-to-nearest, a full-precision number is replaced by the 
nearest representable float with fewer mantissa bits by rounding the trailing bits to 
zero. Representing π as the 32-bit float f, for example, can then be rounded to six 
mantissa bits as

f = 0 10000000 10010010000111111011011 = 3.1415927

round (f) = 0 10000000 10010100000000000000000 = 3.15625
(13)

The 32 bits are split into sign, 8 exponent bits and 23 mantissa bits. The 
sixth mantissa bit flips due to the carry bit; that is, f is rounded up, f < round(f). 
Alternative rounding modes have been proposed for data compression29,30, but 
many suffer from some bias or introduce larger rounding errors.

Error norms. The normalized absolute error E∗

abs of an element ā from a 
compressed array ¯A relative to the respective element a from full-precision array 
A is

E∗

abs =
|ā − a|

mean(|A|) (14)

where |A| denotes the element-wise absolute value of A. The normalization with 
mean(|A|) is therefore the same for all element pairs across A and ¯A, which 
distinguishes it from a relative error. It is used to make the absolute errors between 
variables with different value ranges comparable. The expected error in the mean 
is zero with the bias-free rounding mode round-to-nearest and therefore the mean 
error is not explicitly analyzed here. Zfp compression can, however, introduce small 
errors in the mean57,58. The decimal error Edec is59

Edec =
∣

∣

∣

∣

log10
(

ā
a

)∣

∣

∣

∣

(15)
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Special cases are Edec = ∞ when a or ā is 0 or the signs do not match, 
sign(a) ̸= sign(ā), unless ā = a = 0 in which case Edec = 0. The decimal error 
is used to better highlight when lossy data compression changes the sign (with 
sign(0) = 0) of a value. Bounding the absolute or relative error does not enforce 
that. The maximum normalized absolute and decimal errors are then the 
maximum of all E∗

abs and Edec, respectively, computed for all element pairs across A 
and ¯A. The rounding in the round + lossless method does not affect the sign or the 
exponent bits, such that the probability of sign changes is zero.

Structural similarity. A metric to assess the quality of lossy compression in image 
processing is the structural similarity index measure (SSIM)60. For images it is 
based on comparisons of luminance, contrast and structure. For floating-point 
arrays the luminance contributions to SSIM can be interpreted as the preservation 
of the mean, and the contrast compares the variances and the structure compares 
the correlation. The SSIM of two arrays A, B of the same size is defined as

SSIM(A, B) =

(2μAμB + c1)(2σAB + c2)
(

μ2
A + μ2

B + c1
)(

σ2
A + σ2

B + c2
) (16)

where μA, μB are the respective means, σ2
A, σ2

B the respective variances and σAB 
the covariance. c1 = (k1L)2 and c2 = (k2L)2 are introduced to increase stability 
with a small denominator and k1 = 0.01 and k2 = 0.03. The dynamic range is 
L = max(max(A), max(B)) − min(min(A), min(B)). The SSIM is a value in [0, 1] 
where the best possible similarity SSIM = 1 is only achieved for identical arrays 
A = B.

For rounded floating-point arrays the decimal error is proportional to the 
square root of the dissimilarity, 1 − SSIM (Supplementary Fig. 5c). The SSIM in 
this case is approximately equal to the correlation, as round-to-nearest is bias-
free (that is, μA ≈ μB) and the rounding error is typically much smaller than the 
standard deviation of the data (that is, σA ≈ σB). Here, we use the logarithmic SSIM, 
SSIMlog(A, B) = SSIM(logA, logB), which is the SSIM applied to log-preprocessed 
data (the logarithm is applied element-wise). The usage of SSIMlog is motivated by 
the rather logarithmic data distribution for most variables (Supplementary Fig. 1), 
but similar results are obtained for SSIM. The proportionality to the decimal error 
is unchanged when using SSIMlog.

Baker et al. proposed the SSIM as a quality metric for lossy compression of 
climate data54. Although for image processing SSIM > 0.98 is considered good 
quality, Baker et al. suggest a higher threshold of SSIM = 0.99995 for climate 
data compression. The preserved information as defined here can be used as a 
compression quality metric similar to the SSIM. When preserving 99% of real 
information, the SSIMlog is also above the Baker threshold (Supplementary Fig. 5b), 
reassuring us that our threshold of 99% preserved real information is reasonable. 
In general, the preserved information is a monotonic function of the structural 
similarity SSIM (or SSIMlog) for rounded floating-point arrays, further supporting 
the usage of preserved information as a metric for data compression.

Linear and logarithmic quantization. The n-bit linear quantization compression 
for each element a in an array A is

ā = round
(

2n−1 a − min(A)
max(A) − min(A)

)

(17)

with round a function that rounds to the nearest integer in 0, ..., 2n − 1. Consequently, 
every compressed element ā can be stored with n bits. The n-bit logarithmic 
quantization compression for every element a ≥ 0 in A is

ā =

{ 0 if a = 0

round(c + ∆
−1log a) + 1 else

(18)

to reserve the zero bit pattern 0…0 to encode 0. The logarithmic spacing is

∆ =

log (max (A)) − log
(

min+

(A)
)

2n − 2 (19)

The constant c = 1
2 − ∆

−1log
(

min+(A)
2 (e∆ + 1)

)

 is chosen to implement 
round-to-nearest in linear space instead of in logarithmic space, for which 
c = −∆

−1log
(

min+

(A)
)

. The function min+(A) is the minimum of all positive 
elements in A.

Lossless compression. We use Zstandard as a default lossless algorithm for 
the round + lossless method. Zstandard is a modern compression algorithm 
that combines many techniques to form a single compressor with tunable 22 
compression levels that allow large trade-offs between compression speed 
and factors47,50. Here we use compression level 10, as it presents a reasonable 
compromise between speed and size. Zstandard outperforms other tested 
algorithms (deflate, LZ4, LZ4HC and Blosc) in our applications and is also found 
to be among the best in the lzbench compression benchmark47 and other studies 
have focused on comparisons45. Lossless compressors are often combined with 
reversible transformations that preprocess the data. The so-called bitshuffle45 

transposes an array on the bit-level, such that bit positions (for example, the sign 
bit) of floating-point numbers are stored next to each other in memory. Another 
example is the bitwise XOR operation61 with the preceding floating-point value, 
which sets subsequent bits that are identical to 0. Neither bitshuffle nor XOR 
notably increased the compression factors in our applications.

Matching preserved bits to the precision of Zfp. The Zfp compression algorithm 
divides a d-dimensional array into blocks of size 4d to exploit correlation in every 
dimension of the data. Within each block, a transformation of the data is applied 
with specified absolute error tolerance or precision, which bounds a local relative 
error. We use Zfp in its precision mode, which offers discrete levels to manually 
adjust the retained precision. Owing to the rather logarithmic distribution of 
CAMS data (Supplementary Fig. 1), a log-preprocessing of the data is applied to 
prevent sign changes (including a flushing to zero) within the compression57,58. 
The error introduced by Zfp is approximately normally distributed and therefore 
usually yields higher maximum errors compared to round-to-nearest in float 
arithmetic, although median errors are comparable. To find an equivalent error 
level between the two methods, we therefore choose the precision level of Zfp to 
yield median absolute and decimal errors that are at least as small as those from 
rounding. The manual choice of the precision level is hence tied to the analysis of 
the bitwise real information content and automated.

This method is illustrated in Supplementary Fig. 12 in more detail. Errors 
introduced from round-to-nearest for floats have very rigid error bounds. The 
majority of errors from Zfp compression are within these bounds when matching 
median errors. However, given the normal distribution of errors with Zfp, 
there will be a small share of errors that are beyond the bounds from round-to-
nearest. Using the precision mode of Zfp and log-preprocessed data bounds these 
maximum errors well.

Compressor performances. Although different compressors and their 
performance are not within the central focus of this study, we analyze the 
compression and decompression speeds as a sanity check (Supplementary 
Fig. 9). To find a data compression method that can be used operationally, a 
certain minimum data throughput should be achieved. The current 24-bit linear 
quantization method reaches compression speeds of almost 800 MB s−1 single-
threaded on an Intel i7 (Kaby Lake) central processing unit in our application, 
excluding writing to disk. For the logarithmic quantization, this would decrease 
to ~200 MB s−1 due to the additional evaluation of a logarithm for every value. 
For Zstandard, the user can choose between 22 compression levels, providing a 
trade-off between the compression speed (highest for level 1) and the compression 
factor (highest for level 22). The compression speed reduces from ~700 MB s−1 
at compression level 1 to 2 MB s−1 at level 22, such that for high compression 
factors about 1,000 cores would be required in parallel to compress in real time 
the 2 GB s−1 data production at ECMWF. For Zstandard at compression level 10, 
speeds of at least 100 MB s−1 are achieved, but at the cost of about 50% larger file 
sizes. We use compression level 10 throughout this study as a compromise. The 
decompression speed is independent of the level. The additional performance cost 
of binary rounding is negligible with 2 GB s−1. Zfp reaches compression speeds of 
~200 MB s−1 (single-threaded, including the log-preprocessing) in our application, 
enough to compress ECMWF’s data production in real time with a small number 
of processors in parallel.

Data availability
The entire CAMS dataset is freely available to download from the Copernicus 
Atmosphere Data Store at https://atmosphere.copernicus.eu/data. Full precision 
data that were not subject to lossy compression before, as used here, are available 
from the Copernicus Atmosphere Monitoring Service62 and the European Centre 
for Medium-Range Weather Forecasts63. Source data are provided with this paper.

Code availability
The software that was developed for this study is available in the published 
Julia packages BitInformation.jl (v0.2), LinLogQuantization.jl (v0.2) and 
ZfpCompression.jl (v0.2). All scripts to reproduce the analysis are available in ref. 
64. Relevant software and a subset of the data are available on Code Ocean65
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