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Mixed model-based deconvolution of  
cell-state abundances (MeDuSA) along  
a one-dimensional trajectory

Liyang Song1,2,3, Xiwei Sun2,3, Ting Qi2,3 & Jian Yang    2,3 

Deconvoluting cell-state abundances from bulk RNA-sequencing data 
can add considerable value to existing data, but achieving fine-resolution 
and high-accuracy deconvolution remains a challenge. Here we introduce 
MeDuSA, a mixed model-based method that leverages single-cell RNA-
sequencing data as a reference to estimate cell-state abundances along a 
one-dimensional trajectory in bulk RNA-sequencing data. The advantage 
of MeDuSA lies primarily in estimating cell abundance in each state while 
fitting the remaining cells of the same type individually as random effects. 
Extensive simulations and real-data benchmark analyses demonstrate that 
MeDuSA greatly improves the estimation accuracy over existing methods 
for one-dimensional trajectories. Applying MeDuSA to cohort-level RNA-
sequencing datasets reveals associations of cell-state abundances with 
disease or treatment conditions and cell-state-dependent genetic control 
of transcription. Our study provides a high-accuracy and fine-resolution 
method for cell-state deconvolution along a one-dimensional trajectory 
and demonstrates its utility in characterizing the dynamics of cell states in 
various biological processes.

Cellular deconvolution is a computational technique aimed to estimate 
cellular compositions from tissue-level ‘bulk’ omics data1,2. With the 
increasing availability of bulk RNA-sequencing (RNA-seq) data, cellular 
deconvolution has become a pivotal approach for estimating cell-type 
compositions in a tissue of interest. This methodological advance has 
greatly facilitated research to understand the roles of different cell 
types in dynamic disease processes (for example, quantifying immune 
cell infiltrations in solid tumors)3–5, probe genetic regulatory mecha-
nisms at the cellular level (for example, cell-type-specific expression 
quantitative trait locus analysis)6–9 and adjust biases caused by cell-type 
compositions in association analyses (for example, using cell-type 
compositions for covariate adjustment)7,10,11.

Over the past decade, many cellular deconvolution methods have 
been developed and benchmarked1,2, including BayesPrism12, CIB-
ERSORT13 and MuSiC14 among others. Most of them share a typical 
workflow, that is, generating cell-type-specific gene expression profiles 

(GEPs) from a reference, such as bulk RNA-seq data from individual cell 
subsets (for example, CIBERSORT13) or single-cell RNA-seq (scRNA-
seq) data (for example, MuSiC14), and utilizing the reference GEPs to 
compute cell-type compositions in bulk RNA-seq data. Nevertheless, 
cells of the same type are not homogeneous but distributed across mul-
tiple states in a biological process that arises in a context-dependent 
manner, for example, activation15, differentiation16 or degeneration17. 
This distribution can vary among different environments, disease 
conditions and genetically distinct individuals. In this regard, further 
opportunities and challenges of cellular deconvolution lie in estimat-
ing the abundances of cells at different states (referred to as cell-state 
abundance hereinafter) in bulk RNA-seq data.

Single-cell RNA-seq offers a snapshot of the transcriptome of 
thousands of diverse cells, providing an avenue for studying cell states 
in various biological processes18,19. In scRNA-seq data, cells at different 
states can be computationally ordered to infer cell-state trajectories 
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The results showed that MeDuSA outperformed the compared 
methods by a considerable margin for one-dimensional trajectories, 
especially when the cell-state abundance distribution was non-mono-
tonic (Fig. 2b and Supplementary Figs. 1 and 2). For instance, when the 
distribution was bimodal, the deconvolution accuracy of MeDuSA 
(CCC) was 0.85, 3.4-fold higher than the best-performing methods 
among CPM (−0.05), BayesPrism (0.15), MuSiC (0.25), CIBERSORT 
(0.13), Scaden (0.03), TAPE(0.007) and ssGSEA (0.23).

We performed a series of sensitivity analyses to investigate 
the factors that influence the performance of MeDuSA (or cellular 
deconvolution in general). First, smoothing slightly improved the 
deconvolution accuracy of MeDuSA (from 0.76 to 0.86), despite that 
MeDuSA without smoothing (MeDuSA-NS) performed considerably 
better than the other methods including CPM with smoothing (Sup-
plementary Fig. 2). As smoothing can mask the effects of the other 
factors, we performed the sensitivity analyses below without the 
smoothing step. Second, the random-effect component was nominally 
significant (P < 0.05) in all simulations (maximum P = 1.35 × 10−10), 
and the significance level decreased with fewer cells fitted (Supple-
mentary Fig. 3). The accuracy of MeDuSA-NS also decreased with 
fewer cells fitted in the random-effect component (Extended Data 
Fig. 1), suggesting the benefit of fitting all cells at non-focal states as 
random effects to reduce residual variance. Third, instead of fitting 
the non-focal cells each as a random effect, we grouped them into 
bins along the cell-state trajectory and fitted the mean of each bin as 
a random effect; the accuracy decreased dramatically from 0.76 to 
0.33 (Supplementary Fig. 4), demonstrating the benefit of allowing 
each cell to have a specific weight on bulk gene expression. Fourth, 
the accuracy decreased to 0.17 when we fitted the bins each as a fixed 
effect (Supplementary Fig. 5), showing the benefit of fitting the non-
focal states as random effects (to ameliorate the collinearity problem 
between the focal and non-focal states), as further evidenced by the 
increased difference between the fixed- and random-effect models 
with the level of collinearity (Supplementary Fig. 6). Fifth, ignor-
ing the correlations between cells in the random-effect component 
resulted in decreased deconvolution accuracy (from 0.75 to 0.63), 
especially when the underlying cell-state abundance distribution is 
complex (Supplementary Fig. 7). Sixth, we showed that the accuracy 
of MeDuSA was generally robust when the number of cell states varied 
from 50 to 1,000 (a larger number of cell states representing a higher 
deconvolution resolution) (Supplementary Figs. 8 and 9). Finally, we 
demonstrated the confounding effects of other cell types, which could 
largely be corrected by fitting the mean expression of each of them as 
a fixed-effect covariate (Supplementary Fig. 10).

While the use of the LMM improves the deconvolution accuracy, it 
introduces a much higher level of computational complexity than the 
models used in CPM and other cell-type deconvolution methods. We 
improved the computational efficiency of MeDuSA through coding 
the core algorithm with C++ and applying an appropriate approxima-
tion algorithm (‘Computational speed-up’ in Methods). On a unified 
computing platform with one central processing unit, the runtime of 
MeDuSA to deconvolute a bulk RNA-seq dataset using a Smart-seq2 
or 10X Genomics scRNA-seq dataset as the reference (10,000 cells in 
both datasets) was 17.1 min or 5.6 min, respectively, 5.3-fold or 3.3-fold 
faster than CPM (Extended Data Fig. 2).

Benchmark analysis with real bulk RNA-seq data
We then benchmarked the performance of the deconvolution meth-
ods with real bulk RNA-seq data. Four sample-matched scRNA-seq 
and bulk RNA-seq datasets from human esophagi (n = 15), human 
bone marrows (n = 8), induced pluripotent stem cells (iPSCs; n = 6) 
and human embryonic stem cells (hPSCs; n = 6) were used in this 
analysis (Supplementary Fig. 11). In real data, the true cell-state abun-
dances are unknown and need to be estimated. In each dataset, we 
inferred the cell-state trajectory and estimated the corresponding 

(for example, pseudotime)19. Cell population mapping (CPM)20 is a cel-
lular deconvolution method specifically designed to exploit ‘cell-state 
space’ inferred from reference scRNA-seq data to estimate cell-state 
abundances in bulk RNA-seq data. CPM partitions the cell-state space 
into several grids, constructs a GEP by randomly sampling a cell from 
each grid and combines the estimated abundances across thousands 
of repeats to obtain a single abundance for each cell. While CPM has 
considerably improved the deconvolution resolution, the accuracy 
of the estimated cell-state abundance can still be improved, largely 
because it focuses on only a small number of cells in each sampling 
repeat without accounting for the remaining cells.

In this Article, we introduce MeDuSA (mixed model-based decon-
volution of cell-state abundances), a high-accuracy and fine-resolution 
cellular deconvolution method that leverages scRNA-seq data as a 
reference to estimate cell-state abundances along a one-dimensional 
trajectory in bulk RNA-seq data. MeDuSA features the use of a linear 
mixed model (LMM) to fit a cell state in question (either a single cell or 
the mean of multiple cells, referred to as the focal state hereinafter) as a 
fixed effect and the remaining cells of the same cell type individually as 
random effects accounting for correlations between cells. This model 
improves the deconvolution accuracy because the random-effect com-
ponent allows each cell to have a specific weight on bulk gene expres-
sion, resulting in a better capturing of variance in bulk gene expression, 
and ameliorates the collinearity problem between the cell(s) at the 
focal state (fitted as a fixed effect) and those at adjacent states (fitted 
as random effects). We show by extensive simulations and real-data 
benchmark analyses that MeDuSA is substantially more accurate than 
existing methods when assessed with one-dimensional trajectories. We 
also demonstrate the utility of MeDuSA by applying it to cohort-level 
bulk RNA-seq data to reveal associations of cell-state abundances with 
disease or treatment conditions and cell-state-dependent genetic 
control of transcription.

Results
Simulation study
The MeDuSA method is described in Methods, with a schematic sum-
mary shown in Fig. 1 and the technical details presented in sections 1 and 
2 of the Supplementary Note. Briefly, MeDuSA utilizes scRNA-seq data 
as a reference to estimate the abundance of cells at various states along 
a one-dimensional trajectory in bulk RNA-seq data. This is done using 
an LMM in which the focal state is fitted as a fixed effect and cells at the 
other states are fitted individually as random effects, with the other cell 
types fitted as fixed covariates. We performed a series of simulations 
to assess the performance of MeDuSA and evaluate the robustness of 
MeDuSA to the choice of parameters (‘Simulation strategy’ in Methods). 
Our simulations were based on 17 scRNA-seq datasets generated from 
different species and sequencing platforms with varying number of 
cells captured (Supplementary Table 1). The cell types and cell-state 
trajectories of these datasets were annotated and validated previously 
or in this study (Methods). We split each scRNA-seq dataset into two 
portions, randomly assigning one portion as simulation source data and 
the other portion as deconvolution analysis reference data. Synthetic 
bulk RNA-seq data were generated as mixtures of scRNA-seq profiles, 
according to four pre-designed cell-state distribution patterns (Fig. 2a). 
We compared MeDuSA with CPM20, along with cell-type deconvolution 
and gene enrichment-based methods, including BayesPrism12, MuSiC14, 
CIBERSORT13, Scaden21, TAPE22 and ssGSEA23, that can be repurposed 
for cell-state deconvolution by dividing the cell-state trajectory into 
cell bins (section 3 of the Supplementary Note). The deconvolution 
accuracy was measured by the concordance correlation coefficient 
(CCC), Pearson’s correlation (R) and the root mean square deviation 
(RMSD) between the estimated cell-state abundance and the ground 
truth. We used CCC as the primary measure of deconvolution accu-
racy, as it is less sensitive to overweighted outliers than R and more 
interpretable than RMSD.

http://www.nature.com/natcomputsci
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cell-state abundances from scRNA-seq data. We then compared 
the estimated cell-state abundances with those obtained from bulk 
RNA-seq data using the deconvolution methods (Fig. 3a,b). We per-
formed cross-validation where applicable, that is, the samples used 
for cell-state trajectory inference were excluded from the deconvolu-
tion analysis. The results again showed that MeDuSA substantially 
outperformed the compared methods (Fig. 3c and Supplementary 
Fig. 12). The mean deconvolution accuracy (CCC) of MeDuSA was 
0.70, 2.2-fold higher than the best-performing method among 
CPM (0.31), BayesPrism (0.19), MuSiC (0.07), CIBERSORT (0.08),  
Scaden (0.06), TAPE (0.07) and ssGSEA (0.17) (Fig. 3c). The conclu-
sion remained mostly consistent at higher deconvolution resolu-
tions (Extended Data Fig. 3). It is noteworthy that the performances 
of the deconvolution methods in this real-data benchmark analysis 
were generally lower than those in the simulation study, probably 
because of the discrepancies between the bulk RNA-seq and scRNA-
seq (Supplementary Fig. 13) and the uncertainty in estimating cell-
state abundances from scRNA-seq data19.

We further compared the cell-state abundances of epithelia esti-
mated from the esophagus to those estimated from other tissues 
without the keratinization process, which can be regarded as negative 
controls. We applied MeDuSA to bulk RNA-seq data from esophagus 
mucosa (n = 555), blood (n = 929), heart (n = 861), liver (n = 226), spleen 
(n = 241), colon (n = 779) and small intestine (n = 187) in the Genotype-
Tissue Expression (GTEx), using the fresh esophageal scRNA-seq data 
above as the reference. Compared with the abundance of epithelium 
estimated from esophagus, the abundance of epithelium estimated 
from the non-esophageal tissues was small (Fig. 3d).

Case studies
We next applied MeDuSA in four case studies to demonstrate how a cell-
state abundance deconvolution method with substantially improved 
accuracy can give rise to deeper insights into disease etiology and 
biological mechanisms.

Application to esophageal carcinoma
We applied MeDuSA to conduct cell-state abundance deconvolution 
analyses in 109 human esophagus bulk RNA-seq data from The Can-
cer Genome Atlas (TCGA), of which 98 samples were collected from 
the esophageal squamous-cell carcinoma (ESCC) tumor tissue, and 11 
samples were collected from the adjacent normal esophageal tissue, 
using the scRNA-seq data from the normal fresh esophageal tissue 
above as the reference. In this reference data, cell types were annotated 
according to the marker genes, and the keratinization trajectory of epi-
thelial cells was inferred using Slingshot24 (Fig. 4a). The keratinization 
trajectory profiles the cytodifferentiation process of epithelial cells, 
proceeding from the post-germinative state (that is, the basal layer 
of the epithelium) to the finally cuticularized state (that is, the upper 
layer of the epithelium) (Fig. 4b,c). ESCC arises from the basal layer of 
the esophagus epithelium, resulting in a thicker basal layer than that 
in normal esophagi25,26. Hence, the abundance of epithelial cells in 
the basal layer (that is, in the earlier stage of the keratinization trajec-
tory) in tumor is expected to be higher than that in normal esophagi. 
Such an expected histological change can be detected by MeDuSA, as 
evidenced by the significant difference in the abundance distribution 
of epithelial cells over the keratinization trajectory between ESCC and 
normal esophagi (permutation F-test, P = 0.012; Fig. 4d and ‘Testing 
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Fig. 1 | Schematics of the concept of cell-state trajectory deconvolution and 
the MeDuSA model. a, Cells colored in orange are ordered by the cell-state 
trajectory. b, The distribution of cells along the cell-state trajectory, also known 
as cell-state abundance distribution, varies under different biological conditions. 
This distribution can be profiled in scRNA-seq data but is not directly achievable 
in bulk RNA-seq data. c, MeDuSA is a fine-resolution cellular deconvolution 
method that leverages scRNA-seq data as a reference to estimate cell-state 

abundance in bulk RNA-seq data. d, An overview of the cell-state abundance 
estimation process. Briefly, MeDuSA fits the focal cell-state as the fixed effect, 
while simultaneously fitting the remaining cells along the trajectory individually 
as random effects. bk represents the abundance of cells at state k. Further details 
regarding the MeDuSA method can be found in Methods and sections 1 and 2 of 
the Supplementary Note.

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | July 2023 | 630–643 633

Article https://doi.org/10.1038/s43588-023-00487-2

for differences in cell-state abundances among groups’ in Methods). 
Considering that the difference was only marginally significant, prob-
ably due to the small sample size of normal esophagi in TCGA (n = 11), 
we combined TCGA data with the data to increase the sample size of 
normal esophagi to 664. After adjusting for batch effects between 
TCGA and GTEx27 (Supplementary Fig. 14), we observed similar result 
as above that relative to normal esophagi, abundance of epithelial 
cells inferred from tumor tissues shifted toward the basal layer (per-
mutation F-test, P < 1 × 10−4, with the P value capped by the number of 
permutations; Fig. 4e). An accordant result was obtained in another 
independent esophagus bulk RNA-seq dataset (n = 46, permutation 
F-test, P = 3.2 × 10−4; Fig. 4f), using another independent scRNA-seq 
dataset as the reference (Supplementary Fig. 15).

Application to COVID-19
We applied MeDuSA to RNA-seq data from patients with coronavirus 
disease 2019 (COVID-19), with the aim to portray the dynamics of CD8+ T 
cells during the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection. A COVID-19 peripheral blood mononuclear cell (PBMC) 
scRNA-seq dataset from 6 healthy and 7 SARS-CoV-2-infected donors 
was used as the reference for the deconvolution analyses (Extended 
Data Fig. 4a). Altogether, we retrieved 6,762 CD8+ T cells, which were 
then classified into three subtypes, including naive T cells (Tn), effector-
memory T cells (Tem) and exhaustion-like T cells (Tex). The gamma delta 
T cells were excluded as their development process is disjoint from the 
other subtypes of CD8+ T cells. Diffusion map and RNA velocity analyses 
suggested that the CD8+ T cells developed from the naive state (Tn) to the 
exhaustion state (Tex) (Extended Data Fig. 4b and Supplementary Fig. 16), 
as validated by the expression pattern of the marker genes (Extended 
Data Fig. 4c), consistent with previous studies28,29.

Using the reference scRNA-seq above, we deconvoluted a PBMC 
bulk RNA-seq dataset consisting of 17 healthy donors and 17 patients 

with COVID-19. We observed a significant difference in the abun-
dance distribution of CD8+ T cells over the development trajectory 
between healthy donors and patients with COVID-19 (Extended Data 
Fig. 4d). Compared with healthy donors, CD8+ T cells from patients 
with COVID-19 were enriched in the exhaustion state (permutation 
F-test, P = 1.4 × 10−3), in line with previous studies28. These results were 
replicated in another independent COVID-19 bulk RNA-seq dataset, 
comprising 10 healthy donors and 44 patients with COVID-19 (permuta-
tion F-test, P = 2.6 × 10−4; Extended Data Fig. 4e).

To further investigate the variation of CD8+ T cells among patients 
with COVID-19 under different clinical conditions, we applied MeDuSA 
to another PBMC bulk RNA-seq dataset containing 100 patients with 
relevant clinical indicators. After grouping patients into tertiles 
according to their blood C-reactive protein (CRP) levels, we found 
that CD8+ T cells from patients with higher CRP levels showed higher 
enrichment in the exhaustion state (permutation F-test, P = 0.038; 
Extended Data Fig. 4f), supporting the hypothesis that inflamma-
tion-associated stress may contribute to the dysregulation of CD8+ 
T cells in patients with COVID-1929. We further analyzed a bulk RNA-
seq COVID-19 dataset from patients under different World Health 
Organization scored clinical phases (13 patients with COVID-19 and 
14 healthy donors) (Extended Data Fig. 4h). The result showed a clear 
trend that patients with COVID-19 at convalescence stages (that is, 
clinical phases 6 and 7) had similar abundance distribution of CD8+ T 
cells over the development trajectory to healthy donors (clinical phase 
0); in contrast, patients at disease stages (that is, clinical phases 1–5) 
tended to aggregate together, showing enrichment of CD8+ T cells in 
the high-exhaustion state (Extended Data Fig. 4g). In summary, our 
results revealed the dynamics of cell-state abundance of CD8+ T cells 
over the development trajectory during the SARS-CoV-2 infection, 
suggesting that CD8+ T cells in patients with COVID-19 were enriched 
in the inflammation-associated exhaustion state.
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Fig. 2 | Benchmarking the cellular deconvolution methods by simulations. 
a, Pre-designed distributions of cell abundance along the cell-state trajectory. 
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(‘Simulation strategy’ in Methods). b, Boxplot of CCC (the higher the better) 

for each deconvolution method. Each dot represents the mean deconvolution 
accuracy over five replicates for a simulation source dataset. The box indicates 
the interquartile range (IQR), the line within the box represents the median value 
and the whiskers extend to data points within 1.5 times the IQR.
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Application to skin melanoma
A previous scRNA-seq study of skin melanoma shows that low-exhaus-
tion CD8+ T cells are depleted in T-cell receptor (TCR) expanded clusters 
but enriched in TCR non-expanded clusters30. In other words, TCR 
clonal expansions might be positively correlated with the exhaustion 
state of CD8+ T cells. Using this melanoma scRNA-seq dataset as the 
reference (Fig. 5a), we applied MeDuSA to TCGA melanoma bulk RNA-
seq data (n = 430). The primary aim of this analysis was to understand 
the association of the exhaustion state of CD8+ T cells with the TCR 
clonality in a large dataset. Due to the sparseness of CD8+ T cells in the 
reference melanoma scRNA-seq data, the CD8+ T-cell exhaustion trajec-
tory was annotated using the exhaustion score30 rather than any of the 
trajectory inference methods and validated by the expression pattern 
of the marker genes (Fig. 5b). Quantifying the exhaustion scores with 
two other independent gene sets gave rise to similar results, confirming 
the robustness of such an annotation (Supplementary Fig. 17).

We grouped 430 TCGA melanoma patients into tertiles according 
to the TCR expansion levels evaluated by MiXCR31. The MeDuSA decon-
volution result showed an enrichment of CD8+ T cells at the exhaustion 
state, which increased with the TCR expansion level (permutation 
F-test, P < 1 × 10−4, with the P value capped by the number of permuta-
tions; Fig. 5c). In the terminal exhaustion state (that is, time 3, 66–100% 
of the cell trajectory), the correlation between TCR expansion level and 
CD8+ T-cell abundance was 0.55 (P = 0.0025) (Supplementary Fig. 18),  

suggesting that the exhaustion state of CD8+ T cells was positively 
associated with TCR expansion level in melanoma.

The second aim of this analysis was to investigate the clinical 
relevance of the exhausted CD8+ T cells. We first sought to examine 
the association of the exhaustion-state abundance of CD8+ T cells 
with patients’ overall survival. At each tertile of the exhaustion-state 
trajectory (time 1, 0–33% of the pseudotime; time 2, 33–66% of the 
pseudotime; time 3, 66–100% of the pseudotime), we divided TCGA 
melanoma patients into low and high groups (median cut-off) based 
on the average abundance of CD8+ T cells. The result showed that only 
the abundance of CD8+ T cells in the terminal exhaustion state was 
significantly associated with survival (time 3, log-rank-test, Hazard 
Ratio (HR) = 2.12, P = 8.2 × 10−7; Fig. 5d). We next examined the asso-
ciation of exhaustion-state abundance of CD8+ T cells with patients’ 
response to immune-checkpoint blockade (ICB). We collected a mela-
noma bulk RNA-seq dataset from anti-programmed cell death protein 
1 (anti-PD1) pretreatment tumor tissues of 70 patients with meta-
static skin melanoma. The MeDuSA deconvolution result suggested 
that the abundance of CD8+ T cells at the terminal exhaustion state  
(time 3) was higher in anti-PD1 responders than that in anti-PD1 progres-
sors (P = 0.0069) (Fig. 5e). Collectively, our results suggest that the 
abundance of CD8+ T cells at the high-exhaustion state was positively 
correlated with TCR expansion level in melanoma and associated with 
patient’s overall survival and response to anti-PD1 ICB.
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Cell-state-dependent genetic regulation of gene expression
Finally, we applied MeDuSA to deconvolute cell-state abundances in 
an expression quantitative trait locus (eQTL) dataset (that is, a cohort 
with both single nucleotide polymorphism (SNP) genotype and bulk 
RNA-seq data) for detecting cell-state-dependent eQTLs (csd-eQTLs). 
Note that csd-eQTL mapping has been achieved only recently with 
cohort-level scRNA-seq data32–35. Using the esophagus scRNA-seq data-
set above as the reference, we estimated the cell-state abundances along 
the epithelial differentiation trajectory in bulk RNA-seq data from 497 
GTEx esophagus mucosa samples and computed the abundance of cells 
in each quartile of the epithelial differentiation trajectory for each sam-
ple (Fig. 6a). A csd-eQTL was claimed if the effect an SNP on bulk gene 
expression depended on cell-state abundance in any of the quartiles 
(‘Mapping the cell-state-dependent eQTLs’ in Methods). In total, we 
identified 162 genes with at least one csd-eQTL (defined as csd-eGenes) 
at 5% false-discovery rate (FDR) (Fig. 6b). The csd-eGenes were enriched 
in differentially expressed genes (DEGs) along the cell-state trajec-
tory (fold enrichment = 2.12, 95% confidence interval (CI) 1.73–2.52;  
Fig. 6c,d), which could be replicated using the epithelial differentiation 
trajectory annotated by another independent esophagus scRNA-seq 

dataset (Supplementary Fig. 19). We next annotated the epithelial differ-
entiation trajectory using an independent esophagus single-cell assay 
for transposase-accessible chromatin (scATAC-seq) dataset (Fig. 6e–g) 
and tested for associations of the epithelial chromatin peaks with this 
trajectory (‘Annotating the cell-state-dependent chromatin accessibil-
ity peaks’ in Methods). We refer to the genomic regions with epithelial 
chromatin peaks associated with the differentiation trajectory (anno-
tated by the scATAC-seq data) as cell-state-dependent open chromatin 
regions (csd-OCRs). We found that the lead csd-eQTLs were highly 
enriched (fold enrichment = 3.30, 95% CI 2.70–3.90) in the csd-OCRs, 
and the strength of enrichment increased with the significance level 
used to identify the csd-eQTLs (Fig. 6h). Taken together, we achieved 
csd-eQTL mapping in a conventional eQTL mapping dataset, and the 
identified csd-eQTLs were enriched in csd-OCRs and associated with 
genes enriched with cell-state specific expression (Fig. 6i).

Discussion
In this study, we developed a cellular deconvolution method, MeDuSA, 
to estimate cell-state abundance over a one-dimensional trajectory in 
bulk RNA-seq data. Compared with other methods, the substantially 
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Fig. 4 | Estimated epithelia abundance along the keratinization trajectory  
in normal and tumor esophagus tissues. a, Uniform manifold approximation 
and projection (UMAP) embedding of the reference esophagus scRNA-seq  
data, where cells are colored according to their cell types (orange, epithelia).  
b, The keratinization trajectory of the epithelia in the reference scRNA-seq data. 
The black arrowed line represents the annotated trajectory using Slingshot, 
from the basal layer (germinative epithelium) to the outer layer (keratinized 
epithelium). c, The expression pattern of KRT5 (marker gene of the basal layer), 
KRT4 (marker gene of the transition layer) and ECM1 (marker genes of the outer 

layer) confirmed the keratinization trajectory. The black lines represent the fitted 
curve using the LOESS and the shaded area indicates the 95% CI. d–f, The cell-
state abundance of epithelia estimated by MeDuSA using a dataset from TCGA  
(d, n = 109), a combined set of data from TCGA and GTEx (e, n = 664) and a dataset 
from the Gene Expression Omnibus (GEO) (f, n = 46). Batch effects between the 
GTEx and TCGA datasets were adjusted using Combat-seq. The x axis represents 
the keratinization trajectory, from the basal layer (left) to the outer layer (right). 
The curved line shows mean cell-state abundance across individuals. The P values 
were computed using the permutation-based MANOVA-Pro method.
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Fig. 5 | Estimated abundance of CD8+ T cells along the exhaustion trajectory 
in skin melanoma. a, UMAP embedding of melanoma reference scRNA-seq 
data, where cells are colored according to their cell types (blue, CD8+ T cells). 
CAFs, cancer-associated fibroblasts; NK cells, natural killer cells. b, Expression 
pattern of the marker genes along the exhaustion trajectory. The lines represent 
the fitted curve using the LOESS, and the shaded area indicates the 95% CI. 
c, Estimated cell-state abundances of CD8+ T cells in patients stratified into 
tertiles by TCR expansion level in TCGA data (n = 430). The x axis represents the 
exhaustion trajectory, from the naive state (left) to the exhausted state (right). 
The curved line shows mean estimated cell-state abundance across individuals. 
The P value was computed using MANOVA-Pro and was capped by the number of 
permutations. d, Kaplan–Meier plot for overall survival between two groups of 
patients with melanoma stratified by the estimated abundance of CD8+ T cells in 

each tertile of the exhaustion state in TCGA data. The exhaustion-state tertiles 
are: time 1, the low-exhaustion state (0–33% of the exhaustion trajectory); time 
2, the medium-exhaustion state (33–66% of the exhaustion trajectory); time 3, 
the high-exhaustion state (66–100% of the exhaustion trajectory). The shaded 
area represents the 95% CI of the fitted Kaplan–Meier curves. The P values were 
computed using a two-sided long-rank test. e, Boxplot of estimated cell-state 
abundance of CD8+ T cells in the patients with melanoma who did not respond 
to anti-PD-1 ICB (n = 36) versus the responders (n = 34) in each of the exhaustion-
state tertiles. Each point represents one patient, color-coded based on their 
response to ICB. The P value was computed using a two-sided Wilcoxon test. The 
box indicates the IQR, the line within the box represents the median value and the 
whiskers extend to data points within 1.5 times the IQR.
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increased deconvolution accuracy of MeDuSA is mainly because of 
fitting the cells at the focal state as a fixed effect and the remaining 
cells individually as random effects. On average across the RNA-seq 

datasets used in this study, this approach explains an additional 10–40% 
of variance in bulk gene expression compared with the binning strategy 
(Supplementary Figs. 21 and 22).
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MeDuSA is well-suited for biological scenarios where the under-
lying mechanisms involve continuous transitions of cellular states, 
such as cell development, differentiation or degeneration. In four case 
studies covering a broad range of research domains, we discovered that 
cell-state abundance was associated with disease conditions, clinical 
outcomes, mechanisms of pathogenicity and treatment exposures. 
These results recapitulated changes in cellular functions under dif-
ferent biological conditions, facilitating our understanding of cellular 
roles in disease etiology. Further, we showed that MeDuSA can be used 
to detect csd-eQTLs in bulk RNA-seq data. These results inform future 
studies to map csd-eQTLs in large cohorts and integrate the csd-eQTLs 
with data from genome-wide association studies to identify disease-
relevant cell states and reveal the biological mechanisms underlying 
genetic associations for complex traits and diseases.

There are several caveats when applying MeDuSA in practice. 
First, the cell-state trajectory in reference scRNA-seq data needs to 
be pre-annotated. Although we have used different methods, includ-
ing the diffusion map-based method (Slingshot), the RNA velocity-
based method (scVelo) and the score-based method (CytoTRACE), 
for cell-trajectory inference, showing the compatibility of MeDuSA, 
a biased cell-state-trajectory annotation might result in biased cell-
state abundance estimation. Second, the sequencing technology 
used to generate reference scRNA-seq data is another source of bias 
for deconvolution analyses. One of the greatest sources of bias in 
scRNA-seq is dropout events36–38, especially for short-length methods 
such as those implemented by 10X Genomics. We corrected for this 
potential bias by filtering out genes expressed in less than 10% cells 
and averaging gene expression profiles of cells in the focal cell-state 
(Methods). It is of note that we have covered most common scRNA-
seq platforms in simulations and applications including 10X Genom-
ics, Drop-Seq, Seq-Well, C1, inDrop and Smart-seq2 (Supplementary 
Table 1). Imputing the reference scRNA-seq data by SAVER39 did 
not improve the performance of MeDuSA in real-data applications 
(Extended Data Fig. 5). Third, the cell-state trajectory modeled in the 
current version of MeDuSA is a one-dimensional vector, which may 
not fully portray the complexity of cellular transitions, particularly 
in cases of multiple cell trajectories40. More work is warranted in the 
future to extend MeDuSA to model cell states on a multi-dimensional 
space. Fourth, a growing number of spatial transcriptomics stud-
ies have shown that cellular heterogeneity at spatial coordinates 
might be associated with unknown biological mechanisms41–43. In 
this regard, recovering spatial structures of bulk tissues using spatial 
transcriptomics data as a reference will be another interesting future 
direction to extend MeDuSA.

Methods
Ethical approval
This study was approved by the Ethics Committee of Westlake Univer-
sity (approval no. 20200722YJ001).

The MeDuSA model
For a cell type of interest (that is, the focal cell type) in a tissue or cell 
line, the relative abundances of cells at different states (that is, cell-state 
abundances) can be estimated using a cell-trajectory analysis with 
scRNA-seq data. For a sample without scRNA-seq but with bulk RNA-seq 
data available, cell-state abundance can be estimated by projecting 
the RNA-seq data onto the cell-state trajectory derived from a reference 
scRNA-seq dataset20. More specifically, cells of the focal cell type in the 
reference scRNA-seq data are ranked by the cell-state trajectory, and 
a cell state is defined as a window on this trajectory. The window size 
can be customized, varying from a single cell to multiple neighboring 
cells at similar states. Given a specific window size, the cell trajectory 
in the reference can be subdivided into m consecutive states. When the 
ith state is regarded as the focal state, the abundance of this state in 
the bulk RNA-seq data can, in principle, be estimated by the following 
model: y = xiβi + e, where y is an n × 1 vector comprising expression 
levels of a list of n signature genes (selected to be associated with cell-
state trajectory; section 1 of the Supplementary Note and Supplemen-
tary Fig. 30) in the bulk RNA-seq data, xi is an n × 1 vector comprising 
expression levels of the signature genes in cells at the focal state in the 
reference, with βi being the cell-state abundance to be estimated, and 
e is an n × 1 vector of residuals, with e ∼ N(0, Iσ2e). If there are multiple 
cells at the focal state, the expression level of each gene is averaged 
across the cells.

A critical limitation of the above model is that the variance in y 
explained by xi is likely to be minor, leaving a sizable residual variance 
and thereby considerable uncertainty in the estimated cell-state abun-
dance β̂i. We propose to reduce the residual variance by fitting the focal 
state, together with the remaining cells of the focal cell type and the 
other cell types in the following LMM:

y = xiβi + Cγ + Zα + e (1)

where y, xi, βi and e have the same definitions as above; C is matrix of 
gene expression levels, with each row representing a signature gene 
and each column representing the mean of each of the other cell types, 
and γ is a vector of the corresponding effects; Z is also a matrix of gene 
expression levels, with each row representing a signature gene and 
each column representing each of the remaining cells of the focal cell 
type, and α is a vector of the corresponding effects. In this model, βi 
and γ are treated as fixed effects, whereas α are treated as random 
effects, with α ∼ N (0,Σ), because the size of α (k cells) is often larger 
than the size of y (n signature genes). Under this model parameteriza-
tion, we have y ∼ N (xiβi + Cγ,ZΣZ′ + Iσ2e).

Compared with the strategy of binning cells by cell-state trajec-
tory and fitting the mean of each bin in a regression model1,2, this 
LMM has two distinct advantages. As cells, even those of the same 
type, are biologically heterogeneous, fitting the remaining cells of 
the focal cell type individually as random effects allows each cell to 

Fig. 6 | Identifying csd-eQTLs. a, We stratified the estimated epithelia 
abundance along the differentiation (keratinization) trajectory into four 
quartiles (Q1–Q4). We then constructed a linear model with a cell-state-by-
genotype interaction term (‘Mapping the cell-state-dependent eQTLs’ in 
Methods) to identify the cell-state (epithelial differentiation)-dependent eQTLs 
in the GTEx esophagus mucosa data (n = 497). b, The number of identified csd-
eGenes in each quartile of the differentiation trajectory. Each column represents 
the number of csd-eGenes at different cell-state quartiles. c, The enrichment 
of the csd-eGenes in the cell-state trajectory DEGs, at different csd-eQTL FDR 
thresholds. Each data point indicates the estimated fold enrichment, color-
coded according to the corresponding FDR thresholds as displayed on the x axis. 
The error bar represents the 95% CI computed using permutations (‘Enrichment 
of eGenes in DEGs’ in Methods). d, The enrichment of the csd-eGenes (csd-eQTL 
FDR < 0.05), eGenes (obtained from the GTEx eQTL data with FDR < 0.05) or cell-
type-dependent eGenes (obtained from the GTEx cell-type-dependent eQTL data 

with FDR < 0.05) in the cell-state trajectory DEGs. Each data point represents the 
estimated fold enrichment of eGenes, color-coded based on the corresponding 
tissue or cell type (epi, epithelial cells; neut, neutrophils; adip, adipose cells),  
with the error bars indicating the 95% CI of the estimated fold enrichment.  
e, UMAP embedding of the esophagus scATAC-seq data (n = 3). f, The annotated 
epithelial differentiation trajectory in the scATAC-seq data. The black arrowed 
line represents the annotated trajectory using Slingshot, from the basal layer 
to the outer layer. g, The cellular distributions of promoter accessibilities of 
ECM1 (marker gene of the basal layer), KRT4 (marker gene of the transition layer) 
and KRT5 (marker genes of the outer layer) along the epithelial differentiation 
trajectory. The black lines represent the fitted curve using the LOESS, and the 
shaded area indicates the 95% CI. h, The enrichment of the lead csd-eQTLs or 
eQTLs in the csd-OCRs. Each data point represents the estimated fold enrichment 
of lead eQTLs at an FDR threshold, with the error bars representing the 95% CI.  
i, Conceptual illustration of the enrichment of the csd-eQTLs in the csd-OCRs.
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have a specific weight on bulk gene expression, resulting in a better 
capturing of the variance in bulk gene expression and thereby a more 
precise estimate of the focal state in the fixed-effect term (that is, 
improved deconvolution accuracy). Second, the LMM ameliorates 
the collinearity problem between cells at the focal state (fitted as a 
fixed effect) and those at adjacent states (fitted as random effects) 
because of the shrinkage of random effects. For the other cell types, 
we fit the mean expression level of a whole cell type as a fixed-effect 
covariate rather than fitting individual cells as random effects for 
two reasons. First, the signature genes are selected to be associated 
with the cell-state trajectory in the focal cell type so that the associa-
tions of the signature genes with the other cell types are often weak. 
Second, fitting multiple random-effect components with near-zero 
variance often causes convergence problems in estimating the vari-
ance components.

In many LMM applications, random effects are assumed to be 
independent and identically distributed. However, the abundances 
of cells at adjacent states are likely to be correlated. To accommo-
date such correlations, we follow the previous work44–46 to model the 
relationship between the abundance of cell i (strictly speaking, the 
abundance of cells at a state represented by cell i) and those of the 
other cells as

αi = θ
k
∑

j=1, j≠i
wijαj + ϵi (2)

where αi is the abundance of cell i, θ is a scaling factor, wij is the weight 
between cells i and j, and εi is an error term with ϵi ∼ N (0,σ2ϵ(i)). Because 
cells at closer states tend to have higher correlations, we model the 
weight between cells i and j as wij = exp(−d2ij), with dij being the Euclid-
ian distance between the states on the cell-state trajectory46,47. Let 
W = {wij} be a k × k symmetric zero-diagonal matrix for all cell pairs 
and D be a diagonal matrix, with each diagonal element being the 
corresponding row sum of W. We divide each wij by Dii so that the sum 
of each row of W is unity. To ensure var(α) to be symmetric, we set 
σ2ϵ(i) = λ

2/Dii  with λ being a scalar48. Following the Brook’s factoriza-
tion45,49, we have var(α) = (D − θW)−1λ2. The distribution of y then 
becomes

y ∼ N (xiβi + Cγ,V) (3)

where V = Z(D − θW)−1λ2Z′ + Iσ2e. We can fit this model iteratively for i 
from 1 to m to estimate βi for each focal state. Details of the derivation 
and parameter estimation of equation (3) are provided in the section 
2 of the Supplementary Note. It should be noted the βi parameters 
represent the fractional abundances of different cell states within the 
focal cell type, which are bound between 0 and 1 and sum up to unity. 
To ensure unbiased estimation, the estimates of the βi parameters from 
the MeDuSA models are not constrained. However, for ease of inter-
pretation, one can rescale the raw estimates to range from 0 to 1 and 
sum up to unity.

Computational speed-up
Running the whole process above is time-consuming, largely because 
of the rate-limiting step of estimating V (strictly speaking, estimating 
the parameters to compute V̂), which needs to be done repeatedly for 
each focal state. Considering the minimal contribution of a focal cell 
state to the bulk gene expression level, we speed up the process by 
estimating V only once under the null model (that is, dropping the focal 
state from the fixed-effect terms and fitting all cells of the focal cell 
type in the random-effect term) and plug it in the generalized least 
squares50 equation to compute β̂i  for each of the alternative models. 
This approximation has been widely used in LMM-based genetic asso-
ciation test51–55, and has been proved to be accurate in our benchmark 
analyses (Supplementary Figs. 27 and 28).

Smoothing
After estimating the cell-state abundances from the process above, 
we smooth the estimates over the cell-state trajectory by the locally 
estimated scatterplot smoothing (LOESS) or averaging the nearest 
neighbors. This smoothing process often leads to improved decon-
volution accuracy due to reduced sampling variance of the estimates 
using the neighboring information.

Simulation strategy
To make the simulation as close to reality as possible, we performed 
simulations using 17 real scRNA-seq datasets from different sequencing 
platforms and species. Each dataset was randomly split into two por-
tions, one as the simulation source data and the other as the deconvolu-
tion reference data. The synthetic bulk RNA-seq data were generated 
as mixtures of scRNA-seq profiles based on the simulation source data. 
We grouped cells into L uniformly distributed states and assigned an 
abundance (al) to each state (l) according to the pre-designed cell 
abundance distribution over the cell-state trajectory. To mimic the 
sampling variances in real bulk RNA-seq data, we randomly selected a 
certain number of cells (with replacement) from each state based on 
the assigned cell abundance. The pseudo bulk expression level was 
obtained by averaging the expression profiles of the selected individual 
cells. Specifically, the expression level of gene g in the pseudo bulk 
RNA-seq data was generated as:

g =
∑L
l=1∑

nal
i=1 X

l
gi

n

where Xlgi is the expression level of gene g of cell i randomly selected 
from state l, and n is the total number of selected cells. We set n as 
min {nal ≥ 1|al ≠ 0}  to ensure at least one selected cell for the non- 
empty states and rounded nal  to an integer number. The cell-state 
abundance (al) was generated as a nonlinear function of the cell trajec-
tory: al = f(tl) with f being the shape mapping function and tl being the 
median trajectory rank of cells at state l. We designed four cell-state 
abundance distributions including:

monotonically increasing: f (t) = tk
monotonically decreasing: f (t) = (−t + 1)k

unimodal: f (t) = [− (t − 0.5)2 +max ((t − 0.5)2)]
k

bimodal: f (t) = sin (3πt) −min (sin (3πt))
with k being the curvature of the distribution. The generated cell-

state abundances were then normalized so that they sum to unity. To 
further mimic differences in batch effects between scRNA-seq and bulk 
RNA-seq data, we added log-normally distributed noises to the pseudo 
bulk RNA-seq data12. The performances of MeDuSA and other methods 
under different levels of noises were shown in Supplementary Fig. 29.

Testing for differences in cell-state abundances among groups
We propose an approach, MANOVA-Pro, that combines multiple analy-
sis of variance (MANOVA) with polynomial regression to detect differ-
ences in cell-state abundance among groups (for example, case group 
versus control group). We first utilize the polynomial regression to 
model the distribution of cell-state abundance along the cell-state 
trajectory as

βββj = Tbj + e (5)

where βj is an m × 1 vector of the estimated cell-state abundances of 
individual j with m being the number of states along the cell-state tra-
jectory; T = [t0 ⋮ t1⋯ tk−1] is an m × k polynomial matrix with t being 
an m × 1 cell-state vector and (k − 1) being the polynomial degree; bj is 
a k × 1 vector of the regression coefficients corresponding to T; e is a 
vector of the residuals, e ∼ N(0, Iσ2e). The polynomial regression coef-
ficients can be estimated as bj = (T′T)−1T′βj . We next perform an 
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MANOVA analysis to test if there is a difference in any of the polynomial 
regression coefficients among groups (for example, case versus con-
trol) based on the following model:

R = H + E (6)

where R = ∑g
j=1∑

nj
i=1(bji − b̄ )̈(bji − b̄ )̈T  is a k × k matrix with g being the 

number of groups, bji being a k × 1 vector of the regression coefficients 
of individual i in the group j, and nj being the number of individuals in 
the group j; H = ∑g

j=1 nj(b̄j. − b̄ )̈(b̄j. − b̄ )̈T  is the hypothesis sum of  
squares and cross products matrix; E = ∑g

j=1∑
nj
i=1(bji − b̄j.)(bji − b̄j.)T  is 

the error sum of squares and cross products matrix. We can use  
the following F statistic to test against the null hypothesis 
H0 ∶ b1 = b2 = ⋯bg,

F = Λ(2u + s + 1)
(s −Λ)(2m + s + 1) (7)

where Λ is the Pillai trace with Λ = tr (H(H + E)−1) , s = min (g − 1, k) , 
m = (||k − (g − 1)|| − 1) /2  and u = (∑g

j=1 nj − k − g − 1) /2 . Under the null 
hypothesis, this F statistic follows an F distribution with s(2m + s + 1) 
and s(2u + s + 1) degrees of freedom.

Correcting for inflation in association test
An important application of the estimated cell-state abundance is to 
test its association with a phenotype, for example, case-control sta-
tus, across individuals. Such an analysis can be performed using the 
MANOVA-PRo method above that tests the association of cell-state 
abundance with a categorical phenotype, accounting for the relation-
ship between the cell-state abundance and cell trajectory. Alternatively, 
if the interest is to test whether the abundance of cells in a specific 
state (or a bin of states without concerning the relationship between 
the cell-state abundance and cell trajectory within the bin), then the 
association test can be performed under the linear regression model 
framework. However, we have observed from simulations that all the 
association tests mentioned above can suffer from inflation because 
the estimated cell-state abundance is correlated across individuals, 
owing to the correlation of gene expression, and such correlation can be 
group dependent. For example, we observed in multiple bulk RNA-seq 
datasets that the mean correlation of gene expression was higher within 
the case or control group than that between groups (Supplementary 
Fig. 23). One extreme example was that the difference in estimated 
cell-state abundance between the case and control groups was statis-
tically significant even if the reference scRNA-seq data were randomly 
generated (Supplementary Fig. 24). Such inflation also probably exists 
in cell-type deconvolution analyses, as demonstrated in our simula-
tions (Supplementary Fig. 25). To account for such correlation-induced 
inflation, we propose to assess the significance level of the association 
by permutation test. In each permutation, we randomly shuffle the 
signature genes, and re-run the cellular deconvolution analysis and 
the subsequent association analysis. We repeat the permutation 1,000 
times (or 10,000 times when necessary) and compute an empirical P 
value by comparing the observed association test statistic with the test 
statistics obtained from permutations. We have demonstrated by simu-
lations under various conditions that the permutation-based test was 
well calibrated under the null of no association (Supplementary Fig. 26).

Processing the scRNA-seq, bulk RNA-seq and scATAC-seq data
We used 24 scRNA-seq datasets from the public domain (see Sup-
plementary Table 1 for the information about species, sample size, 
sequencing platform and data access). Among them, 17 scRNA-seq 
datasets were used in simulation analyses, with the cell-state trajectory 
annotated previously or in this study using CytoTRACE56. In addition, 
we used 21 bulk RNA-seq datasets, with relevant tissue, sample size and 
data access information compiled in Supplementary Table 2. We also 

utilized scATAC-seq data from three human esophagus samples. The 
procedures for processing the scRNA-seq, bulk RNA-seq and scATAC-
seq data are details in sections 4–6 of the Supplementary Note.

Mapping the cell-state-dependent eQTLs
We used SNP genotype data of 497 GTEx samples. Following the GTEx 
pipeline, we performed a standard quality control process of the geno-
type data using PLINK257, with the parameters ‘–geno 0.01–maf 0.05–
hwe 0.000001–mind 0.01′. The workflow for mapping the 
cell-state-dependent eQTLs (csd-eQTLs) is illustrated in Supplemen-
tary Fig. 35. The csd-eQTLs were mapped using a linear regression 
model with an interaction term between SNP genotype and the esti-
mated cell-state abundance: yi = xiα + siβ+++xisiγ +∑jcijδj+++ei, where yi is 
the gene expression level of the ith individual, xi is the genotype variable 
of an SNP, si is the overall abundance of cells at a range of states (for 
example, one of the quartiles of the cell-state trajectory), xisi is the 
interaction term, cij represents the jth covariate, and ei is the residual. 
Following the standard eQTL mapping pipeline58, we used age, sex, the 
top-five genotype principal components (to correct for population 
stratification), and 60 PEER59 factors (to correct for biological/techni-
cal confounding factors) as the covariates. For each gene, only SNPs 
within the cis window (that is, ±1 Mb) of the transcription start site were 
tested. To avoid outlier effects, we performed the rank-based inverse 
normal transformation of the TMM (i.e., trimmed mean of m-values) 
normalized gene expression values and the cell-state abundances. We 
filtered out SNPs with minor allele frequency <0.05. For each of the 
SNPs retained, we tested the significance of the interaction term for 
csd-eQTL detection. Following the pipeline of mapping cell-type-
dependent eQTLs60, we used eigenMT61 to correct for multiple testing 
in each cis window. We then computed the Benjamin–Hochberg FDR 
values based on the eigenMT adjusted P values to determine the exper-
imental-wise significance threshold. The above csd-eQTL mapping 
process was conducted using the software tensorQTL62.

Annotating the cell-state-dependent chromatin accessibility 
peaks
We performed dimension-reduction analysis for epithelia in the 
scATAC-seq data using the same pipeline described above. We used 
Slingshot24 to annotate the epithelial keratinization (differentiation) 
trajectory based on the top two eigenvectors (Supplementary Fig. 
20). To avoid potential outlier effects, we eliminated chromatin acces-
sibility peaks that were available in less than 5% of the epithelial cells. 
For each of the remaining peaks, we utilized the generalized additive 
model implemented in the R package ‘mgcv’ to identify epithelial 
differentiation-dependent accessible chromatin peaks: y ≈ s(x) + C, 
where y is a vector of chromatin accessibility peaks across cells, x is 
a vector of pseudotime values of the epithelial keratinization trajec-
tory, s is the smoothing spline representing the linear combination of 
cubic basis functions and C is the matrix of covariates. We added the 
total number of fragments of each cell to account for the variation in 
sequencing depth63. We used the total number of fragments and donor 
of the cell as covariates. Following previous studies63,64, we assumed 
that the chromatin accessibility peaks follow a negative binomial dis-
tribution. The strength of association between chromatin accessibility 
and epithelial differentiation trajectory was quantified by the χ2 value 
of the smoothing spline.

Enrichment of eQTLs for chromatin accessibility
We assigned cell-state-dependent chromatin accessibility χ2 values 
obtained above to the SNPs included in the csd-eQTL analysis. SNPs 
located in regions without chromatin accessibility data were excluded. 
To avoid ascertainment bias, we randomly sampled control SNPs from 
null SNPs, ensuring that their number and minor allele frequency 
distribution matched with those of the SNPs in query. The sampling 
process was repeated 1,000 times. The fold enrichment was calculated 
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by dividing the mean χ2 value of the SNPs in query by the mean of mean 
χ2 values across the 1,000 sets of control SNPs. We employed the delta 
method65,66 to compute the sampling variance of the fold enrichment. 
Specifically, let x be the mean χ2 value of the SNPs in query and 
y = { y1, y2,… , yi,… , ym}  with yi being the mean χ2 value of ith set of 

control SNPs. The fold enrichment was estimate as x/ ̄y, with ̄y being 
the mean across m replicates (m = 1,000 in this case). The variance of 

x/ ̄y is expressed as: var ( x
̄y
) = ( x

̄y
)
2

[ var(x)
x2

+ var( ̄y)
̄y2

− 2cov(x,y)
x ̄y

]. Assuming that 

cov (x, ̄y ) ≈ 0 , and var (x) ≈ v̂ar(y) , with v̂ar(y)  being the observed 
variance of y  across replicates, the sampling variance of the fold 

enrichment estimate can be computed as: var ( x
̄y
) ≈ ( x

̄y
)
2

[ v̂ar( y)
x2

+ v̂ar( y)
m ̄y2

].

Enrichment of eGenes in DEGs
We allocated the χ2 values of the DEGs to the genes involved in the csd-
eQTL analysis. Employing a similar method as previously mentioned, 
we computed the fold enrichment of eGenes by dividing the average 
χ2 value of the eGenes in query by the mean of mean χ2 values obtained 
from 1,000 sets of randomly chosen control genes. The delta method 
was used to calculate the sampling variance of the fold enrichment.

Statistics and reproducibility
The P values to test for differences in cell-state abundances among 
groups were calculated using the permutation-based MANOVA-Pro 
method. For the survival analysis, P values were computed using a 
two-sided log-rank test. Csd-eQTLs P values were computed using a 
one-sided chi-squared test. Enrichment P values for the csd-eGenes 
and csd-eQTLs were derived through permutations. The sample size 
for each analysis was determined by the maximum number of eligible 
samples available in the respective datasets. The study design did not 
require randomization or blinding. To reproduce the primary results of 
this research, refer to the analytical pipeline available at https://github.
com/LeonSong1995/MeDuSA_Analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the scRNA-seq, scATAC-seq and bulk RNA-seq data used in this 
study are available in the public domain with the relevant information 
summarized in Supplementary Tables 1 and 2. The GTEx genotype data 
is available at https://gtexportal.org/home/protectedDataAccess. 
The GTEx eQTLs summary data is available at https://gtexportal.org/
home/datasets. The csd-eQTLs summary data is available at https://doi.
org/10.5281/zenodo.8018006 ref. 67. The GRCh38 genome is available 
at https://www.ncbi.nlm.nih.gov/projects/genome/guide/human. The 
GENECODE-v38 transcriptome reference is available at https://www.
gencodegenes.org/human. Source data for Figs. 2–6 and Extended 
Data Figs. 1–5 are available with this paper.

Code availability
The source code of MeDuSA is available at https://github.com/Leon-
Song1995/MeDuSA ref. 68.
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Extended Data Fig. 1 | Deconvolution accuracy of MeDuSA-NS with 
decreasing number of cells fitted in the random-effect component.  
We grouped cells of the focal cell type into ten uniformly distributed cell bins 
over the cell-state trajectory and randomly sampled a subset of cells from each 
cell bin to be fitted in the random-effect component of the MeDuSA-NS model. 

The x-axis is the number of cells fitted in the random-effect component. Each 
dot represents the mean deconvolution accuracy over five replicates for one 
simulation source data, colored by the number of cells in the data. The box 
indicates the interquartile IQR, the line within the box represents the median 
value, and the whiskers extend to data points within 1.5 times the IQR.
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Extended Data Fig. 2 | Runtime of MeDuSA and CPM. Panel a and b shows the runtime of MeDuSA and CPM to deconvolute a bulk RNA-seq dataset using a Smart-seq2 
or 10X Genomics scRNA-seq dataset, respectively, as the reference.
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Extended Data Fig. 3 | Deconvolution accuracy of MeDuSA and other methods with different resolutions in the real-data benchmark analysis. The x-axis 
represents deconvolution resolution (as measured by the number of cell states), and the y-axis represents the deconvolution accuracy (as measured by CCC).
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Extended Data Fig. 4 | Estimated abundance of CD8+ T cells along the 
development trajectory in COVID-19. (a) UMAP embedding of the reference 
covid-19 scRNA-seq data, where cells are colored according to their cell types 
(azure, CD8+ T cells). (b) RNA velocity analysis (scVelo) suggesting that CD8+  
T cells developed from the naïve state (Tn) to the exhaustion state (Tex). Colors 
represent subtypes of CD8+ T cells (orange, naive CD8+ T cells; green, effective 
memory CD8+ T cells; blue, effective-exhaustion transition CD8+ T cells; purple, 
exhausted CD8+ T cells). (c) Profiling marker genes to confirm the development 
trajectory. The lines represent the fitted curve using the LOESS, and the shaded 
area indicates the 95% CI. (d) Estimated cell-state abundances of CD8+ T cells 
along the development trajectory from bulk RNA-seq data of COVID-19 patients 

(n = 17) compared with those from healthy donors (n = 17). (e) Replicating the 
results presented in panel d in an independent bulk RNA-seq dataset (n = 54).  
(f) Estimated cell-state abundances of CD8+ T cells in COVID-19 patients  
stratified into tertiles by blood CRP level (n = 100). The x-axis represents the 
development trajectory, from the naïve state (left) to the exhausted state (right). 
The curved line shows mean cell-state abundance across individuals. The  
p values were computed using the permutation-based MANOVA-Pro method. 
(g) Heatmap of estimated cell-state abundances of CD8+ T cells in eight groups 
of COVID-19 patients stratified by the WHO clinical phase (n=27). (h) Conceptual 
illustration of the WHO clinical phase, reflecting disease severity during the 
SARS-CoV-2 infection.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-023-00487-2

Extended Data Fig. 5 | Estimated epithelial abundance along the 
keratinization trajectory in normal esophagi and tumors. (a, b) PCA 
embedding of the reference scRNA-seq data before (panel a) and after (panel b) 
performing gene expression imputation using SAVER, where cells are colored 
according to their states. The black arrowed line represents the annotated 
trajectory using Slingshot, from the basal layer (germinative epithelium) to 
the outer layer (keratinized epithelium). (c) Number of genes expressed per 

cell before and after gene expression imputation. We used the SAVER imputed 
scRNA-seq data as the reference for the cell-state deconvolution analysis below. 
(d–f) Estimated cell-state abundances of epithelial cells using a dataset from 
TCGA data (n = 109), a combined set of data from TCGA and GTEx data (n = 664),  
and a dataset from the GEO (n = 46). The x-axis shows the keratinization 
trajectory, from the basal layer (left) to the upper layer (right). The curved line 
represents mean estimated cell-state abundances across individuals.
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