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Abstract
Motivation: Drug–target interaction (DTI) prediction is a relevant but challenging task in the drug repurposing field. In-silico approaches have
drawn particular attention as they can reduce associated costs and time commitment of traditional methodologies. Yet, current state-of-the-art
methods present several limitations: existing DTI prediction approaches are computationally expensive, thereby hindering the ability to use large
networks and exploit available datasets and, the generalization to unseen datasets of DTI prediction methods remains unexplored, which could
potentially improve the development processes of DTI inferring approaches in terms of accuracy and robustness.

Results: In this work, we introduce GENNIUS (Graph Embedding Neural Network Interaction Uncovering System), a Graph Neural Network
(GNN)-based method that outperforms state-of-the-art models in terms of both accuracy and time efficiency across a variety of datasets. We
also demonstrated its prediction power to uncover new interactions by evaluating not previously known DTIs for each dataset. We further
assessed the generalization capability of GENNIUS by training and testing it on different datasets, showing that this framework can potentially im-
prove the DTI prediction task by training on large datasets and testing on smaller ones. Finally, we investigated qualitatively the embeddings gen-
erated by GENNIUS, revealing that the GNN encoder maintains biological information after the graph convolutions while diffusing this information
through nodes, eventually distinguishing protein families in the node embedding space.

Availability and implementation: GENNIUS code is available at https://github.com/ubioinformat/GeNNius.

1 Introduction

The process of identifying new drugs to treat a specific disease
can be simplified by seeking a chemical compound that modu-
lates a pharmacological target implicated in that disease, with
the goal of altering its biological activity. Even though differ-
ent biological entities can be chosen as targets, such as RNA
or proteins, the latter are the most common pharmacological
targets (Santos et al. 2017). Targeting proteins allows the
modulation of many biological processes implicated in main-
taining health and potentially preventing or treating diseases.
For example, drugs targeting metabolic enzymes can alter
how cells process nutrients and energy (Duggan et al. 2023).

Although high-throughput wet-lab techniques were devel-
oped to accelerate drug discovery pipelines, both in vitro and
in vivo approaches are time-consuming and can be costly
(DiMasi et al. 2016). To address these limitations, computa-
tional methods have arisen as promising tools to reduce the
time and resources required to bring new treatments to

market. The field of drug repurposing involves predicting
novel drug–target interactions (DTIs) that will ultimately en-
able the discovery of new uses for already approved drugs
(Pushpakom et al. 2019). In recent years, the availability of
large amounts of data has made it possible to design machine
learning models that can assist in these drug development
tasks, through, e.g. the identification of complex molecular
patterns that were not previously uncovered. These models
typically leverage multiple types of data, including amino acid
sequences (Zhao et al. 2021) and the 3-D protein structures
(Verma et al. 2021), as recent advances in protein structure
prediction such as AlphaFold (Jumper et al. 2021, Varadi
et al. 2021) have significantly increased the amount of struc-
tural information available.

Specific to DTI prediction, several different machine learn-
ing architectures have been proposed in recent years (see
Section 2.1). From these, several are computationally expen-
sive, thereby hindering the ability to use large networks that
better describe the available corpus of drug–target interaction,
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but further running times are often not reported. In terms of
architecture, while some models utilize simple linear regres-
sion techniques, others contain more complex mechanisms
such as transformers (Huang et al. 2020). However, most of
these technologies do not consider the global view of how
proteins and drugs are connected, which could be informative
towards the discovery of novel relationships. To allow for
modeling the network topology, recent works have been pro-
posed to represent DTI data as a graph (Luo et al. 2017, Peng
et al. 2021). Specifically, DTIs can be modeled as a heteroge-
neous graph connecting drugs and proteins (both represented
as nodes) based on recorded interactions in wet-lab experi-
ments (edges). This representation can be augmented by add-
ing additional node types (e.g. diseases), or edge types (e.g.
protein similarity). The DTI prediction model is then trained
to predict whether a drug has the potential to interact with a
protein.

Advances in machine learning for graphs have highlighted
Graph Neural Networks (GNNs) as a powerful tool to model
these complex networks for a wide range of applications
across diverse fields including economics (Xu et al. 2022),
particle physics (Que and Luk 2022), and especially biomedi-
cine (Yi et al. 2021). The defining characteristic of a GNN is
that it uses a form of neural message passing, where at each it-
eration the hidden embeddings of the nodes are updated
(Hamilton 2020). Further, contrary to most previous node
embedding techniques such as Node2Vec (Grover and
Leskovec 2016), several GNN architectures are able to gener-
alize from a set of training examples to unseen data points.
This capability is of utmost importance to guarantee the gen-
eralization capabilities of the developed models when facing
unseen interactions.

Recently, entire libraries have been developed to work with
GNNs. Special mention should be made to PyTorch
Geometric (PyG), a geometric deep learning library built on
top of PyTorch (Fey and Lenssen 2019). Among other func-
tions and layers, PyG implements the SAGEConv layer, which
corresponds to the GraphSAGE operator that was originally
designed to allow the training of GNNs in large networks
(Hamilton et al. 2017). SAGEConv simultaneously learns the
topological structure of the neighborhood of each node, as
well as the distribution of the features of the nodes in the
neighborhood.

In this work, we present a novel DTI prediction method,
termed Graph Embedding Neural Network Interaction
Uncovering System (GENNIUS), built upon SAGEConv layers
followed by a neural network (NN)-based classifier. GENNIUS

outperforms state-of-the-art DTI prediction methods across
several datasets, not only in AUROC and AUPRC, but also in
execution time. Since ensuring the capabilities of in silico drug
repurposing approaches to find new interactions is of utmost
importance, we also evaluated the ability of GENNIUS to pre-
dict true interactions reported as negative in a given dataset,
yielding promising results. We further assessed the generaliza-
tion capability of our model by training in one dataset and
testing in a different one. This procedure mimics more realisti-
cally how the model would behave in a real-world setting.

Finally, while drug repurposing approaches based on com-
plex machine learning models have eased the discovery of
new targets, they often lack explainability. We analyzed quali-
tatively how drug features (such as commonly used molecular
descriptors) and protein features (such as the amino acid ratio
of protein sequences) are combined in a nonlinear manner

while solving the DTI prediction task. This analysis revealed
that the GNN encoder maintains biological information while
diffusing this information through nodes, eventually distin-
guishing protein families in the node embeddings.

Overall, the results of our evaluation provide strong sup-
port for the effectiveness of GENNIUS, and introduce relevant
guidelines to build GNN-based drug repurposing approaches.

2 Materials and methods

2.1 Methods
2.1.1 Model architecture
GENNIUS architecture is composed of a Graph Neural
Network (GNN) encoder that generates node embeddings
and a Neural Network (NN)-based classifier that aims to
learn the existence of an edge (i.e. an interaction) given the
concatenation of a drug and protein node embeddings
(Fig. 1).

In GNNs, nodes in the graph exchange messages with their
neighbors to update their feature representation, which is for-
mulated with two fundamental functions: the message and the
update functions.(Wu et al. 2022):

mk
v ¼

X
u2NðvÞ

Mkðhk�1
v ;hk�1

u ; evuÞ: (1)

hk
v ¼ Ukðhk�1

v ;mk
vÞ; (2)

where k 2 f1; . . . ;Kg represents the layer, mv the aggregated
message vector for node v, N(v) the neighbor nodes of v, and
hv 2 Rd the node v embedding, of dimension d. Mðhv;hu; evuÞ
defines the message between node v and its neighbor node u,
which depends on the edge information evu. Finally, Uk is the
node update function, which combines aggregated messages
from the node’s neighbors with the node’s own
representation.

GENNIUS’s encoder is composed of four SAGEConv layers,
which are responsible for generating network-preserving node
embeddings h 2 Rd (d¼ 17 in our case) by aggregating infor-
mation from the embeddings of each node’s local neighbor-
hood. Thus, in GENNIUS, the embedding of node v at
SAGEConv layer k is given by:

hk
v ¼ f ðWk

0hk�1
v þ AGGðWk

1fh
k�1
u ; u 2 N ðvÞgÞÞ; (3)

where f is the activation function (Tanh in our case) and AGG
represents the aggregation function (SUM in our case). Wk

0
and Wk

1 are the learnable weight matrices; since we are work-
ing with heterogeneous graphs, where a drug is only con-
nected to proteins and vice versa, if W1

0 2 Rd�dP then
W1

1 2 Rd�dN , or the other way around, being dP (dN) the ini-
tial dimension of proteins (drugs) node features. For k> 1,
both matrices have dimension d� d.

The NN-based classifier is composed of two dense layers,
both using ReLu as the activation function, followed by the
output layer, which is composed of a single neuron with a sig-
moid activation function. The input to the classifier is a vector
of dimension 2d (corresponding to the concatenation of a
drug and protein embeddings), and the output is the estimated
probability of having an interaction (positive edge).

GENNIUS architecture (depicted in Fig. 1) and hyperpara-
meters were chosen through a grid search with ten independent
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runs, using different types and number (K) of GNN layers,
different embedding dimension d, activation functions, aggre-
gation functions, and different number of heads for layers
with attention. This approach helped us to fine-tune the
model (see Supplementary Material S1 for a detailed descrip-
tion of the process and hyperparameters).

2.1.2 Model configuration
The model was trained with the Adam optimizer (Kingma
and Ba 2017) and a learning rate of 0.01. We use a loss that
combines the sigmoid of the output layer and the binary cross
entropy in a single function. This combination takes advan-
tage of the log-sum-exp trick for numerical stability (Paszke
et al. 2019). Given a dataset divided into batches of size N,
the loss ln for sample n in the batch is computed as follows:

ln ¼ �½yn � log rðxnÞ þ ð1� ynÞ � log
�

1� rðxnÞ
�
�; (4)

where yn 2 f0;1g is the associated label for sample n, ŷn ¼
rðxnÞ the estimated probability of the sample belonging
to the positive class (i.e. existence of an interaction), and xn

the output of the last linear layer (before the activation
function). The final batch loss L is then computed as the
average of ðl1; . . . ; lNÞ. Finally, a dropout of 0.2 is used at
the encoder stage (the GNN) to address potential collinearities
of node features (Wager et al. 2013) (dropout rate chosen
through hyperparameter-tuning, see Supplementary
Section S1).

The model is implemented with early stopping, calculated
on validation data, with a minimum of 40 training epochs.
The latter is especially useful for small datasets where an early
stop may occur during the first epochs, eventually causing
underfitting. The model was built with the latest version of
PyTorch Geometric (2.3.0), with PyTorch 2.0.0-cuda11.7,
and the following packages: pyg-lib (0.2.0þpt20cu117),
torch-scatter (2.1.1þpt20cu117) and torch-sparse
(0.6.17þpt20cu117). A Dockerfile for running the model is
available at https://github.com/ubioinformat/GeNNius.

2.1.3 Model training and evaluation
In the standard setting in which a single dataset (graph in our
case) is used to evaluate model performance, the input graph
is randomly split into a 70:10:20 ratio for train, validation,
and test, respectively, via the random link split function of
PyG. This function also randomly selects the negative edges

needed for training and testing the NN-based classifier for a
1:1 positive/negative ratio. The training set requires further
shuffling of positive and negative edges. Only 70% of train
edges is used for training the encoder, while the rest are kept
apart for the edge prediction part (i.e. the edge classifier).

To assess the performance of the models in the edge classifi-
cation task on test data, we use the area under the Receiver
Operating Characteristic curve (AUROC), as well as the area
under the precision-recall curve (AUPRC), both widely used
for evaluating DTI prediction models. We refer to
Supplementary Section S2 for a more extended description of
these metrics.

2.1.4 Node features
Due to the different nature of drugs and proteins, we choose a
vastly different set and dimension of features for drug and
protein nodes. The protein node features are encoded as a
20D vector, accounting for the 20 different amino acids,
where each feature indicates the proportion of the corre-
sponding amino acid in the protein sequence associated to the
node. Drug node features are chosen to be well-known molec-
ular descriptors, calculated with RDKit (Landrum 2022),
from their SMILES (Simplified Molecular-Input Line-Entry
System). Specifically, the 12 selected features for drug nodes
are: LogP value, molecular weight, number of hydrogen bond
acceptors, number of hydrogen bond donors, number of het-
eroatoms (i.e. any atom that is not carbon or hydrogen), num-
ber of rotatable bonds, topological polar surface area (surface
sum over all polar atoms, primarily O and N, also including
their attached H atoms), number of rings and aromatic rings,
number of NHs and OHs, number of nitrogen and oxygen
atoms, number of heavy atoms a molecule (atomic number >
1), and number of valence electrons. While some of the
above-mentioned features are related, model learning and per-
formance is not expected to deteriorate as a dropout layer
was introduced to reduce the potential effect of features’ col-
linearity (the correlation matrices of drug/protein features are
provided in Supplementary Section S3). While other node fea-
tures could be considered, such as protein pre-computed
embeddings, training the model with those features showed
almost no increase in performance (Supplementary Section
S4). In addition, the pre-computed protein embeddings were
not available for all proteins, which led to a decrease in nodes,
hindering the training process and making it impossible for

Figure 1. Schematic of GENNIUS architecture. GENNIUS inputs a graph containing drug (red) and protein (blue) nodes, where Nd and Np represent the

number of drugs and proteins, respectively. First, a GNN generates node representations with an embedding of dimension d¼ 17. Second, a NN-based

classifier aims at learning the existence of an edge given a set of concatenations of drug and protein embeddings. Note that at this stage a negative set of

edges is generated.
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the model to generalize when trained in small networks
(Supplementary Section S4).

2.1.5 Related work
In order to benchmark our proposed method GENNIUS, we fo-
cus on the latest DTI prediction models that have been shown
to outperform previously developed models in their respective
publications.

• DTINet (Luo et al. 2017). It considers a heterogeneous
graph with four node types (drugs, proteins, side effects
and diseases) and six edge types (DTIs, protein-protein in-
teraction, drug-drug interaction, drug-disease association,
protein-disease association, drug-side-effect association,
plus similarity edges between drugs and proteins). After
compact feature learning on each network drugs/proteins,
it calculates the best projection of one space onto another
using a matrix completion method, and then infers inter-
actions according to the proximity criterion. We note that
the large quantity of data required to run the method ham-
pered its reproducibility, as the code for generating all
these matrices was not available.

• EEG-DTI (Peng et al. 2021). EEG-DTI, which stands for
end-to-end heterogeneous graph representation learning-
based method, also considers a heterogeneous network,
where nodes and edges are the same as in DTINet (see
above). The model first generates a low-dimensional em-
bedding for drugs and proteins with three Graph
Convolutional Networks (GCN) layers, and then concate-
nates these layers for drugs and proteins separately.
Finally, it calculates the inner product to get the protein-
drug score.

• HyperAttentionDTI (Zhao et al. 2021). This method only
requires the SMILES string for drugs and the amino acid
sequence for proteins. Then, it embeds each character of
the different sequences into vectors. The model is based on
the attention mechanism and Convolutional Neural
Networks (CNNs), in order to make DTI predictions.

• MolTrans (Huang et al. 2020). Its name stands for
Molecular Interaction Transformer for predicting DTIs.
As HyperAttentionDTI above, it needs the SMILES for
drugs and amino acid sequences for proteins. Then, it
makes use of unlabeled data to decompose both drug and
nodes into high-quality substructures, to later create an
augmented embedding using transformers. Due to this
architecture, the model is able to identify which substruc-
tures are contributing more to the overall interaction be-
tween a protein and a drug.

• MCL-DTI (Qian et al. 2023). This model inputs
drug SMILES to generate two multimodal information of
drugs (molecular image and chemical text) and the amino
acid sequence for target representation. After, the
model uses two decoders with the generated embeddings,
which include a multi-head self-attention block and a
bi-directional multi-head cross-attention block for cross-
information learning. Both drug and protein decoders are
used separately to obtain the interaction feature maps.
Finally, these feature maps generated by decoders are fed
into a fusion block for feature extraction and output the
DTI prediction results.

We selected these models following two main criteria: re-
producibility and architectural diversity. Firstly, all these

models have available working codes. Secondly, our choice of
models encompassed both diverse architectural approaches
and feature selection, allowing for a comprehensive explora-
tion of the problem space. Notably, we decided to include
DTINet, even if it is an older model compared to the rest be-
cause it is an example of a widely cited model and used as a
comparison several times in the field. Alternatively, some
other recent methods were excluded from this review due to
reproducibility issues (Li et al. 2022, 2021, Binatlı and Gönen
2023, Yao et al. 2023).

2.2 Materials
2.2.1 Datasets
In this work we selected various datasets that have been
widely used for DTI prediction tasks:

• DrugBank (Wishart et al. 2006). Drug–Target interactions
collected from DrugBank Database Release 5.1.9. Its first
release was in 2006, although it has had significant
upgrades during the following years.

• BioSNAP (Zitnik et al. 2018) (http://snap.stanford.edu/bio
data). Dataset created by Stanford Biomedical Network
Dataset Collection. It contains proteins targeted by drugs
on the U.S. market from DrugBank release 5.0.0 using
MINER (Stanford-SNAP-Group 2017).

• BindingDB (Liu et al. 2007). Database that consists of
measured binding affinities, focusing on protein interac-
tions with small molecules. The binarization of the dataset
was done by considering interactions positive if their Kd

was lower than 30. Data downloaded from Therapeutics
Data Commons (TDC) (Huang et al. 2021).

• Davis (Davis et al. 2011). Dataset of kinase inhibitors
with kinases covering >80% of the human catalytic pro-
tein kinome. The acquisition and preprocessing of the
dataset was similar to BindingDB.

• Yamanishi et al. (Yamanishi et al. 2008). It is composed
of four subsets of different protein families: Enzymes (E),
Ion-Channels (IC), G-protein-coupled receptors (GPCR),
and nuclear receptors (NR). Yamanishi dataset has been
considered the golden standard dataset for DTI prediction
and has been used in several published models (Zong et al.
2019, Peng et al. 2021, Zhang and Xie 2022). DTIs in this
dataset come from KEGG BRITE (Kanehisa et al. 2006),
BRENDA (Schomburg et al. 2004), SuperTarget (Günther
et al. 2008), and DrugBank.

For all considered datasets, we dropped those drugs and
proteins from which SMILES or amino acid sequences could
not be generated, yielding slightly smaller networks (see
Supplementary Section S5).

Note that the above-mentioned datasets, with the exception
of BindingDB and Davis, contain only positive samples, i.e.
positive links in the network. Nevertheless, when choosing
negative samples, we performed random subsampling to have
a balanced dataset prior to training the model.

Datasets statistics are summarized in Table 1. These data-
sets were released in different years, and thus some drug–
target interactions can be shared across datasets (See
Supplementary Section S6).

2.2.2 Dataset configuration for inferring unknown positives
DTI datasets contain information from diverse sources, have
been released in different years, and may be curated in various
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ways. As a result, negatively labeled edges in one dataset may
be reported as positive in other datasets. We evaluate these
unknown positive edges for each dataset to assess if GENNIUS

can predict them (see Supplementary Section S6 for details on
the number of these edges for each dataset). Importantly, we
ensured that testing edges do not appear as negatives during
training to assess how well GENNIUS predicts these specific
interactions; we repeated the process ten independent times,
enabling us to investigate the variability of the prediction
depending on training edges, which is often not reported in
DTI prediction models.

2.2.3 Data leakage prevention during evaluation on unseen
datasets
Contrary to previously proposed models, we assess the gener-
alization capability of GENNIUS by training it on one dataset
and testing it on another. For a fair assessment, it is necessary
to ensure that there is no data leakage of DTIs between train-
ing and testing.

Let us consider two nodes that are present both in the train-
ing and test datasets. There are four possible scenarios for an
edge connecting these nodes. A positive edge in both datasets
is a clear example of data leakage from the train to the test
set, as we already informed the model about that positive
edge during training. Hence those repeated DTIs are removed
during training. On the other hand, edges that appear in one
dataset but not on the other one are kept. Keeping the nega-
tive edges in the training data makes sense from a usability
perspective since a nonreported DTI in a given dataset does
not necessarily mean that that pair does not interact, and we
would like to test the capabilities of the model under this gen-
eral scenario. Further, a negative edge may be shared in both
datasets; however, since negative edges are randomly selected
when generating the training and testing sets, the probability
of picking the same edge in both datasets is very low. As an il-
lustrative example, when using DrugBank for training and
NR for testing, the probability of selecting the same negative
edge is approximately 3e�6.

We performed five independent training runs on each data-
set, i.e. randomly selecting each time a different set of edges
for training the model. Next, for each trained model, we per-
formed five independent testing runs. We report the average
and standard deviation of the AUROC and AUPRC metrics,
of the test set, across the total 25 runs per training-testing
dataset pair.

2.2.4 Protein and drug annotation
Protein family and enzyme annotation was retrieved from the
ChEMBL database (release 31), as its family hierarchy is man-
ually curated and according to commonly used nomenclature

(Gaulton et al. 2016). Drug chemical annotation was gener-
ated using ClassyFire, an automated structural classifier of
chemical entities (Djoumbou Feunang et al. 2016).
Annotation was used for coloring t-SNEs.

2.2.5 Hardware
All simulations were performed on a server with 64 intel xeon
gold 6130 2.1 Ghz cores with 754 GB of RAM and a
NVIDIA GeForce RTX 3080, driver version 515.43.04, with
cuda 11.7. version.

3 Results

3.1 GENNIUS outperforms state-of-the-art methods

The proposed model was run on the eight selected datasets
with five independent runs. The resulting AUROC and
AUPRC metrics on the test sets across all datasets, as well as
running times (corresponding to train, validation and test),
are presented in Fig. 2 (see also Supplementary Section S7).
GENNIUS returned AUROC and AUPCR performance close
to 1 (>0.9) for large datasets, and while smaller datasets
reported worse results, they are still compelling (>0.8 in al-
most all runs). NR, being the smallest one, achieved the worst
results (>0.7). In addition, the large datasets showed stable
results, with a low standard deviation, across the five indepen-
dent runs. Further, the model execution time was ultrafast for
all datasets (less than a minute for the largest dataset). Note
that the time variance in the large datasets is due to early stop-
ping. Furthermore, we also performed experiments with dif-
ferent subsampling ratios of positive: negative pairs (1:1, 1:2,
1:10), showing that the ratio 1:1 is not oversimplifying the
problem of predicting DTIs (see Supplementary Section S8).

Next, we compared the performance of GENNIUS with pre-
viously proposed methods. Table 2 shows the performance
results of GENNIUS and the state-of-the-art methods for both
DrugBank and BIOSNAP, the largest standard DTI datasets.
We focus on these datasets as they better characterize the cur-
rent size of testable available drugs. GENNIUS outperformed
all benchmarked methods in terms of AUROC and AUPRC.
Importantly, the execution time is significantly reduced, even
when executed without GPU (see Supplementary Section S9).
Previous methods’ running time was in the order of tens of
minutes (except DTINet, which took 4.23 min), while
GENNIUS took <0.6 min to perform the training, validation,
and testing. The closest performance in AUROC and AUPRC
to GENNIUS was achieved by EEG-DTI. However, EGG-DTI
took four orders of magnitude more time to run (917.39 ver-
sus 0.58 min in DrugBank). Finally, we also compared
GENNIUS to off-the-shelf machine learning baselines Logistic
Regression (LR) and Random Forest (RF), to assess the actual

Table 1. Dataset statistics.

DrugBank BIOSNAP BindingDB Davis Yamanishi

E GPCR IC NR

Number of drugs 6823 4499 3084 59 444 222 210 53
Number of proteins 4652 2113 718 218 660 94 203 25
Total number of nodes 11475 6612 3802 277 1104 316 413 78
Total number of edges 23708 13838 5937 673 2920 634 1471 86
Sparsity (%) 0.07 0.15 0.27 5.52 1.01 3.13 3.57 6.94
No. of connected components 412 174 231 1 44 18 3 10
Avg degree drug nodes 3.47 3.08 1.93 11.41 6.58 2.86 7.00 1.62
Avg degree protein nodes 5.10 6.55 8.27 3.09 4.42 6.74 7.25 3.44
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improvement in accuracy using the same features (see
Supplementary Section S10 for further details on those base-
lines). Comparing our model with LR and RF, we observed
an increase in AUROC of 31.75% and 16.73%, respectively,
indicating that GENNIUS is superior due to its architecture: it
not only uses node features but also incorporates network to-
pological information.

3.2 GENNIUS prediction capabilities for inferring

previously unreported drug–target interactions

To analyze the capability of GENNIUS to detect unknown
interactions, we first identified those target-protein pairs lack-
ing an edge in one dataset (negative label) but connected in
the other datasets (positive label). Then, we assessed whether
GENNIUS was able to annotate these edges as positive. We
trained the model ensuring that the edges for testing were not
seen during the training process and repeated the process ten
times. Further details of experiment set-up in Section 2.1
(Section 2.2.2).

The ratio of correctly predicted edges for each dataset is
presented in Fig. 3. When trained with large datasets,
GENNIUS returned good prediction capabilities, detecting
more than 80% of edges in almost all cases. It is worth noting
that with DrugBank GENNIUS successfully predicted more
than 90% of these edges across all runs. Further, when using
Yamanishi datasets (E, GPCR, IC, and NR), GENNIUS

returned satisfactory results, predicting 70% of DTIs on aver-
age across different runs, although with higher variability
than when using large datasets. This suggests that training on
a small dataset hinders the inference of new interactions, as
the random choice of edges for training has larger impact on
the predictive power in these cases. We note that the observed
outliers could be due to a noninformative random selection of
training edges. Finally, the Davis dataset yielded significantly
worst results than the other datasets. At first sight, this behav-
ior could be due to the origin of the Davis dataset, as it is gen-
erated from affinity experiments. However, BindingDB,
which is also generated from affinity data, does not yield such
low performance. Hence, this may indicate that the problem
comes from the significant difference in the topology of Davis
versus all the other datasets. Davis is the only dataset formed
as a uniquely connected network, while other datasets have
more than one connected component. It also presents signifi-
cantly different average degree values in drug nodes (see
Table 1).

3.3 GENNIUS generalization capabilities

We evaluated GENNIUS performance when training and test-
ing on different datasets. In order to ensure that there is no
data leakage that might oversimplify the prediction task, DTIs
that were common to train and test datasets were discarded
prior to applying the model (see Section 2.1, Section 2.2.3, for
a more detailed description of the set-up).

AUROC results are presented in Fig. 4 (obtained AUPRC
results are similar, see Supplementary Section S11), where
each entry of the heatmap shows the performance of
GENNIUS on the row dataset when trained on the column
dataset. The reported values correspond to 25 runs, where
statistical deviation in AUROC and AUPRC arise from the
random selection of edges.

In general terms, GENNIUS returned compelling results in
its generalization capabilities; however, there was a strong de-
pendence on the training dataset. GENNIUS reported the best
generalization capabilities when trained on larger datasets,

Figure 2. Boxplots of AUROC and AUPRC metrics on test data for five

independent runs of GENNIUS for the eight selected datasets. (Upper)

AUROC results. (Middle) AUPRC results. (Lower) Time results in minutes.

Table 2. Benchmarking results of GENNIUS against four state-of-the-art DTI methods and two off-the-self machine learning baselines, for BIOSNAP and

DrugBank datasets.a

Method BIOSNAP DrugBank

AUROC AUPRC Time (min) AUROC AUPR Time (min)

DTINet 0.8557 6 0.0011 0.8856 6 0.0009 4.23 0.8154 6 0.0004 0.8569 6 0.0005 7.99
HyperAttentionDTI 0.8616 6 0.0026 0.7716 6 0.0627 332.83 0.8624 6 0.0034 0.7756 6 0.0456 610.45
MolTrans 0.7921 6 0.0084 0.6452 6 0.0037 43.35 0.7982 6 0.0079 0.6622 6 0.0053 79.86
EEG-DTI 0.9021 6 0.0094 0.9046 6 0.0098 41.39 0.8886 6 0.0049 0.8795 6 0.0066 917.39
MCL-DTI 0.8702 6 0.0045 0.8664 6 0.0062 281.02 0.8706 6 0.0032 0.8698 6 0.0052 473.74
GENNIUS 0.9340 6 0.0032 0.9349 6 0.0021 0.34 0.9371 6 0.0033 0.9392 6 0.0041 0.58
Logistic regression 0.6173 6 0.0026 0.5731 6 0.0020 0.02 0.6196 6 0.0048 0.5747 6 0.0035 0.06
Random forest 0.7910 6 0.0050 0.7519 6 0.0056 0.05 0.7698 6 0.0032 0.7212 6 0.0031 0.09

a Best values are highlighted in bold, excluding baseline results. All AUROC and AUPRC reported results correspond to test set, execution time correspond
to train/validation/test. SOTA models were run in their default configuration, i.e. Moltrans and MCL-DTI correspond to 5 independent runs (execution time
corresponds to an unique iteration), while DTINet and EEG-DTI correspond to a 10-Fold Cross Validation, and HyperAttentionDTI to 10-times repeated 5-
fold Cross-Validation. All the simulations were run in the hardware specified in Section 2.1.
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such as DrugBank, BIOSNAP, and E. On the other hand,
when the model is trained on the smallest dataset, NR, it can-
not generalize, resulting in lower AUROC/AUPRC values
compared to others (whiter colors in the NR column). In addi-
tion, despite the Davis dataset being similar in size to other
Yamanishi datasets, it returned the second-to-worst results
for both training and testing. As mentioned previously, Davis’
topology is different from the rest of the networks. In

addition, Davis and BindingDB, unlike other datasets, come
from affinity experiments. However, the latter seems to per-
form similarly, albeit slightly worse, than DrugBank when
used for training.

We also found that, for smaller networks, our method
obtains better results when trained on large datasets and
tested on smaller ones compared to when trained and tested
on the same small dataset (see results Section 3.1). For

Figure 3. Boxplot of the ratio of correctly identified positive edges in 10 independent runs trained and tested on the same dataset. Note that e is the

number of edges to be evaluated.

Figure 4. Performance of GENNIUS in terms of AUROC when training in one dataset (column) and testing in other (row). Train datasets do not contain

positive edges that appear in the test dataset.
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instance, GENNIUS obtained an AUROC of 0.86 when trained
on DrugBank and tested on NR (lower left corner of heat-
map), while it achieved an AUROC of 0.73, using NR for
training and testing. This suggests that training on large net-
works helps the model learn and generalize to unseen and
smaller datasets.

In addition, to assess how much these results depend on the
node features, we compared them with a random forest model
that has no information on network topology. RF showed in-
capability to generalize, contrasting with the results obtained
when training and testing on the same dataset (Table 2).
The presented results indicate that GENNIUS is capable of
generalizing by employing both features and the network’s
topology without overfitting to the training network (see
Supplementary Section S11).

Finally, we confirmed that GENNIUS’s generalization
capability is not dependent on the embedding dimension by
experimenting with different values (see Supplementary
Section S12).

3.4 GENNIUS encoder preserves biological

information in edges and diffuses it in nodes

To qualitatively interpret the generated embeddings by
GENNIUS’s GNN encoder, we computed the t-SNE of both
the input features and the computed embeddings for all nodes
and DTI edges. We focused on the DrugBank dataset, since as
shown in previous sections, it reports one of the best
AUROC/AUPRC results (Sections 3.1 and 3.3) and yields one
of the lowest variabilities during DTI evaluation (Section 3.2).
We aimed at shedding some light on whether the embeddings
generated by GENNIUS carry meaningful biological informa-
tion beyond the ability to uncover new DTIs.

Firstly, we observe that the edge space with the input fea-
tures contains information about drug chemical categories
and protein families (see Supplementary Section S13,
Supplementary Fig. S9a–c). Using the generated embeddings
instead, we observe that despite the new shapes in the t-SNE,
the biological information is conserved after graph convolu-
tions, i.e. we can still distinguish groups by drug chemical
classification but especially by protein families (see
Supplementary Section S13, Supplementary Fig. S9d–f).

Secondly, we analyzed the nodes, and found that node in-
put features contain almost no information about protein
families, i.e. nodes do not form groups by protein families or
by sub-classification of enzymes, conversely to drug nodes
grouped by chemical categories (see Supplementary Section
S13, Supplementary Fig. S10a–c). The next emerging question
we wanted to answer is whether the network diffuses edge bi-
ological information during encoding such that the embed-
ding of protein nodes reflects it. We found that the grouping
of drug nodes concerning their chemical classification spread
after applying the encoder; this is an awaited result, as we de-
sire drugs in a DTI prediction model to be promiscuous
(Supplementary Section S13, Supplementary Fig. S10d).
However, protein node embeddings displayed better identifi-
able groups than before (Supplementary Section S13,
Supplementary Fig. S10e). Protein families, such as membrane
receptors (orange) and ion channels (violet), revealed some
grouping at the top of the figure, despite not forming evident
groups. Moreover, enzymes now gather in separate groups
across the embedding space and, further, upon its annotation,
we found a more clear grouping, e.g. kinases (fuchsia) formed

a small group on the right of the t-SNE (Supplementary
Section S13, Supplementary Fig. S10f).

Ultimately, the encoder maintains biological information in
edge space while spreading biological information through
nodes, such as protein family classification in protein nodes
and sub-classification of enzymes.

In addition, we visualized the embedding space of negative
and positive edges, adding those DTI used for validation in
Section 3.2. The edges embedding space differentiates areas of
positive and negative edges, vastly facilitating the task to the
NN-classifier (Supplementary Section S13, Supplementary
Fig. S11).

4 Conclusion

We introduced a novel Drug–Target Interaction (DTI) model,
termed GENNIUS, composed of a GNN encoder followed by
an NN-edge classifier. GENNIUS outperformed state-of-the-art
models in terms of AUROC and AUPRC while being several
orders of magnitude faster. Further, we showed that the gen-
eralization capabilities of GENNIUS and demonstrated its abil-
ity to infer previously unreported drug–target interactions. In
addition, we showed that GENNIUS GNN encoder exploits
both node features and graph topology to maintain biological
information in edge space while spreading biological informa-
tion through nodes. Ultimately, GENNIUS’s ability to general-
ize and predict novel DTIs reveals its suitability for drug
repurposing. In addition, its remarkable speed is key in its us-
ability as it enables fast validation of multiple drug–target
pairs.

Supplementary data

Supplementary data are available at Bioinformatics online.
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