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Abstract

PURPOSE: Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy 

with significant cardiopulmonary morbidity and mortality. Genetic testing is currently 

recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic 

telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/

capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have 

putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform 

genetic testing.

METHODS: An international panel of experts in PAH applied a semi-quantitative scoring system 

developed by the NIH Clinical Genome Resource to classify the relative strength of evidence 

supporting PAH gene-disease relationships based on genetic and experimental evidence.

RESULTS: Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, 

KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 

three genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, 

FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects 

of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, 

BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed due to a paucity of genetic evidence 

over time.

CONCLUSIONS: We recommend that genetic testing includes all genes with definitive evidence 

and that caution be taken in the interpretation of variants identified in genes with moderate 

or limited evidence. Genes with no known evidence for PAH or disputed genes should not be 

included in genetic testing.

Keywords
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INTRODUCTION

Pulmonary arterial hypertension (PAH) (OMIM #178600) is a rare, often lethal, disease 

with pulmonary artery remodeling leading to increased pulmonary vascular resistance, 

right ventricular (RV) hypertrophy, and right heart failure [1–3]. PAH can occur in a 
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heritable manner (HPAH), idiopathically (IPAH) or associated with other diseases including 

congenital heart disease, autoimmune connective tissue diseases or risk-factor exposure 

(APAH). PAH may be caused by genetic, epigenetic, and environmental factors, as well as 

gene-environment interactions which may modify genetic risk. Pathogenic BMPR2 (bone 

morphogenetic protein receptor 2) variants are the major cause of HPAH, yet twenty-six 

additional genes have been implicated in IPAH and some HPAH cases primarily driven 

by the advent of massively-parallel sequencing technologies. Independent validation of 

PAH gene-disease relationships is critical to avoid over-interpretation of genetic findings. 

Moreover, reporting of large numbers of variants of uncertain significance (VUS) often 

negatively influences patient well-being. Variable levels of evidence for gene-disease 

relationships complicate the clinical interpretation of genetic testing results and the 

prioritization of research strategies in the field. Currently, patient education about the option 

of genetic testing is recommended for adult H/IPAH, anorexigen-, hereditary hemorrhagic 

telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of 

venous/capillary involvement (PVOD/PCH), and all pediatric PAH patients [4–7]. Thus, 

systematic review of the strength of evidence for PAH gene-disease relationships is needed.

An international panel of scientists, with extensive research experience in PAH gene 

discovery and characterization, was assembled to systematically assess evidence for PAH 

gene-disease relationships. We applied the National Institutes of Health Clinical Genome 

Resource (ClinGen) [8] framework for semiquantitative classification [9], as used for six 

other cardiovascular diseases [10–15]. Here, we report the results of evidence-based gene 

curation for twenty-seven genes implicated in PAH.

METHODS

Study design and criteria

We assembled a ClinGen pulmonary hypertension gene curation expert panel (PH GCEP) 

(https://clinicalgenome.org/affiliation/40071/) consisting of fifteen members from eight 

institutions and representing six countries. An overview of the gene classification process 

and scoring criteria is provided in Figure 1. The scope of work included genes implicated 

in isolated H/IPAH: BMPR2, ABCC8, AQP1, ATP13A3, BMP10, BMPR1A, BMPR1B, 

CAV1, FBLN2, GDF2, GGCX, KCNK3, KDR, KLF2, KLK1, NOTCH3, PDGFD, SMAD1, 

SMAD4, SMAD9, SOX17, TET2, and TOPBP1. We curated three syndromic PAH genes: 

ACVRL1 (PAH associated with hereditary hemorrhagic telangiectasia, PAH-HHT), ENG 
(PAH-HHT), and TBX4 (small patella or TBX4 syndrome) [16]. EIF2AK4 was curated 

based on diagnoses of PVOD/PCH, which can be misdiagnosed as IPAH. APAH and 

persistent pulmonary hypertension of the newborn cases were excluded. Genes were 

assigned to expert panel members without conflicts of interest. A total of 168 peer-reviewed 

reports were evaluated for relevant genetic and experimental evidence for the 27 genes. 

Genome-wide sequencing data from several moderate- to large-sized cohorts were utilized 

in multiple gene curations. The UK NIHR Bioresource – Rare Diseases Study for PAH 

(NBR PAH cohort) comprises whole-genome sequencing of 1,038 unrelated, predominantly 

European adult IPAH patients [17–19]. The US National Biological Sample and Data 

Repository for PAH case-control study (PAH Biobank) included 2,572 exome-sequenced 
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unrelated pediatric and adult PAH cases (43% IPAH, 48% APAH, 4% HPAH and 5% other 

PAH) of mixed ancestry [18–21]. Wang et al comprises 331 Han Chinese IPAH cases 

(Han Chinese IPAH cohort) with exome or genome sequencing [22]. The Spanish Registry 

includes 300 cases with H/IPAH and APAH analyzed by panel or exome sequencing [23–

26].

Genetic and functional evaluations of gene-disease relationships

Lead curators scored genetic and experimental evidence according to the updated ClinGen 

framework (Standard Operating Protocol v9.0). The predominant type of genetic evidence 

scored was case-level variant data as family segregation and case-control association 

analyses rarely reached ClinGen criteria for inclusion. The threshold for inclusion was allele 

frequency less than 1/10,000 (gnomAD all, v2.1.1 controls, or relevant genetic ancestry) 

and variant type predicted loss of function (pLOF; nonsense, frameshift, canonical splice 

variant, and whole exon deletions) or missense with in silico predictions of deleteriousness 

((CADD score ≥20 [27] or REVEL score with gene-specific thresholds [20]). Case-level 

evidence scores were weighted based on variant type, available functional data, and de 
novo inheritance. Experimental evidence included: a) expression in PAH relevant tissues/

cells; b) known function including intracellular pathways, cell proliferation, apoptosis; c) 

functional alteration in variant-positive patient cells; d) PAH-relevant animal models and 

rescue. Expression and functional studies referenced in the curations specified whether 

cell/tissue samples were from affected PAH patients or healthy controls. Where noted, 

expression data were taken from the Genotype-Expression Project, GTEx. Comparative 

studies utilized age-matched controls but genetic ancestry was not always available. As 

defined by SOP v9.0 guidelines individual PAH gene-disease relationships were classified 

as strong, moderate, limited, no known relationship, or disputed due to a lack of 

genetic evidence over time. Definitive classifications were assigned to genes with strong 

evidence for causality plus independent evaluation over ≥3 years post-discovery without 

contradictory evidence. Provisional gene curations were discussed by the full PH GCEP 

monthly. Genes curated before the 3-year post-discovery timepoint underwent recuration 

at the 3-year timepoint. Once a consensus decision was made, final classifications were 

published to the ClinGen website and made publicly available via our PH GCEP (https://

search.clinicalgenome.org/kb/affiliate/10071) or the Hemostasis/Thrombosis GCEP (https://

search.clinicalgenome.org/kb/affiliate/10028) for ACVRL1 and ENG.

Curation and classification of the twenty-seven PAH genes occurred over a two-year 

period, mid 2019–2021. Group meetings were held on a monthly or bi-monthly basis 

and genes were assigned to distribute individual curator burden from month to month. 

Approximately 1–4 genes were curated per month, with re-evaluations when additional 

information was needed (i.e. relatedness of probands or functional experiment details), 

curation inconsistencies were identified (i.e. case inclusion criteria or variable use of in 
silico predictors of variant deleteriousness), or at the 3-year recuration timepoint.

Welch et al. Page 4

Genet Med. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://search.clinicalgenome.org/kb/affiliate/10071
https://search.clinicalgenome.org/kb/affiliate/10071
https://search.clinicalgenome.org/kb/affiliate/10028
https://search.clinicalgenome.org/kb/affiliate/10028


RESULTS

1. Strength of evidence for genes implicated in isolated H/IPAH

For the twenty-three genes assessed for isolated disease, gene-disease relationships were 

classified as definitive (n=8), moderate (n=3), limited (n=6), disputed (n=5), or no known 

relationship (n=1) (Table 1 and Figure 2).

BMP pathway genes

Definitive: BMPR2 encodes a type II receptor of the TGF-β superfamily that in complex 

with type I receptors drives phosphorylation of SMAD signaling molecules and tightly 

regulates processes related to development, differentiation, and growth [28, 29]. Linkage 

analysis in autosomal dominant (AD) PAH families led to the identification of BMPR2 
variants that segregated among affected family members with incomplete penetrance [30, 

31]. Currently, more than 650 unique PAH-associated BMPR2 variants have been reported 

[17, 20, 32], of which the majority are pLOF variants. Missense variants cluster in the 

conserved ligand-binding and protein kinase domains. BMPR2 variants cause 70–80% of 

familial cases and 10–20% of sporadic cases but are rarely found in APAH cases. BMPR2 
is expressed in the pulmonary vasculature with reduced expression in patient-derived cells 

[33, 34]. Pulmonary arterial endothelial cells (PAECs) derived from PAH patients with 

BMPR2 truncating variants demonstrated haploinsufficiency as a pathogenetic mechanism 

[35], with confirmation in mouse and rat models heterozygous for Bmpr2 null alleles [36–

38] or transgenic for a dominant-negative[39]. The rodent models exhibited increased right 

ventricular systolic pressure (RVSP) and increased arteriole muscularization with rescue of 

RV function by wild-type BMPR2 [40] or BMPR2 ligand [41].

CAV1 encodes caveolin-1, the main structural and signaling protein of caveolae. CAV1 
was first identified as a putative PAH gene by exome sequence analysis in a multi-

generational AD PAH family with incomplete penetrance [42]. Screening of 260 unrelated 

H/IPAH patients identified an additional de novo frameshift variant associated with reduced 

CAV1 protein in small artery endothelial cells compared to a control [42]. Independent 

studies identified seven additional CAV1 variants among H/IPAH patients [20, 23, 43, 

44]. CAV1 is expressed in lung endothelial and smooth muscle cells, expression is 

decreased or absent in plexiform lesions [45], and CAV1 c.474del (transcript NM_001753.5) 

patient fibroblasts demonstrated reduced caveolae density and caveolar protein levels [45]. 

Increased SMAD1/5/8 phosphorylation in CAV1 patient fibroblasts was not rescued by 

transduction with wild-type CAV1 [46]. Expression of the mutant protein caused reduced 

wild-type protein [46, 47], consistent with a dominant-negative mechanism. Cav1 knockout 

mice exhibited pulmonary vascular remodeling and other pathological features consistent 

with PAH [48, 49]. Of note, the phenotype was rescued by endothelial re-expression of 

CAV1 [50]. Rare variants in CAV1 cause autosomal dominant and recessive lipodystrophies 

but the observed variants are different from those associated with H/IPAH and the molecular 

mechanisms are likely different. Thus, CAV1 was curated independently by the PH and 

monogenic diabetes GCEPs.
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GDF2 encodes BMP9, a circulating ligand member of the BMP signaling pathway. GDF2 
was first identified by burden testing using the NBR PAH cohort [17]. Subsequently, 

47 unrelated patients with 45 unique heterozygous variants (pLOF and missense) were 

identified in three independent cohorts [20, 22, 44]. David et al. identified BMP9 as 

a functional activator of the endothelial-specific BMPR2/ALK1 signaling pathway [51]. 

BMP9 plasma levels were decreased among GDF2 variant-positive patients versus controls 

or IPAH patients without GDF2 variants, potentially due to impaired secretion[17]. 

Treatment of PAECs with wild-type or mutant GDF2 supernatant resulted in mutant-specific 

attenuation of the anti-apoptotic response [22]. Recuration (March 16th, 2022), three years 

after the initial gene discovery report, identified four additional heterozygous variants, 

including one nonsense and three likely deleterious missense variants, based on in vitro 
evidence [52, 53]. Combined analysis of the UK/US PAH cohorts identified GDF2 as 

one of seven genes that were significantly associated with IPAH on a genome-wide basis 

[19]. Identification of homozygous GDF2 pLOF variants in three children with severe PAH 

raises the possibility of semi-dominant inheritance [54–56]; however, unaffected siblings 

with biallelic variants in one family suggested variable expressivity [55]. There is also an 

emerging picture of overlap with HHT-like phenotypes, notably pulmonary arteriovenous 

malformations [56–58].

The Mothers Against Decapentaplegic Homolog 9 (SMAD9) gene encodes SMAD8, a 

member of the SMAD signaling protein family. Shintani et al. [59] first associated a 

heterozygous nonsense variant in SMAD9 with PAH using a candidate gene screen of 

ENG and seven SMADs in Japanese IPAH patients without BMPR2 or ACVRL1 variants 

(n=23). A missense [60] and a unique nonsense variant [61] were then identified in two 

independent candidate gene screens. Fourteen additional H/IPAH cases heterozygous for 

rare variants were identified in the PAH Biobank [20], NBR PAH cohort [17], and Han 

Chinese IPAH cohort [22]. The variants included missense (n=9, located in functional 

domains), nonsense (n=3) and an in-frame indel variant. SMAD9 is ubiquitously expressed, 

including abundant expression in lung tissue (GTEx, on May 1st, 2022) [62]. SMAD8 

undergoes phosphorylation downstream of BMP type I receptors, inducing interaction with 

SMAD4 and transcriptional activity [63]. SMAD8 p.(Cys202*) (protein NP_001120689.1) 

failed to bind SMAD4 and displayed reduced transcriptional activity [59]. Transcript levels 

of the BMP target gene Id2 were reduced in patient pulmonary arterial smooth muscle cells 

(PASMCs) heterozygous for SMAD8 p.Lys43Glu (NP_001120689.1), although response 

to ligand was largely preserved suggesting redundancy of SMAD1/5/8 function [60]. 

Smad9 knockout mice are viable and show evidence of spontaneous, age-related pulmonary 

vascular remodeling [64]. Further, SMAD8-dependent post-transcriptional up-regulation of 

a subset of microRNAs exerts anti-proliferative effects in control cells that was abrogated 

in patient cells with SMAD8 p.Arg294* (NP_001120689.1) variant, comparable to BMPR2 
exon deletion [61].

Limited: BMP10 encodes the bone morphogenetic protein 10 (BMP10) ligand, a paralogue 

of BMP9 with 65% amino acid homology and overlapping function [51, 65]. Eyries and 

colleagues conducted targeted sequencing of nine known PAH genes plus BMP10 in 263 

patients. Heterozygous nonsense and missense variants in BMP10 were found in two 

Welch et al. Page 6

Genet Med. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



severely affected IPAH patients [66]. Gelinas and colleagues [67] identified a missense 

variant in BMP10 by exome sequencing of a pediatric cohort (n=18). Two more studies 

independently reported heterozygous BMP10 substitutions in two IPAH patients [68, 69]. 

Bmp10 knockout mice die at an early embryonic stage due to retarded cardiac growth 

and chamber maturation [70]. In contrast, Bmp10 conditional knockout mice (induced 

postnatally) were reported to be viable and fertile, exhibiting no PH phenotype under 

normoxic or hypoxic conditions [71].

Disputed genes: BMPR1A and BMPR1B encode type I receptors integral to the canonical 

BMP signaling pathway [72]. A potential relationship between BMPR1B and IPAH first 

emerged in a candidate gene study of 74 Japanese cases wherein two missense variants 

were described as pathogenic [73]. However, this analysis revealed that both variants are 

observed at a frequency exceeding the population prevalence of PAH (8.3KJPN, https://

jmorp.megabank.tohoku.ac.jp/202109/variants). Additional publications reported variants in 

BMPR1A or BMPR1B [20, 22, 43] but only two missense variants per gene met our 

minimal inclusion criteria. BMPR1A and BMPR1B are expressed at equivalent levels to 

BMPR2 in human PASMCs but not detected in PAECs [74]. Due to a paucity of genetic 

evidence over time, both genes are disputed.

SMAD1 and SMAD4 encode additional members of the SMAD signaling protein family 

[75]. Targeted sequencing of SMAD genes in 324 PAH cases identified SMAD4 predicted 

splice-site and missense variants, and a SMAD1 missense variant in three IPAH patients 

[60]. Overexpression of the SMAD1 variant demonstrated modestly reduced luciferase 

activity [60]. While additional SMAD1 and SMAD4 variants have been reported, the 

overall number remains small [20, 22, 23]. Both SMAD proteins are expressed in human 

lung (GTEx on November 24th, 2021) [62] and function as critical mediators of BMPR2 
signaling [76]. SMAD1/4 protein levels were reduced in a rat PH model [77] but there 

are contradictory reports in animal [78] and human [79] lung tissue studies. Based on 

the weak human genetic data for both SMAD1 and SMAD4 over time, both gene-disease 

relationships are disputed.

Transporter and channel genes

Definitive: ATP13A3 encodes a transmembrane cation transporter that transports 

polyamines, small metabolites required for normal cell growth and proliferation [80]. 

Monoallelic ATP13A3 variants were identified in the NBR PAH cohort (6 pLOF, 4 missense 

variants) [17]. Subsequently, four missense and five pLOF/missense variants were identified 

in the Han Chinese IPAH cohort [22] and PAH Biobank [20], respectively. Recently, biallelic 

ATP13A3 variants were identified in three families with severe, early onset PAH and high 

mortality [81]. ATP13A3 is highly constrained for loss-of-function variants (pLoF = 1) [82] 

and most of the PAH-associated missense variants occur in conserved protein domains [83]. 

These data indicate a dose-dependent, semi-dominant mode of inheritance for ATP13A3. 

ATP13A3 is expressed in PASMCs, PAECs, and blood outgrowth endothelial cells (BOECs) 

from IPAH patients [17], with decreased proliferation and increased apoptosis of BOECs 

transfected with ATP13A3 siRNA [17]. Elevated ATP13A3 plasma concentrations have 

been reported in multiple cancers and PAH [84, 85]. The protein-truncating variants are 
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predicted to undergo nonsense-mediated decay indicating haploinsufficiency as the likely 

disease mechanism. For the missense variants, the mechanism is unclear.

KCNK3 encodes a two-pore domain potassium channel, a regulator of resting membrane 

potential and pulmonary vascular tone [86]. Exome sequencing identified KCNK3 as 

the cause of AD PAH in a multi-generational family wherein a novel heterozygous 

missense variant co-segregated with disease, but with incomplete penetrance [87]. Targeted 

sequencing detected additional missense variants in 5/320 unrelated H/IPAH cases, 

accounting for 1.9% of the total cohort. Electrophysiological analyses indicated reduced 

current in mutant channels [87], independently confirmed for two variants identified in 

an independent Spanish cohort [88, 89], indicating a LOF disease mechanism. To date, 

more than 20 likely pathogenic missense variants have been reported in H/IPAH [17, 20, 

22, 23, 43, 90–93]. Identification of biallelic variants in two families [88, 94], suggests 

potential semi-dominant inheritance for KCNK3. KCNK3 is expressed in PASMCs [86], 

with reduced mRNA and protein expression and increased sensitivity to selective KCNK3 

channel blockade in PAH patient-derived pulmonary arteries and PASMCs compared to 

controls [95]. Kcnk3 mutant rats expressing a truncated channel demonstrated age-related 

increased RVSP and other pathological features of PAH [96].

Moderate: ATP binding cassette subfamily C member 8 (ABCC8) encodes sulfonylurea 

receptor-1 (SUR1), a regulatory subunit of adenosine triphosphate (ATP)-sensitive 

potassium channel, Kir6.2. Heterozygous ABCC8 variants were identified in 12/913 

unrelated H/IPAH patients by exome sequencing [97]. Electrophysiological assays 

demonstrated reduced mutant channel function [97]. pLOF and missense variants 

were identified in twenty-one additional patients with H/IPAH [20, 24, 67], with 

incomplete penetrance [24, 97]. SUR1 protein expression was demonstrated in proximal 

pulmonary arteries and alveolar macrophages of IPAH patients [97]; however, mechanistic 

interpretation remains dependent on further functional data. Homozygous pathogenic 

variants in ABCC8 are known to cause hyperinsulinemic hypoglycemia of infancy [98]. 

Based on differing modes of inheritance and only a single patient exhibiting overlapping 

phenotypes, ABCC8 was curated separately for PAH and monogenic diabetes.

Limited: AQP1 encodes aquaporin 1, a water transport channel that also promotes 

endothelial cell migration and angiogenesis [99]. Increased AQP1 missense variant burden 

was demonstrated in the NBR PAH cohort [17]. Two missense variants were shown to 

co-segregate with AD PAH in three families, with incomplete penetrance, and insufficient 

segregation evidence to count in our scoring [17]. Three additional missense variants were 

identified in the Han Chinese IPAH cohort [22]. Expression of AQP1 was demonstrated 

in PAH lung endothelium and healthy donor PAECs [17] but no functional effects of 

patient variants has been reported. In mice, homozygosity for Aqp1 null alleles resulted in 

attenuated hypoxic PH [100]. Currently, only heterozygous missense variants are considered 

potentially disease relevant.
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Growth and transcription/translation factor genes

Definitive: KDR encodes the kinase insert domain receptor for vascular endothelial growth 

factor type 2 (VEGFR2). Ligand activation of VEGFR2 promotes cell proliferation, cell 

survival, and migration. Protein-truncating KDR variants were reported in 4/1048 IPAH 

cases from the NBR PAH cohort [17]. Subsequently, 2/311 IPAH cases were identified 

with KDR variants associated with a low diffusion capacity for carbon monoxide (DLCO); 

co-segregation analysis indicated that variant heterozygotes were either affected by PAH 

or had decreased DLCO [101]. Four additional pLOF [18] and three missense variants, 

including one recurrent in three unrelated IPAH patients [19], were identified during 

recuration. KDR is highly expressed in PAECs [102]. Mice exposed to chronic hypoxia 

combined with SU5416-mediated inhibition of VEGFR resulted in vascular remodelling, 

PAEC proliferation and obliteration, and severe PH; biomarker analysis revealed a signature 

analogous to human PAH patients [103]. Endothelial-specific Kdr deletion resulted in a mild 

PAH phenotype under normoxia that worsened under hypoxia [104].

SOX17 is a two-exon gene encoding the SRY-box transcription factor 17. SOX17 is critical 

in cardiovascular morphogenesis and postnatal vascular remodeling [105]. Gene burden 

testing in the NBR PAH cohort revealed enrichment of SOX17 variants in IPAH cases 

compared to controls [17]. Subsequently, 21 pLOF and missense variants were identified 

in H/IPAH patients from diverse populations [20, 106–108]. Most PAH-associated nonsense 

and frameshift variants occur in the terminal exon, in the conserved β-catenin-binding 

domain, and are predicted to escape nonsense-mediated decay. Wang et al. [108] reported 

a terminal exon SOX17 nonsense variant in a multi-generational family associated with a 

14-fold reduction of target gene NOTCH1 reporter activity and de-repression of β-catenin 

compared to wild-type. Of interest, endothelial-specific deletion of Notch1 results in 

worsened PH in mice [109]. Immunolocalization of SOX17 established endothelial specific 

expression in the pulmonary arterioles of wild-type cells and PAH vascular lesions [17].

Limited: KLF2 encodes Krüppel-like factor 2, a transcriptional repressor of inflammation, 

endothelial activation, and proliferation [110]. Eichstaedt and colleagues [111] identified a 

heterozygous missense variant in two affected siblings with HPAH but not an unaffected 

brother. Functional analyses indicated loss of KLF2 nuclear localization in patient-derived 

lung [112] and PAECs [113], and decreased transcriptional activity in transfected cells 

[112]. No KLF2 variants have been reported in other H/IPAH cases. KLF2 is highly 

expressed in human [114] and rodent [115] lung, and decreased in PAH lung compared 

to healthy lung [113]. KLF2 overexpression in pulmonary vascular cells demonstrated 

decreased apoptosis and cell proliferation [113]. The classification is based on limited 

genetic evidence to date.

Gene burden testing in a combined analysis of the PAH Biobank and the NBR PAH cohort 

demonstrated increased burden for five previously reported PAH genes and two new genes, 

PDGFD and FBLN2 (see ‘Other genes’ below) [19]. Nine IPAH cases were identified 

carrying seven unique and two recurrent PDGFD missense variants [19]. Gelinas et al. 
[67] reported an additional IPAH case with a novel missense variant. PDGFD encodes 

a member of the platelet-derived growth factor family, a mesenchymal mitogenic factor 
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involved in regulation of embryonic development, cell proliferation, cell migration, survival, 

and chemotaxis [116–118]. PDGFD is expressed in lung (GTEx, on March 11th, 2022) [62] 

and arterial vasculature cells [119], but expression in the pulmonary vasculature has not been 

assessed. Cardiac-specific Pdgfd transgenic mice have increased SMC proliferation, vessel 

wall thickening, fibrosis, heart failure, and premature death [120],

No evidence: TOPBP1 encodes a topoisomerase binding protein required for DNA 

replication. Common variants in TOPBP1 were identified by exome sequencing in twelve 

IPAH patients [121] but with similar allele frequency in the control populations and without 

segregation with PAH [122]. Rare variants have not been reported for PAH cases. TOPBP1 
expression is altered in PAH lung tissues but there is no genetic evidence for a gene-disease 

relationship [121].

Disputed: The Notch pathway is a highly conserved signalling cascade with important 

roles in human development and tissue homeostasis [123]. Two NOTCH3 missense variants 

were identified in IPAH patients by a targeted candidate gene screen [124]. One variant 

had an allele frequency (JPN8.3K, MAF: 0.002) that exceeded our threshold for inclusion 

and the other had functional data contradictory to a presumed gain-of-function mechanism 

[124]. Targeted sequencing in other cohorts [23, 92, 125–127] identified only two additional 

NOTCH3 missense variants in H/IPAH that met our minimal threshold. NOTCH3 is 

expressed in PASMCs and IPAH patient cells display overexpression of NOTCH3 [128]. 

However, the paucity of rare NOTCH3 variants in PAH patients indicates that the regulation 

of NOTCH3 signaling is independent of genetic variation.

Other genes

Moderate: Gene burden testing in the PAH Biobank [20] identified two PAH candidate 

genes, gamma-glutamyl carboxylase (GGCX) and kallikrein 1 (KLK1) (see ‘Limited’ 

below). Heterozygous GGCX variants (5 pLOF, 9 missense) were identified in 18 H/IPAH 

cases, with three missense variants recurrent in at least two cases each [20]. GGCX plays 

important roles in blood coagulation, bone formation, vascular integrity, and inflammation 

[129]. GGCX expression was detected in lung and liver (GTEx, on March 8th, 2021) but a 

potential pathogenetic mechanism cannot be established without experimental data. Biallelic 

variants in GGCX cause vitamin K-dependent coagulation factor deficiency (MIM #277450) 

[129] but the genetic variants and mode of inheritance are distinct. GGCX was curated 

independently by the PH and hemostasis/thrombosis GCEPs.

TET2 encodes tet-methylcytosine-dioxygenase-2, an epigenetic regulatory enzyme 

implicated in cancer [130–132], cardiovascular disease [133, 134] and inflammation [135]. 

Targeted burden analysis in the PAH Biobank demonstrated increased burden of TET2 
variants in PAH cases compared to controls, largely due to heterozygous pLOF variants (9 

pLOF, 3 missense) and IPAH cases (8/12 cases) [21]. Seventy-five percent were predicted 

germline and 25% predicted somatic. Increases in sequencing depth will likely increase 

TET2 variant identification among PAH cases. TET2 is expressed in lung (GTEx, on March 

23rd, 2022) and decreased circulating TET2 associated with circulating proinflammatory 

cytokines was reported in IPAH cases compared to controls [21]. Spontaneous PH was 
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demonstrated in hematopoietic-specific mouse models, and treatment of the mice with an 

IL-1beta inhibitor reversed the pro-inflammatory phenotype and PH [21].

Limited: Fibulin proteins are secreted as glycoproteins into the extracellular matrix and 

function in developmental processes, tissue remodeling, and maintenance of basement 

membrane and elastic fibers. In the PAH Biobank/NBR PAH combined analysis [19], seven 

unique FBLN2 variants were identified in IPAH, including a recurrent variant carried by 

four cases, predicted to affect splicing. FBLN2 is expressed in developing heart and smooth 

muscle precursor cells, amongst other tissues [117, 136, 137]. Fbln2 knockout mice are 

viable, fertile, and have intact elastic fiber formation. They exhibit attenuated angiotensin 

II-induced, TGF-β mediated, cardiac hypertrophy and myocardial fibrosis [138, 139] but 

have not been tested for PH.

KLK1 encodes a kininogenase contributing to the formation of the vasoactive peptide 

bradykinin. In the PAH Biobank [20], eight unique variants were identified (3 pLOF, 5 

missense), with three of the variants recurrent in at least two cases. KLK1 is expressed 

in several tissues including lung and vascular tissues [140–142]. Overexpression of 

Klk1 resulted in hypotension in transgenic mice whereas Klk1 knockout mice were 

normotensive but showed blunted flow dependent vasodilatation [143–145]. While KLK1 
has been implicated in pathogenic processes related to PAH development [146–148], clinical 

indications of PH have not been assessed.

2. Strength of evidence for genes implicated in syndromic forms of PAH

The three genes curated for syndromic forms of PAH have all been classified as having a 

definitive relationship with PAH (Table 2 and Figure 2).

ACVRL1 encodes activin A receptor like type 1 involved in BMP signaling [149, 150]. 

Variants in ACVRL1 were first identified as causal for HHT, an autosomal dominant 

vasculopathy characterized by abnormal blood vessel formation in multiple organs [151]. 

PAH is a rare complication of HHT, with most cases attributable to missense ACVRL1 
variants [152–154]. The majority are harbored in the conserved protein kinase domain, 

especially in a nonactivating, nondown-regulating (NANDOR) box subdomain located in the 

terminal exon [155]. The NANDOR box is required for downstream SMAD signaling [155]; 

other rare HHT-PAH associated missense variants have been shown to cause subcellular 

mislocalization to the endoplasmic reticulum [153]. Small deletion and nonsense variants 

have been identified in some cases [152–154]. ACVRL1 is predominantly expressed in 

PAECs and in PAH plexiform lesions [152]. BMP9 and BMP10 were identified as the 

cognate ligands for ACVRL1 in endothelial cells [51]. Homozygous Acvrl1 knockout mice 

demonstrated embryonic lethality with severe vascular malformations [156]. Heterozygous 

Acvrl1 mice developed adult-onset spontaneous PH with increased RVSP, RV hypertrophy, 

and vascular remodeling [157].

ENG encodes endoglin, an accessory protein that interacts with ACVRL1 to promote TGF-

β/BMP signaling [158, 159]. Like ACVRL1, heterozygous pLOF variants in ENG are 

predominantly associated with HHT [160]. Trembath et al. reported novel ENG nonsense 

variants in 2/11 HHT-PAH patients [153]. Subsequently, Harrison et al. [161] reported an 
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HHT-PAH associated splicing variant with demonstrated exon skipping. Other studies have 

identified at least ten additional ENG variants (4 nonsense, 5 missense, 1 in-frame deletion) 

[17, 20, 32, 162]. ENG variants were rarely reported in the absence of HHT. However, in 

one case the diagnosis of PAH was made at three months of age, preceding the onset of 

HHT by eight years [161, 163]. Endoglin is expressed in healthy and PAH lung endothelial 

cells [164] and plays an important role in angiogenesis [165, 166]. High expression observed 

in some PAH vascular lesions could be considered contradictory evidence; however, the 

analysis did not distinguish between L-endoglin and S-endoglin isoforms, which have 

opposing effects on TGF-β vs BMP signaling [167]. Eng heterozygous knockout mice 

spontaneously develop characteristic hemodynamic features of PAH, with increased reactive 

oxygen species levels [168].

TBX4 encodes T-box transcription factor 4 [169], which plays a major role in lung 

branching morphogenesis and skeletal system development [170]. Heterozygous TBX4 
variants were first reported in families with small patella syndrome (SPS, OMIM #147891), 

an AD skeletal dysplasia [171]. TBX4-containing microdeletions were implicated in PAH 

[172], followed by identification of two intragenic TBX4 frameshifts and one missense 

variant in SPS/pediatric-onset PAH cases [173]. Other studies have reported numerous 

protein-truncating and missense variants clustering in the T-box domain [17, 20, 25, 43, 

174]. Luciferase reporter assays demonstrated variant-specific LOF and gain-of-function 

effects for the missense variants [175]. TBX4 variants are more prevalent in pediatric PAH 

than adult-onset cases [43], and are often associated with a syndrome involving PAH, other 

lung and cardiac anomalies, and SPS [176–178]. TBX4 is strongly expressed in developing 

lung [179], but its role in PAH pathogenesis is currently unclear. Tbx4 knockout mice 

showed reduced phospho-SMAD1/5 levels in fetal lung fibroblasts [180]. However, PH per 
se has not yet been demonstrated in the mouse model.

3. Strength of evidence for EIF2AK4 implicated in PVOD/PCH

EIF2AK4 encodes eukaryotic translation initiation factor 2 alpha kinase 4, a serine-

threonine kinase inducer of nutrient-mediated changes in gene expression. Biallelic 

EIF2AK4 variants were identified independently in 13 PVOD families [181] and one family 

and two sporadic PCH cases [90], suggesting autosomal recessive inheritance. Subsequent 

studies reported at least ten additional probands with biallelic variants and clinical diagnoses 

of PVOD/PCH or early-onset IPAH with poor survival[182, 183]. EIF2AK4 was detected in 

lung tissue from an unaffected control and a PVOD patient without EIF2AK4 variants but 

was not detected in a PVOD patient with pathogenic variants in EIF2AK4 [181]. Despite 

the paucity of experimental data, the genetic evidence is strong and remains uncontradicted, 

yielding a classification of definitive.

DISCUSSION

Of twenty-four genes curated for isolated H/IPAH (or PVOD/PCH for EIF2AK4), nine 

were classified as definitive (ATP13A3, BMPR2, CAV1, EIF2AK4, GDF2, KCNK3, KDR, 

SMAD9, SOX17), three as moderate (ABCC8, GGCX, TET2), and six as limited (AQP1, 
BMP10, FBLN2, KLF2, KLK1, PDGFD). One gene was determined to have no known 
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relationship (TOPBP1) and five were disputed (BMPR1A, BMPR1B, NOTCH3, SMAD1, 

SMAD4). Three genes curated for syndromic PAH (ACVRL1, ENG, TBX4) were classified 

as definitive. Four of the disputed genes are from the TGF-β/BMP pathway, originally 

implicated through candidate gene screens but not confirmed in larger, rigorous next 

generation sequencing studies. Moderate and limited genes may change classification with 

new evidence, and recurations can be tracked on the ClinGen website. These results offer 

guidance to clinicians and genetic testing laboratories.

The inclusion or classification of some genes in this report differ from the 6th World 

Symposium on Pulmonary Hypertension report [7] due to new genetic and experimental 

evidence. For example, KDR was not included in the Symposium report but is now classified 

as definitive, and AQP1 moved from “higher level of evidence” to “limited” in this report.

Identification of a genetic cause of PAH in individual cases can have implications 

for clinical management including treatment (mono- vs multimodal therapy), surgical 

intervention and transplantation decisions, and screening for associated conditions [184]. 

A genetic diagnosis can lead to early treatment of associated medical conditions, cascade 

genetic testing of family members to identify those at risk for developing PAH, and 

clarification of reproductive risks to inform family planning decisions.

Based on our analyses, we recommend a tiered genetic diagnostic testing approach. Tiered 

testing can simplify clinical interpretation of results and decrease the reporting of VUSs. 

Tier 1 should include definitive and strong genes. For cases without a genetic diagnosis from 

tier 1 testing, moderate (tier 2) and limited (tier 3) genes could be screened. Lack of genetic 

evidence over time for TOPBP1 and the five disputed genes indicates that these genes should 

no longer be included in routine PAH genetic testing. Given the potential reclassification of 

limited evidence genes and new gene discovery over time, we encourage regular review of 

testing panels for gene inclusion and adjustment of tiered analyses for both testing panels 

and exome/genome sequence data as appropriate. Thus, routine reanalysis of case-level data 

for undiagnosed cases by genetic testing laboratories is highly recommended.

The use of exome (or genome) sequencing for molecular diagnosis has become more cost-

effective. Benefits of exome/genome sequencing over panel testing include gene inclusion/

exclusion flexibility, copy-number variant detection, and reanalysis of stored data from 

undiagnosed cases following evidence of new PAH gene-disease relationships.

Conclusions

Twelve genes have definitive evidence for causal effects of variants on PAH using a 

standardized evidence-based classification system. Our continued efforts to recurate known 

genes and assess evidence for newly identified genes will provide continuity of expert 

review.
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Nonstandard Abbreviations and Acronyms

APAH pulmonary arterial hypertension associated with other diseases

BOECs blood outgrowth endothelial cells

ClinGen Clinical Genome Resource

HPAH heritable pulmonary arterial hypertension

IPAH idiopathic pulmonary arterial hypertension

LOF loss of function

PAECs pulmonary arterial endothelial cells

PASMCs pulmonary arterial smooth muscle cells

PAH pulmonary arterial hypertension

pLOF predicted loss of function

RV right ventricular

RVSP right ventricular systolic pressure
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SPS small patella syndrome

VUS variant of uncertain significance
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Take home message

Using the semi-quantitative NIH Clinical Genome Resource model, twelve out of 

twenty-seven genes curated had definitive evidence, ten have emerging evidence, five 

were disputed, and one gene had no evidence to support causal PAH gene-disease 

relationships.
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Points for clinical practice:

• All genes with definitive evidence for a PAH gene-disease relationship are 

strongly recommended to be included in genetic testing.

• Caution should be taken in clinical interpretation for genes with less than 

definitive or strong evidence, and disputed genes or genes with no known 

genetic evidence for PAH should not be included in genetic testing.

• Four previously reported TGF-β/BMP pathway genes are disputed for a PAH 

gene-disease relationship.

• For undiagnosed cases, genetic reanalysis is recommended over time as new 

evidence for PAH gene-disease relationships emerges.
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Figure 1. 
Flowchart.
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Figure 2. Quantitative contributions of genetic and experimental evidence to the clinical validity 
classifications of genes curated for PAH.
The sums of genetic (blue) and experimental (orange) evidence scores are shown for genes 

classified as having definitive, moderate, or limited evidence of a monogenic relationship, 

no relationship (NR) or disputed relationship for H/IPAH, PVOD/PCH (EIF2AK4), or 

syndromic PAH (ACVRL1, ENG, TBX4). Dates above the bars indicate date of first report 

of a gene variant identified in a PAH case.
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Figure 3. Updated classifications of BMPR2 pathway genes implicated in PAH.
The relative strength of evidence of curated genes is indicated by color-coded classifications. 

PM, plasma membrane; P, phosphate; BRE, BMPR2 response element.
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