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Ultrasound (US) is a widely accessible and extensively used tool for breast imaging. It is 
commonly used as an additional screening tool, especially for women with dense breast tissue. 
Advances in artificial intelligence (AI) have led to the development of various AI systems that 
assist radiologists in identifying and diagnosing breast lesions using US. This article provides an 
overview of the background and supporting evidence for the use of AI in hand held breast US. 
It discusses the impact of AI on clinical workflow, covering breast cancer detection, diagnosis, 
prediction of molecular subtypes, evaluation of axillary lymph node status, and response to 
neoadjuvant chemotherapy. Additionally, the article highlights the potential significance of AI in 
breast US for low and middle income countries.
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Key points: Artificial intelligence (AI) based detection and diagnostic decision support tools have 
the potential to serve an important clinical role in handheld breast ultrasound. More prospective 
studies are needed to understand the impact of AI on actual clinical diagnostic performance and 
how to incorporate AI into real-world clinical settings.
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Introduction

Breast ultrasound (US) has several advantages over other imaging modalities, including its wide 
availability and lower cost. Additionally, US is a safe imaging modality as it neither involves ionizing 
radiation nor requires the administration of intravenous contrast agents, making it optimal for 
repeated examinations, particularly for young patients or pregnant women. It is commonly utilized as 
a supplemental screening tool, particularly for women with dense breasts in whom the sensitivity of 
mammography is decreased due to the masking effect of dense breast tissue [1,2]. Moreover, when a 
breast lesion is detected, US is often used in the diagnostic setting, further characterizing the lesion by 
describing the lesion’s morphology on B-mode images including its’ shape, margin, orientation, echo 
pattern and posterior acoustic features as well as its appearance while using different US techniques 
such as color, power Doppler, or elastography. US is also frequently used to guide minimally invasive 
procedures, such as needle biopsies of suspicious breast lesions or preoperative localization. 

Nevertheless, US does have limitations, particularly handheld US (HHUS) which is highly operator 
dependent, contributing to great variation in the quality of US images depending on the skill and 
experience of the operator. Acquiring US images is time-consuming and interpretation requires 
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expertise and proficiency. US has faced criticism due to its relatively 
low specificity, which results in recalls and biopsies for benign 
lesions [3,4]. Recent research has demonstrated that the limitations 
of US in clinical practice may be improved through the use of 
artificial intelligence (AI) tools aimed at increasing the specificity of 
US and further improving its' value as a screening and diagnostic 
modality. Additionally, with AI decision support for radiologists, 
AI applications may improve consistency in breast management 
recommendations by decreasing intraobserver and interobserver 
variability.

This review aims to highlight both current and emerging clinical 
applications of AI in handheld breast US.

Clinical AI Applications for Breast US

Breast Lesion Detection, Characterization, and Classification 
Utilizing deep learning (DL) neural network techniques and instance 
segmentation, the application of AI research to clinical practice can 
potentially improve identification, characterization, and classification 
of US imaged breast lesions. When a breast lesion is detected, the 
suspicion for malignancy is primarily based on the radiologist's 
qualitative visual assessment guided by a standardized lexicon, part 
of the Breast Imaging Reporting and Data System (BI-RADS) Atlas 
[5], which contains a specifically developed section for breast US. 
Despite this, breast US has low specificity and low positive predictive 
values (PPVs). Large interobserver variability for lesion management 
recommendations has also been reported in clinical practice [6-11].

Intensively investigated in the field of breast imaging in recent 
years, several computer-aided detection/diagnosis (CAD) systems 
have emerged to enhance detection and diagnostic accuracy while 
reducing interpretation variability. Using machine learning and AI, 
these systems generate a probability of malignancy for a finding 
included in a user-selected region of interest (ROI), assisting the 
radiologist in the decision-making process when assigning a BI-
RADS category and making management recommendations. As 
of today, there are local AI governance committees, with country-
specific approved applications for clinical use. The United States 
Food and Drug Administration (FDA) approved a few AI-powered 
decision support applications for breast US clinical use (Table 1), 
which are commercially available on various vendor platforms [12].

BU-CAD (TaiHao Medical Inc.) 
BU-CAD is an FDA-approved, commercially available AI software 
for computer assisted detection (CADe) and diagnosis (CADx 
DS) for breast US. To assist lesion detection, the CADe function 
identifies regions of interest (automated ROIs) of a suspicious lesion 
in up to two orthogonal US images. An adjunctive smart system 

named breast free-hand US (BR-FHUS) which is comprised of two 
subsystems (BR-FHUS Navigation and Viewer) leverages the BU-
CAD, allowing both real-time and batched recorded CADe assistance 
in identifying suspicious lesions for whole breast HHUS (Fig. 1A, B) 
[12]. Once a breast lesion is identified by either the human operator 
and/or the software and a ROI identified, the (CADx DS) component 
generates a numerical assessment of a lesion being malignant or 
benign based on its’ characteristics, termed by the manufacturer as 
"score of lesion characteristics (SLC)." The software also provides 
a corresponding BI-RADS category and descriptors including shape, 
orientation, margin, echo pattern, and posterior features (Fig. 2). 
The software was evaluated by Lai et al. [13] in a multi-reader 
study comparing the diagnostic performance and the interpretation 
time of breast US examinations between reading without and with 
the AI system as a concurrent reading aid. Statistically significant 
improvement of reader’s diagnostic performance was achieved with 
the addition of BU-CAD CADx DS, increasing area under the receiver 
operating characteristic curve (AUC) from 0.758 to 0.829 (P<0.001). 
Additionally, the readers’ mean reading time has decreased from 
30.15 seconds without the software to 18.11 seconds with the aid 
of the AI system, reflecting a significant decrease in interpretation 
time of nearly 40% (P<0.001) [13]. The potential for AI to enable 
faster and more accurate interpretation by the reader could have 
tremendous clinical implications if these results are supported in 
future studies in a prospective clinical environment.

Koios Decision Support (DS) (Koios Medical Inc.)
The potential clinical impact of another breast US AI decision 
support system, Koios DS for breast, was recently evaluated by 
Mango et al. [14]. Koios DS is a software application designed to 
assist physicians in analyzing breast US images by generating a 
likelihood of malignancy for a user-selected ROI that contains a 
breast lesion (Fig. 3). In this multicenter retrospective study, 900 
breast lesions seen on US images (470 benign and 430 malignant), 
were evaluated by 15 physicians with and without the software. The 
mean AUC with DS system alone (0.88; 95% confidence interval [CI], 
0.86 to 0.91) and mean reader AUC with US plus DS (0.87; 95% 
CI, 0.84 to 0.90) were significantly higher than mean reader AUC 
with US only (0.83; 95% CI, 0.78 to 0.89; P<0.001), demonstrating 
improved accuracy of sonographic breast lesion assessment using 
AI-based DS. Interobserver agreement, quantified by the Kendall τ
-b correlation coefficient, was higher for US plus DS (0.68; 95% CI, 
0.67 to 0.69) vs. US only (0.54; 95% CI, 0.53 to 0.55). Additionally, 
the integration of DS reduced the intra-observer variability, as 
evidenced by the decrease in the rates of cases with different BI-
RADS assessments between the two reading sessions (10.8% vs. 
13.6%, P=0.04). There are inherent limitations of retrospective 

http://www.e-ultrasonography.org


Artificial intelligence in breast ultrasound: application in clinical practice

e-ultrasonography.org	 Ultrasonography 43(1), January 2024 5

breast US AI studies, as they do not replicate a true clinical 
environment in which lesions are often scanned in real time by the 
radiologist and evaluated in the context of patient symptoms, risk 
factors, and correlation with mammography, prior imaging, or both. 
Although AI-based DS reduced inter and intra-observer variability 
and improved correct assessment of sonographic breast lesions by 
most physicians, when the impact of DS on each reader's sensitivity 

and specificity was analyzed, improvements appeared to depend on 
the reader's subspecialty. This finding was in line with results from a 
prior study by Chabi et al. [15], who evaluated the accuracy of CAD 
in breast US according to the radiologist’s experience. The authors 
found improved sensitivity for junior radiologists but decreased 
specificity for experienced radiologists. This implies that although AI 
can enhance the diagnosis of malignant lesions when employed by 

Table 1. Overview of commercially available artificial intelligence applications in breast handheld US

Study Study design
No. of patients 

or lesions
AI technology Clinical utility Reported outcome

BU-CAD (TaiHao Medical Inc., Taipei, Taiwan)
Lai et al. (2022) 
[13]

Retrospective, 
multi-reader and 
multi-case reader 
study

172 patients Deep learning neural 
network techniques. 
Implements instance 
segmentation

- Detection CADe - assist users by 
generating automated ROIs of a 
single suspicious soft tissue lesion
- Diagnosis CADx - generates a 
numerical assessment regarding 
likelihood of malignancy (score 
of lesion characteristics) and 
provides the correlating BI-RADS 
assessment   

- Improves reader’s diagnostic 
performance with significantly 
higher AUC and specificity
- Significantly decreases average 
reading time 

Koios DS (Koios Medical Inc.)
Mango et al. 
(2020) [14]

Retrospective, 
multi-center, 
multi-reader

900 patients Proprietary Clinical DS - CADx software 
- generates a probability of 
malignancy for a breast lesion in 
a user selected ROI on static US 
images  

- Improves accuracy of 
sonographic breast lesion 
assessment with significantly 
higher AUC 
- Reduces inter/intraobserver 
variability

Berg et al. (2021) 
[16]

Retrospective,  
multi-reader

319 lesions Proprietary Clinical DS - CADx software 
- generates a probability of 
malignancy for a breast lesion in 
a user selected ROI on static US 
images  

- Original CADx did not 
substantially impact radiologists’ 
interpretations
- Improved performance and 
increased responsiveness of 
radiologists when CADx generated 
fewer false-positive cues

Browne et al. 
(2023) [17]

Retrospective,  
single institution

403 lesions Proprietary Software defined ROI of user 
identified lesions on static US 
images of biopsied lesions and 
analyzed the finding, generating 
the risk of malignancy using 
a similar scale to the BI-RADS 
classification

The use of AI decision support 
may contribute to the "triage" 
process assist radiologists to more 
confidently recommend a follow 
up US for a true BI-RADS 3 finding 
or upgrading it appropriately 
to a BI-RADS 4 with clear 
recommendation for biopsy 

S-Detect (Samsung Healthcare, Seoul, South Korea)
Zhao et al. (2022) 
[26]

Prospective, 
multicenter 

757 DL based-CADx 
system constructed 
on convolutional 
neural network (CNN)

The software offers a dichotomous 
assessment, classifying 
sonographic screening-detected 
breast lesions observed on static 
US images as either "possibly 
benign" or "possibly malignant"

Significantly higher AUC and 
specificity, with no decrease in 
sensitivity

Wang et al. (2022) 
[30]

Meta-analysis of 
11 studies

2,817 lesions - - High diagnostic accuracy in 
distinguishing benign and 
malignant breast masses

CADe, computer assisted detection; CADx, computer assisted diagnosis; AUC, area under the receiver operating characteristic curve; BI-RADS, Breast Imaging Reporting and 
Data System; DS, decision support; ROI, region of interest; US, ultrasound; AI, artificial intelligence; DL, deep learning.
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Fig. 1. BR-FHUS Navigation - an adjunct artificial intelligence tool to assist breast ultrasound screening. 
A. The software provides a route map panel to display scanning information including probe location and scanning coverage (scanned 
areas of the breast indicated by gray bars). In addition, the system generates a "lesion detection module" to assist with real-time detection. 
Example of a suspicious lesion (red square) detected by the software with display of clock axis and distance to the nipple (purple circle) is 
shown. The images and cine loops are stored with their spatial position coordinates in DICOM format (figure provided by TaiHao Medical 
Inc. and used with permission). B. BR-FHUS Viewer assists physicians in reviewing a series of 2-D ultrasound images recorded by BR-FHUS 
Navigation. It supports the computer-aided detection method to detect breast lesions in the recorded images. An example of a snapshot 
taken by Navigation which is automatically showed in the Viewer so physicians can choose which lesion would appear in the report. By 
clicking a CADe button (not displayed on this image) the software automatically detects the suspicious areas which are displayed in the 
suspicious area list (purple rectangle), indicating breast laterality (green rectangle) and location within the breast (yellow rectangle) for each 
lesion. The user can capture the image which suits for reporting (in this case marked by blue background from the list area on the right side). 
Subsequently, the diagnostics results including DICOM images and reports are uploaded to PACS or stored in a local storage (figure provided 
by TaiHao Medical Inc. and used with permission). BR-FHUS, breast free-hand ultrasound; CADe, computer assisted detection; PACS, Picture 
Archiving and Communication System.

A

B
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junior radiologists, it might not surpass or enhance the precision of 
experienced, specialized breast radiologists [15]. This trend must be 
explored further and carefully considered when implementing breast 
US AI in clinical practice as the experience of the radiologists in a 
given practice may affect the impact of the AI system.

Additionally, Berg et al. [16] conducted a Koios reader study to 
assess the impact of original and artificially enhanced AI-based 
CADx on breast US interpretation. The study included 319 lesions 
identified on screening, with 88 (27.6%) being cancers. Nine 

breast imaging radiologists reviewed orthogonal-paired US images, 
evaluating the findings both without and with CADx assistance 
in its original mode (AUC=0.77) and modified to high sensitivity 
(AUC=0.89) or specificity (AUC=0.86).

Results showed no overall improvement in accuracy when 
using the original CADx. However, when the DS outputs were 
adjusted to provide a binary categorization (benign or malignant) 
in high sensitivity or high specificity mode, all readers significantly 
enhanced their accuracies (average AUC increase of 0.045 for high 

Fig. 2. Example of BU-CAD showing orthogonal B-mode ultrasound images of a breast mass (indicated by the red box), where the 
artificial intelligence decision support output (DS) displayed a high score of lesion characteristics (SLC=61), corresponding to a 
Breast Imaging Reporting and Data System (BI-RADS) assessment category 4B (figure provided by TaiHao Medical Inc. and used with 
permission).

Fig. 3. Example of Koios decision support (DS) for Breast showing the B-mode ultrasound images of invasive carcinoma with 
micropapillary features in a 68-year-old patient. The artificial intelligence DS output is displayed in a graphical form on the right panel, 
with the DS-generated output (in this case correctly classified as "suspicious") and the confidence of assessment within that category as 
marked by the triangular marker. 

RT BREAST 9:00 RADIAL 3 CMFN RT BREAST 9:00 RADIAL 3 CMFNANTI-RADIAL ANTI-RADIAL

Finding 4 Finding 4 Finding 4 Finding 4
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sensitivity mode and 0.071 for high specificity mode, P<0.001). The 
authors concluded that radiologists acted more appropriately on 
CADx output when it presented fewer false-positive cues, perhaps 
indicating readers tend to trust a more specific tool. These results 
highlight that issues related to user trust of AI need to be considered 
in AI development, implementation, and radiologist training, as 
ultimately the human-AI interaction will affect the impact AI has on 
patient care.

The Koios software impact on the PPV of US-guided breast 
biopsies has also been invest igated. Browne et al . [17] 
retrospectively compared pathology results of 403 biopsied breast 
lesions from a single institution against the original radiologist’s BI-
RADS classification based on breast US diagnostic images and the 
result of processing the same images through the AI algorithm. At 
the authors’ institution, cytology is performed at the radiologist’s 
discretion for some palpable breast lesions that are assessed as BI-
RADS 3. While the BI-RADS Atlas indicates if biopsy is recommended 
a BI-RADS 4 or 5 assessment should be given, this study highlights 
the challenging clinical scenario of managing US findings that 
appear very likely to be benign but are palpable. The authors report 
that in their clinical practice if cytology renders indeterminate or 
suspicious results a core needle biopsy is recommended. According 
to study results, the software was more successful at determining 
which BI-RADS 3 lesions selected for biopsy by the radiologist 
actually required biopsy, potentially avoiding 44.1% (19/43) of 
biopsies yielding a benign result, without missing any cancers in this 
category. The use of AI DS may assist radiologists in this practice 
setting to more confidently recommend a 6-month follow-up US for 
a true BI-RADS 3 finding or upgrading it appropriately to a BI-RADS 
4 with clear recommendation for biopsy. In this study, using Koios 
did not significantly increase the PPV for lesions categorized BI-
RADS 4/5/6 by the reading radiologists and potentially would have 
missed 10 cancers, indicating that suspicious lesions categorized as 
BIRADS 4b and higher by reading radiologists, still warrants a biopsy 
if recommended by the human reader [17]. Research studies that 
focus only on lesions recommended for biopsy by the radiologist fail 
to capture cancers missed by the radiologist that may have been 
accurately categorized by the AI system. Such limitations should 
be considered when applying research results to real-world clinical 
practice.

S-Detect (Samsung Medison, Co., Ltd., Seoul, South Korea)
"S-Detect," is a commercially available CADx DS tool for breast 
US which employs a DL algorithm to offer a valuable second 
opinion, aiding operators in the interpretation and diagnosis of 
breast lesions. Once a clinician selects a breast lesion, S-Detect 
promptly generates an ROI encompassing the lesion, which the 

operator can manually adjust as needed. The software analyzes 
the morphological characteristics of the lesion according to the BI-
RADS lexicon, provides a detailed report of each US descriptor and 
combines the information with manual input from the operator 
regarding specific features (such as associated calcifications) and 
produces a dichotomized evaluation result of "possibly benign" 
or "possibly malignant" (Fig. 4) [18]. The impact of S-Detect on 
diagnostic performance has been investigated by multiple studies, 
reinforcing that CADx is a useful additional diagnostic tool in breast 
US for radiologists [19], with benefits varying depending on the 
radiologist’s level of experience, primarily benefiting less experienced 
radiologists [20-25]. 

The S-Detect system was evaluated via a multicenter prospective 
study in China by Zhao et al. [26], investigating the feasibility of 
S-Detect in enhancing the diagnostic performance of breast US for 
screen-detected lesions. Analyzing 757 breast masses (460 benign, 
297 malignant), S-Detect exhibited significantly higher AUC (0.83 
[0.80-0.85]) and specificity (74.35% [70.10%-78.28%]) than 
radiologists reading conventional US (0.74 [0.70-0.77] and 54.13% 
[51.42%-60.29%] respectively; P<0.001), with no decrease in 
sensitivity [26].

Improved specificity has important implications for patient care 
by reducing biopsies of benign lesions, which would spare the 
patient the associated discomfort, cost, anxiety, and time involved 
with undergoing a biopsy. Evaluating the potential of AI to reduce 
benign biopsies by downgrading a BI-RADS 4A findings to BI-
RADS 3, Wang et al. [27] described two separate downgrading 
stratifications based on S-Detect AI assessments, according to 
whether the "possibly benign" AI-output was for both orthogonal 
US images vs. just one of the US images. While assessing 43 BI-
RADS 4A lesions using the first strategy, the biopsy rate decreased 
from 100% to 67.4% (P<0.001) with no missed cancers when both 
US images were assessed as "possibly benign"; however, when the 
assessment was "possibly benign" on just one of the images, the 
biopsy rate decrease was greater (from 100% to 37.2% [P<0.001]) 
but two cancers were missed [27]. Comparable to the previously 
mentioned Koios readers study findings, intra-reader [28] and inter-
reader agreement among radiologists regarding final BI-RADS 
assessment [20,29], and specific BI-RADS morphological descriptors, 
was improved by using S-Detect, with greater improvement noted 
among less experienced readers [29].

The overall diagnostic accuracy of S-Detect is best summarized by 
a meta-analysis by Wang and Meng [30], which included 11 studies 
in which 951 malignant and 1,866 breast masses were assessed. 
The results of the meta-analysis indicate that the system has high 
diagnostic accuracy in differentiating benign and malignant masses, 
with pooled sensitivity of 0.82 (95% CI, 0.74 to 0.88); pooled 
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specificity 0.83 (95% CI, 0.78 to 0.88) and AUC of 0.90 (standard 
error=0.0166) [30].

Prognostic AI Applications in Breast US

Prediction of Tumor Biology and Molecular Subtypes of 
Breast Cancer
Gene expression profiling has significantly influenced the 
comprehension of breast cancer biology and biomarkers. These 
encompass histologic grade, estrogen receptor, and progesterone 
receptor expressions, human epidermal growth factor receptor 
2 (HER2) expression, and oncogene activity. These factors have 
been integrated into breast cancer staging by the American Joint 
Committee for Cancer (AJCC) [31]. Several studies have examined 
the prediction of breast cancer molecular subtypes based on AI 
systems for breast US. 

The role of breast US AI in triple-negative cancer was investigated 
by Ma et al. [32] in a retrospective review of 600 patients with 
breast cancer, randomly divided into training (n=450) and testing 
(n=150) sets. Five AI models were trained based on clinical 
characteristics and imaging features of both mammography and 
US. One model excelled in distinguishing between triple-negative 
breast cancer and the other subtypes (AUC, 0.971; 95% CI, 0.947 
to 0.995), significantly improving the accuracy, sensitivity, and 
specificity of four radiologists with the help of the model. 

In a search of potential non-invasive preoperative methods 
to predict tumor molecular subtypes, a US-based assembled 
convolutional neural network multi-model was developed by Zhou 
et al. [33] trained on combined grayscale US images together 
with color Doppler and shear wave elastography features. The 
performance of the multi-model (macro-average AUC, 0.89-0.96) 
was superior to that of other models which were based on greyscale 
only (macro-average AUC, 0.73-0.75) or greyscale with color 
Doppler images (macro-average AUC, 0.81-0.84) in predicting four-
classification breast cancer molecular subtypes. Surprisingly the 
authors reported that the model was also better than preoperative 
core needle biopsy (AUC, 0.89-0.99 vs. 0.67-0.82; P<0.05), 
possibly due to partial sampling obtained by CNB which might not 
represent the entire lesion owing to the heterogeneity of breast 
cancer. The ability of AI to evaluate the entire lesion via the US 
images as opposed to partial sampling by core biopsy may prove to 
be a benefit and is an area of future research.

Prediction of Response to Neoadjuvant Chemotherapy in 
Breast Cancer
Neoadjuvant chemotherapy (NAC) is used to downstage locally 
advanced breast cancer and additionally serves as in vivo drug 
sensitivity testing. Evaluating the pattern of response to NAC can be 
used to further tailor systemic treatment [34]. Pathologic complete 
response (pCR) is associated with favorable disease-free and overall 

Fig. 4. Example of S-Detect showing the B-Mode ultrasound image of breast mass. The artificial intelligence decision support output 
outlined the region of interest around the mass margins (yellow line); classified descriptors as irregular shape, non-parallel orientation, 
spiculated margin, and heterogenous echo pattern. S-Detect produced a final assessment of "possibly malignant” supporting a 
recommendation to biopsy this finding (figure provided by Samsung Electronics Co., Ltd.).

Possibly Malignant
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survival and is the most commonly used endpoint in neoadjuvant 
trials [35]. While surgery is currently required to confirm a pCR post-
NAC, with further study the omission of surgery could potentially 
be explored if pCR could be identified non-invasively. Although 
breast magnetic resonance imaging is currently the most accurate 
imaging modality for assessing pCR [36,37], the ability to predict 
pCR preoperatively using a less costly, less complex, and more 
accessible modality such as US has enormous clinical potential and 
economic benefits. This has encouraged the investigation of the 
added value of AI and deep learning radiomics (DLR) to US images 
in patients undergoing NAC. Jiang et al. [38] developed a novel 
preoperative pCR prediction model which is based on pre- and post-
NAC US images, showing an AUC of 0.94 (95% CI, 0.91 to 0.77), 
outperforming two experienced radiologists. 

In a prospective study by Gu et al. [39], two DLR models (DLR-
2 and DLR-4) corresponding to two post-treatment time points 
(after second and forth courses of chemotherapy) were used to 
assess response to NAC based on US images of 168 patients. DLR-
2 achieved an AUC of 0.812 (95% CI, 0.77 to 0.85) and DLR-4 
achieved an AUC of 0.937 (95% CI, 0.913 to 0.955). Furthermore, 
the deep learning radiomics pipeline model which is a stepwise 
prediction model that combines DLR-2 and DLR-4, successfully 
identified 90% (19/21 patients) of non-responders, triaging them 
to a different treatment strategy from which they could potentially 
benefit more.

Prediction of Axillary Nodal Metastases
The axillary lymph node status plays a crucial role in staging, 
prognosis, and treatment decisions for breast cancer patients [40]. 
Over time, axillary surgical management has evolved, moving away 
from routine axillary lymph node dissection (ALND) for all breast 
cancer patients. Instead, it focuses on avoiding ALND in cases of 
negative sentinel lymph node biopsy (SLNB) with similarly low 
axillary failure rates and significantly reduced lymphedema rates [41]. 
More recently the use of SLNB has expanded to women with low-
volume nodal disease based on results of randomized controlled 
trials demonstrating equivalent locoregional control and survival 
[42,43]. Conducted by the American College of Surgeons Oncology 
Group (ACOSOG), the Z0011 trial showed that in women with 
early-stage, clinically node-negative (cN0) patients with less than 
three positive sentinel lymph nodes undergoing breast conserving 
surgery and whole breast radiation therapy, ALND can be omitted 
[44,45]. Large meta-analysis reported that preoperative axillary US 
combined with LN biopsy in the diagnostic workup of breast cancer 
patients will identify 50% of cases with axillary metastatic disease 
whereas in 25% of the patients with negative US-guided biopsy, 
a positive sentinel node may still be retrieved at SLNB [46]. The 

current use of axillary imaging and image-guided biopsy in patients 
with breast cancer who meet Z0011 criteria or are undergoing NAC 
is institution- and surgeon-dependent, but also has the potential 
to overtreat the axilla and increase surgical morbidity [47]. Given 
the evolving surgical approach to axillary management, the role of 
axillary imaging must evolve in tandem, with the aim of improving 
diagnostic performance and supporting best patients’ outcomes. 
Potentially, AI can assist in predicting axillary lymph nodes status 
based on sonographic images, enhancing the utility and accuracy of 
preoperative US.

A predictive model of lymph node metastasis in patients 
with breast cancer by using DL neural networks was developed 
and investigated by Zhou et al. [48]. Three representative deep 
convolutional neural networks (CNNs) models were evaluated to 
predict lymph node metastasis based on US images of primary 
breast cancer and of axillary lymph nodes. The performance of the 
models was compared with that of five radiologists while surgical 
pathologic results were used as the reference standard. Performance 
was analyzed in terms of accuracy, sensitivity, specificity, receiver 
operating characteristic curves, AUC, and heat maps. The best-
performing CNN model was superior to a consensus of five 
radiologists, achieving higher sensitivity of 85% (95% CI, 70% to 
94%) vs. 73% (95% CI, 57% to 85%; P=0.17) respectively and 
higher specificity of 73% (95% CI, 56% to 85%) compared to 
63% (95% CI, 46% to 77%; P=0.34) achieved by the radiologists. 
Relatively high AUC of 0.89 (95% CI, 0.83 to 0.95) in the prediction 
of axillary lymph node metastasis was achieved by the model, 
demonstrating the feasibility of using CNNs to predict whether early 
primary breast cancer has metastasized to axillary lymph nodes. 

Zheng et al. [49] investigated the incorporation of DLR to 
conventional US and shear wave elastography of breast cancer for 
predicting axillary lymph node status preoperatively in patients with 
early-stage breast cancer, reporting high diagnostic performance of 
combined clinical information and DLR output, with AUC of 0.90 
(95% CI, 0.84 to 0.96) in comparison to lower AUC of 0.74 (95% 
CI, 0.69 to 0.78) achieved by routine axillary US done by radiologist. 
Nevertheless, there was no significant difference between DLR and 
radiologists' evaluation in terms of sensitivity, specificity, PPV or 
negative predictive value [49].

Breast US AI Challenges: Training and 
Implementation Considerations

AI, including its subfield of DL [50], holds the potential to 
revolutionize medical diagnostics. In an era of escalating imaging 
requirements and a scarcity of radiologists, the demand for 
automating the diagnostic process is on the rise. However, for the 
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successful utilization and integration of AI, it must match or surpass 
current technologies and healthcare professionals while also offering 
additional benefits such as swiftness, effectiveness, affordability, 
improved accessibility, and the preservation of ethical standards [51]. 
A significant limitation of DL in medical imaging is the requirement 
for substantial quantities of high-quality training data. This includes 
images with pixel-wise annotation and histological ground truth, or 
data with extended follow-up periods. Data augmentation results 
in the generation of more data, enhancing the model's capacity to 
handle diverse information in the testing set independently. Yet, 
the breakdown of this process could lead to overfitting, a notable 
machine learning hurdle which transpires when a model cannot 
extend its learned patterns beyond its training data [52]. The 
requirement for substantial high-quality datasets for the purpose of 
AI training within the field of breast imaging, may present a more 
prominent challenge in US, due to its relatively lower resolution 
compared to mammography [53]. Moreover, the generalizability of 
AI systems in breast US clinical practice may be limited by significant 
differences between image data used to train an algorithm, which 
may potentially be specific to the operator acquiring the US images, 
vendor or institution and those in real clinical practice [12]. 

AI - Breast US in Low Resource Settings

Increasing use of AI in radiology has raised concerns in high income 
countries that AI could potentially replace human radiologists, 
however in low and middle income countries (LMIC), where 
radiologists are limited or absent, AI has tremendous potential to 
bridge human resource gaps. 

AI implementation in low resource areas of the world requires 
consideration of local stakeholder needs and available resources 
including technology infrastructure. RAD-AID International, a non-
profit committed to enhancing medical imaging and radiology access 
in resource-limited global regions, has outlined clinical radiology 
education, infrastructure integration, and gradual AI implementation 
as pivotal components of a three-part strategy for LMIC AI adoption 
[54]. In a collaboration between RAD-AID International and Koios 
Medical (New York, NY), residents and local imaging professionals 
in low resource countries were introduced to the AI software and 
observed how AI outputs could be appraised for breast cancer 
biopsy recommendations and used as a DS tool [55,56]. 

Most importantly, AI may improve access to healthcare and bring 
radiology services to underserved areas with few or no radiologists. 
A recently prospective multicenter study in Mexico by Berg et al. 
[57] demonstrated that AI software applied to breast US images 
obtained with low-cost portable equipment and by minimally 
trained nonphysician research coordinators could accurately classify 

and triage palpable breast masses in a low resource setting. In 
this study, targeted US was performed twice on women presenting 
with at least one palpable breast mass. First, orthogonal images 
with and without calipers were obtained of breast masses with use 
of the low-cost portable US, documenting any findings at the site 
of lump and adjacent tissue. The first 376 women were scanned 
by a specialist breast imaging radiologist and the subsequent 
102 women were scanned by one of two nonphysician research 
coordinators who had been trained to use the portable US device 
by a validated 30-minute PowerPoint (Microsoft) presentation 
detailed by Love et al. [56]. Second, all women were also scanned 
with the use of standard-of-care (SOC) US, preformed and assessed 
by the specialized radiologist. Outputs of benign, probably benign, 
suspicious, and malignant were generated by an AI software (Koios 
DS version 3.x, Koios Medical). Seven hundred fifty-eight masses in 
300 women were analyzed by the AI tool, of which 360 (47.5%) 
were palpable and 56 (7.4%) were malignant. The AI software 
correctly identified cancers in 47 or 48 of 49 women (96%-98%) 
with either portable US or SOC-US images, with AUCs of 0.91 and 
0.95, respectively. Moderate specificity was achieved by the AI tool, 
correctly triaging 38% of the women with benign masses when 
analyzed masses imaged with portable low-cost US, and 67% of the 
women with benign masses imaged by a specialist radiologist using 
SOC Equipment (P<0.001). As the authors acknowledge, while 
radiologists using low-cost portable HHUS could generate images of 
breast masses adequate for accurate AI classification, a suboptimal 
performance was achieved when AI applied to images obtained 
by minimally trained research coordinators using the same device, 
highlighting the need for greater training of personnel. It is also 
important to mention that Koios DS algorithms were not trained 
with images from the device used, and that training the software 
with images from low-cost portable US could potentially improve 
specificity. 

The combination of AI with volume sweep imaging (VSI) US scans 
was assessed by Marini et al. [58] in a pilot study preformed to 
evaluate the possibility of inexpensive, fully automated breast US 
acquisition and preliminary interpretation without an experienced 
sonographer or radiologist. Expert-selected VSI images of exams 
obtained by medical students without prior experience, together 
with SOC images were input into an AI software (Samsung S-Detect 
for Breast) which output mass features and classification as 
"possibly benign" and "possibly malignant". An excellent diagnostic 
performance was obtained by the AI tool detecting malignant 
breast lesions with a sensitivity of 100% and specificity of 86%. 
Additionally, substantial agreement on the diagnosis of cancers, 
cysts, fibroadenomas, and lipomas was achieved between S-Detect 
interpretation of mass characteristics of VSI in relation to S-Detect 
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interpretation of SOC imaging (Cohen’s κ=0.79; 95% CI, 0.65 to 
0.94; P<0.001), expert VSI interpretation (Cohen’s κ=0.73; 95% 
CI, 0.57 to 0.9; P<0.001), expert SOC-US interpretation (Cohen’s 
κ=0.73; 95% CI, 0.57 to 0.9; P<0.001) and the pathological 
diagnosis (Cohen’s κ=0.8; 95% CI, 0.64 to 0.95; P<0.001). 

AI holds immense potential for enhancing healthcare delivery 
in resource-limited settings and addressing disparities. However, 
a careless deployment of AI might exacerbate radiology-related 
healthcare inequalities. By conscientiously adapting AI to personnel 
variations, disease prevalence, available radiology equipment, and 
by diligently addressing legal, regulatory, and ethical considerations 
[54], AI tools, both in the broader radiology domain and specifically 
in breast imaging, offer a pathway to better clinical education and 
improved imaging accessibility. This has the potential to enhance 
outcomes related to breast cancer in LMIC. 

Conclusion

AI-based detection and diagnostic DS tools have the potential to 
serve an important clinical role in handheld breast US. There is 
evidence that breast US AI may soon be utilized in clinical practice 
for breast lesion detection, characterization, classification and to 
determine prognosis. Further prospective studies are necessary 
to comprehensively assess the influence of AI on actual clinical 
diagnostic performance and to develop effective strategies for 
integrating AI into real-world clinical settings, including examination 
of the tremendous potential of breast US AI in low resource settings.
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