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A cross-scale framework for evaluating
flexibility values of battery and fuel cell
electric vehicles

Ruixue Liu 1,11, Guannan He 2,3,4,5,11 , Xizhe Wang1, Dharik Mallapragada 6,
Hongbo Zhao7, Yang Shao-Horn 6,8,9,10 & Benben Jiang 1

Flexibility has become increasingly important considering the intermittency of
variable renewable energy in low-carbon energy systems. Electrified trans-
portation exhibits great potential to provide flexibility. This article analyzed
and compared the flexibility values of battery electric vehicles and fuel cell
electric vehicles for planning and operating interdependent electricity and
hydrogen supply chains while considering battery degradation costs. A cross-
scale framework involving both macro-level and micro-level models was pro-
posed to compute the profits of flexible EV refueling/charging with battery
degradation considered. Here we show that the flexibility reduction after
considering battery degradation is quantified by at least 4.7% of the minimum
system cost and enlarged under fast charging and low-temperature scenarios.
Our findings imply that energy policies and relevant management technolo-
gies are crucial to shaping the comparative flexibility advantage of the two
transportation electrification pathways. The proposed cross-scale methodol-
ogy has broad implications for the assessment of emerging energy technolo-
gies with complex dynamics.

Deep decarbonization entails high penetration of variable renewable
energy (VRE)1,2 and energy demand electrification3,4. The intermittency
and uncertainty in VRE generation can pose significant challenges to
the energy system’s supply-demand balance and reliability5,6. Conse-
quently, to address the challenges of VRE generation uncertainty and
intermittency, flexibility, which is defined as the ability of the power
system to balance energy supply with demand in the VRE system, has
become more valuable in energy systems7. Many solutions to
improving the operational flexibility of energy systems have been

proposed, e.g., energy storage8,9, demand-side electrification, and
demand-side response10. Transportation electrification, which is
essential to deep decarbonization11,12, can also produce a distributed
source of flexibility for VRE integration13. In addition to satisfying
transportation demands, electric vehicles (EVs) can also function as
portable energy storage systems with controllable charging and
discharging14. Smart charging, which optimizes EV charging schedules
based on energy prices and energy system balances, allows EVs to
provide demand-side flexibility for VRE integration15,16. As the share of
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EVs increases, the flexibility value will become increasingly significant
and play a greater role in evaluating decarbonization pathways of
energy and transportation systems13,17.

Regarding transportation electrification, the twomain options are
battery EVs (BEVs) and hydrogen fuel cell EVs (FCEVs), with BEVs
dominating light-duty fleets14 and FCEVs exhibiting promising heavy-
duty applications18. Compared to BEVs, FCEVs have longer driving
ranges (over 500 km), as well as faster and more convenient refueling
(a few minutes, similar to conventional vehicles)19,20. However, chal-
lenges including higher costs, lack of hydrogen refueling infra-
structure, and limited longevity of fuel cells must be overcome for
larger-scale FCEV development18,21. Thus, the efficiency, value and
development of FCEVs in the short term remain uncertain22,23. In the
future, the increasing scale of the hydrogen economy might decrease
the cost of the hydrogen supply, improving the advantages of FCEVs24.
In addition to FCEVs, researchers have also explored heavy-duty bat-
tery-electric trucks25–27. Regarding BEVs in heavy-duty applications,
battery degradation, and charging speed are major barriers28. Even
though many existing studies have compared the BEVs and FCEVs in a
life cycle assessment framework incorporating variability29–32, the
values of flexible charging of BEVs and FCEVs to the flexibility of the
whole energy systems are still undiscovered and quantified. As flex-
ibility becomes increasingly important in designing energy systems
with highpenetration rates of VRE, accurate evaluationof theflexibility
values of BEVs and FCEVs can provide valuable insights into dec-
arbonization pathway design in the transport and energy sectors.

Current studies on energy flexibilitymainly focus on assessing the
need for flexibility in VRE systems33–35 and modeling and analyzing the
flexibility offered by different types of supply-side and demand-side
resources36,37. The valuation of demand flexibility is usually quantified
by the cost reduction or benefits of the energy system owing to
demand-side flexibility38,39. However, investigations into the flexibility
value evaluation based on coupled sectors are limited. To the authors’
knowledge, the flexibility values of BEVs and FCEVs have not been
compared using a sector-coupling energy system optimization model
with a high temporal resolution and a full spectrum of energy supply
chain technologies in the power and hydrogen sectors. In addition,
most studies do not account for the degradation cost of providing
flexibility through switching between various charging protocols of
BEVs40–42. Although many models have been developed to simulate
battery degradation43–46, the implications of the degradation cost for
EV charging flexibility are still unclear. The charging strategy and ser-
vice temperature significantly affect battery degradation,whileflexible
fueling of FCEVs does not incur evident further degradation. There-
fore, accurate estimation of the battery degradation cost under var-
ious charging protocols and temperatures is crucial for flexibility
comparison of BEVs and FCEVs47,48.

In this work, we employ an interdisciplinary approach that syn-
thesizes both macro-level and micro-level models to compare the
flexibility values ofBEVs andFCEVsby computing the system least-cost
reduction resulting from EV flexible charging. For themacro-level cost
computation, a sector-coupling energy system optimization model,
namely, DOLPHYN (see “Code Availability” for the detail), is adopted
thatminimizes the total capital cost (CAPEX), operational cost (OPEX),
emission cost (involving any taxes imposed), and degradation cost
considering electricity and hydrogen production, storage, transmis-
sion, and demand. The micro-level model based on porous electrode
theory (PET) is for analyzing BEV degradation under various charging
strategies and temperatures, with its outputs fed back into the macro-
level model. We highlight the value of this cross-scale model frame-
work in analyzing the implications of physical characteristics for
energy technology comparison and pathway design. Our results show
that the net flexibility value of BEVs is significantly reduced due to
inevitable battery degradation. Policies and external factors such as
the overall hydrogen demand scale (in sectors such as transport,

industry, and heating), hydrogen pathway, carbon price, EV charging
speed, and service temperature affect the comparative advantage of
transportation electrification (BEVs or FCEVs) for providing greater
flexibility. In contrast to the mixed hydrogen pathway, including both
natural gas with carbon capture and storage (NG with CCS) and elec-
trolytic generation, the flexibility of BEVs could be less valuable under
the electrolytic hydrogen-only pathway, and FCEVs could thus become
better flexibility providers under relatively more scenarios. Moreover,
the degradation cost of BEVs evidently affects the flexibility value by
decreasing charging duration and temperature, which emphasizes the
importance of BEV fast charging protocol optimization and thermal
management to improve the battery lifetime for higher BEV flexibility
values.

Results
Model overview
Since less flexibility in the VRE systemwill increase the system’s lowest
cost, the flexibility value was quantified as the reduction in the system
minimum cost resulting from EV flexible charging, which was com-
puted as the difference between the system costs with and without
considering flexible EV charging using an energy system optimization
model (DOLPHYN). The research framework for the flexibility of BEVs
and FCEVs is depicted in Fig. 1. The DOLPHYN is a sector-coupling
planning and decision optimization model to minimize the cost of the
low-carbon power network (see “Methods” section). It optimized the
costs to identify the most effective and efficient design and operation
of the energy system, by modeling the coupling and conversion of
different energy sectors and revealing the competition and com-
plementary among different technologies. With this model, we
simultaneously optimized infrastructure investments and operations
across both electricity andH2 supply chains incorporating production,
storage, transmission, end-use consumption, and carbon emission, to
obtain the lowest total system cost to meet the electricity and H2

demands. The system cost consists of the CAPEX,OPEX, emission cost,
and BEV degradation cost, which is minimized subject to various
technological and system operation constraints enforced over repre-
sentative periods (weeks in this study) at anhourly resolution aswell as
policy factors such as the CO2 emission price. The representative
weeks were selected based on K-means clustering from 7-year data of
renewable generation and electricity demand. Linear programming
solved by Gurobi with barrier methods49 was applied to address the
optimization problem under four operational constraints (detailed
constraints are available in “Methods” section).

As shown in Fig. 1a, we customized the DOLPHYN model to opti-
mize the energy systems without and with flexible charging, taking the
optimized cost of the former one as the benchmark cost. Theflexibility
value of EVs was obtained by the difference value between the
benchmark cost and the system least-cost with EV flexible charging.
With regard to BEVs, the DOLPHYNmodel was also customized to the
energy system involving battery degradation cost. Then the flexibility
value of BEVs considering battery degradation was computed by
subtracting the system least cost with flexible charging and degrada-
tion from the benchmark cost. More details are available in “Methods”
section and Supplementary Fig. 1.

Wemodeled the EV flexible charging as deferrable demand, which
is the flexible consumption of hydrogen or electric power for EVs. It
implies that the EVsdonot need tobechargedor refueled immediately
after their arrivals. Our study onflexibility assessment of EVswas based
on a marginal perspective, which means that the flexible charging
demand is less than the total EV charging demand at times when
flexible charging demand is needed. Thus, the scale of deferrable EV
demand was kept within a relatively small range in our analysis. We
took this assumption because the future EV charging distribution and
the ratio of deferable demand are highly uncertain and may deviate
from the current patterns.
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Fig. 1 | Schematic of the evaluation of the flexibility values of battery electric
vehicles (BEVs) and fuel cell electric vehicles (FCEVs). a The flexibility value was
computed as the system’s least-cost reduction due to BEV or FCEV flexibility. Both
macro-levelmodel andmicro-level analysis were synthesized to compute flexibility
values. At the macro level, the sector-coupling DOLPHYN model was adopted to
optimize the low-carbon energy system for obtaining the minimum system cost,
considering the capital cost (CAPEX), operational cost (OPEX), emission cost
(EMISSION), and BEV degradation cost. To involve the BEV degradation cost, a
micro-level PET-basedmodelwas applied to simulate batterydegradationand cycle

life under various charging durations, which is regarded as one of the inputs of the
DOLPHYNmodel.bBEVflexible charging. The flexibilitywas embodied in that BEVs
could be charged under high VRE generation and a low power price. When the
periodwith the highest VRE and the lowest power price is short, faster charging for
a shorter charging duration is preferred to lower the charging cost by completing
charging at the lowest powerprice.Nevertheless, a shorter chargingdurationwith a
higher charging power could accelerate battery degradation, leading to extra
degradation costs and reduced flexibility value. These trade-offs are considered
when evaluating the flexibility value of BEVs in this work.
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The flexible charging of BEVs involves a trade-off between the
charging speed and degradation costs (Fig. 1b). During flexible BEV
charging, system costs can be reduced by charging when VRE is
abundant and the power price is low. Since the power price varies as
VRE generation fluctuates, faster charging can facilitate a lower aver-
age charging price within a certain time window, as shown in the left
panel of Fig. 1b. From this perspective, fast charging could reduce
charging/system costs. Whereas, faster charging typically results in
accelerated degradation, a shorter cycle life, and thus a higher
degradation cost (see the right panel of Fig. 1b), which might pose
challenges to providing greater flexibility value in the battery’s sub-
sequent service life.

To incorporate the BEV degradation cost into the system cost,
battery degradation under various BEV charging durations and tem-
peratures must be analyzed before applying the DOLPHYNmodel. It is
assumed that the chargers are enough and available for BEV charging
preconditioned on modeling EV flexible charging as deferrable
demand. The corresponding degradation cost was computed by
dividing the cost of the battery replacement by its cycle life (see
“Methods” section). A PET-based model (see “Methods” section) was
adopted to simulate battery degradation in response to various flex-
ible charging demands and environmental temperatures. According to
our PET-based model, the lifetime of batteries is nearly 3000 cycles
when charged for 60min at 25 °C, which is regarded as the benchmark
in our work. The cycle life is reduced with decreasing charging dura-
tion and temperature (see “Degradation of BEVswithflexible charging”
section). The battery cycle life obtained via the PET-based model and
relevant parameters (see Supplementary Tables 5, 6) were used as the
inputs of the DOLPHYN model to compute the BEV degradation cost
(see “Methods” section). After including the degradation cost in the
system cost, the system cost reduction due to BEV flexibility could
then be obtained.

The mechanisms to utilize the flexibility of FCEVs are different
from those of BEVs. Since the hydrogen supply chain including the
storage process is closely related to FCEVs flexibility (i.e., the flexibility
value of FCEVs in this study is indeed attached to the flexibility of the
hydrogen supply chain, specifically the storage capacities at the
hydrogen refueling stations and transmission between zones), we
modeled the refueling of FCEVs as a dispatchable demand. Specifically,
hydrogen production, storage, compression, and transmission are
included in the hydrogen supply chain, as shown in Fig. 1 and sup-
plementary Fig. 2. Among the four elements, hydrogen storage, and
transmission are two direct measures to provide the required flex-
ibility for the supply chain. Regarding hydrogen storage, in addition to
stationary storage, mobile storage including trucks and pipelines was
also considered in our model, enabling hydrogen shifting in space and
time while being shared across the whole hydrogen network to match
hydrogen demand. In other words, trucks and pipelines were mainly
modeled as both transmission and storage functions to provide flex-
ibility to the hydrogen supply chain. The optimization model incor-
porates the hydrogen flexible storage and transmission scheduling. It
means that the decision variables of the DOLPHYN model involve the
capacities of hydrogen storage and transmission between zones.
These variables were optimized by the model in response to the
hydrogen flexible demand. The H2 demand for each zone was devel-
oped based on available fuel consumption data and hourly charging
profiles for mainly heavy-duty FCEVs and the relative penetration of
FCEVs. Evidently, flexibility is preconditioned on the deployment of
the FCEV fleet, and therefore, we attributed this flexibility to the FCEV
pathway.

Flexible fueling of FCEVs does not incur extra degradation, with
the normal fueling timeof hydrogen storage short enough for the time
windows considered in this study. Regarding electrolyzers in the
DOLPHYN model, their power inputs were assumed to be limited
under the rated power capacities, so no overloading was allowed.

Under this operational constraint, producing hydrogen with electro-
lysis in a shorter window, i.e., increasing the electrolyzer loading from
50% to 100%, does not result in notable extra degradation and could
even limit degradation under some scenarios50, i.e., increasing from
10% to 60%. The fast-charging setting investigated in this work is
unlikely to accelerate electrolysis degradation. Thus, extra degrada-
tion of FCEV flexible charging was not considered.

Scenario setup
We used a case study of the U.S. Northeast region to implement the
optimization model and compare the flexibility values of BEVs and
FCEVs (mainly for heavy-duty EVs), under a variety of demand,
technology, and CO2 price scenarios for 2050. In view of different
charging requirements and demands, we classified five scenarios for
flexibility value evaluation based on variable control. The flexibility
values of BEVs and FCEVs were evaluated and compared under sce-
narios with various charging modes, battery replacement costs,
hydrogen pathways, and service temperatures, considering different
carbon prices, overall hydrogen demand scales, and flexible demand
scales (signified as deferrable demand in this work). These scenario
parameters reflect the decarbonization progress, policies, and tech-
nology development. For instance, the deeper decarbonization
process might show higher hydrogen demand, larger EV flexible
charging demands, and higher carbon prices. To model flexible EV
charging, we considered two load-shifting settings (i.e., fast charging
and normal charging) at room temperature with the electrolytic-only
hydrogen pathway applied. The time window of the fast-charging
setting is 1 h, while that of the normal charging setting is 6 h. Dif-
ferent battery replacement costs from $50/kWh to $200/kWh were
considered in the normal charging case. For the fast-charging sce-
nario, an average charging case and an extreme fast-charging case
were further discussed. When comparing the flexibility values of
BEVs and FCEVs under different hydrogen pathways or temperatures,
the BEV average fast-charging setting with a $100/kWh battery
replacement cost was applied. Two hydrogen pathways include the
electrolytic-only hydrogen and the mixed hydrogen pathway. Tem-
peratures considered in this work were 25 °C, 10 °C, and 0 °C,
respectively, according to the annual climate of the U.S. Northeast
region. Lower temperatures are discussed because studies have
illustrated that lower temperatures evidently affect battery charging.
All scenarios involved in this work are summarized in Table 1.

The significance of considering BEV degradation
The net values of flexible FCEV and BEV charging with and without
batterydegradation involvedwere compared in the formof the system
cost reduction under both the fast (Fig. 2) and normal (Fig. 3) charging
settings, with a greater cost reduction representing a larger flexibility
value. Regarding the fast-charging setting, we assumed that both BEVs
and FCEVs require amaximal charging timeof 1 h and that the charging
load may be shifted to any time within the 1-h window. The fast-
charging setting characterizes the charging of long-haul EVs, especially
heavy-duty EVs, which are sensitive to the charging time51. In contrast,
the normal charging setting assumes a 6-h chargingwindow and refers
to the charging of short-haul EVs.

The net value of flexible BEV charging is much smaller after con-
sidering the extra degradation cost of BEV batteries in both cases
under a variety of scenarios, at only less than a 2.0% reduction in the
totalminimal system cost for fast charging (Fig. 2) and 3.1% for normal
charging (left panel in Fig. 3a) with the same battery replacement cost
of $100/kWh, relative to themaximal valueof 7.8%whendegradation is
not considered. Because of battery degradation, the flexibility values
of BEVs decrease by up to 6.9% for the fast-charging setting (left panel
in Fig. 2a) and4.7% for thenormal charging setting (left panel in Fig. 3a)
at a CO2 price of $1000/tonne and an overall H2 demand scale of 1
Mtonne/year.
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These results indicate the significance of considering battery
degradation for both the fast and normal charging settings (see
“Degradation of BEVs with flexible charging” section) and the value of
integrating a micro-level physical model with a macro-level planning
model. On this basis, to ensure greater practicality, all the following
analyses of BEV flexibility consider the battery degradation cost. In the
future, BEV battery degradation is expected to be improved, profiting
from developed battery technologies. By then, in contrast to normal
charging, fast charging scenarios with a relatively shorter cycle life and
higher degradation cost might be more common52–54.

Flexibility values of BEVs and FCEVs under fast and normal
charging settings
In regard to the fast-charging setting, we further considered two cases
—an average case termed “BEV Average” and an extreme case termed
“BEV Extreme”—with the same battery replacement cost of $100/kWh.
In both cases, we adopted the degradation in BEV charging within
60min as the benchmark. The cost reduction values of the four cases
(FCEV, BEV without considering degradation, BEV Average and BEV
Extreme) are compared under the different scenarios in Fig. 2, with
different overall H2 demand scales in Fig. 2a–c and various carbon
prices of $1000, $100, and $0/tonne from left to right. In the “BEV
Average” case, we assumed that BEV arrivals are uniformly distributed,
andwe used the average of the extra degradation costs associatedwith
charging times of 15, 30, 45, and 60min over the 60-min benchmark
(see “Methods” section). The average cycle life is approximately 1600
cycles, which is a reduction of approximately 45.5% from the bench-
mark level.

After considering BEV degradation with BEV Average fast-
charging assumptions, the flexibility values of BEVs are higher than
those of FCEVs under most scenarios. The flexibility values of FCEVs
outperform those of BEVs only under the scenarios with a higher H2

demand of 4 Mtonne/year and a low/medium carbon price of $100 or
$0/tonne (middle and right of Fig. 2c). Relatively less flexibility is
required when the carbon price is lower, owing to VRE discouraging.
Under this circumstance, a higher hydrogen demand implying the
strong coupling of power and hydrogen sectors makes FCEV

predominate over BEVs as the flexibility provider. Under the remaining
scenarios, FCEVs tend to exhibit more potential for flexibility with
increasing deferrable demand (representing the rate of EVs flexible
charging). In other words, when the decarbonization level increases
with a higher overall H2 demand scale of 2 or 4Mtonne/year, FCEVs are
more likely to provide systems with greater flexibility values. In the
future, if the battery lifetime performance is improved by twofold and
the battery replacement cost is reduced by half, the resulting battery
degradation cost savings could improve the flexibility values of BEVs
considering fast charging settings by up to 4% under some scenarios
with a lower overall H2 demand scale and higher carbon prices.

In the BEV Extreme fast charging case, we assumed that BEVs were
charged in 10min and used the extra degradation cost over the
benchmark level (60min of charging). Clearly, as shown in Fig. 2, when
BEVs are charged extremely fast throughout the whole service life (the
BEV Extreme case), their corresponding net flexibility values are less
than those in the BEVAverage case by approximately 0.8%, owing to the
accelerated degradation with an approximately 91.1% reduction in the
battery lifetime (see “Degradation of BEVs with flexible charging” sec-
tion). Under this condition, the flexibility values of BEVs are less than
those of FCEVs on more occasions with a maximum gap of approxi-
mately 0.4%. These results illustrate the remarkable influences of fast
charging on the resulting BEV flexibility values and the importance of
battery charging protocol optimization and degradation mitigation to
the selection of the transportation electrification pathway.

Regarding the normal charging setting, we considered three bat-
tery replacement cost ranges, as shown in Fig. 3: “BEV $50-$100/kWh”
with yellow shadow, “BEV $100-$150/kWh” with a purple shadow, and
“BEV $150-$200/kWh” with a green shadow. When increasing the BEV
and FCEV charging-time windows from 1 h to 6h given a $100/kWh
battery replacement cost, the cost reduction of BEVs exceeds that of
FCEVs under scenarios with a higher carbon price and a lower overall H2

demand scale (Fig. 3a, left andmiddle of Fig. 3b, and left of Fig. 3c), by a
maximum of 2.0% given a carbon price of $1000/tonne and an H2

demand of 1 Mtonne/year (left of Fig. 3a). In contrast to the 1 h condi-
tions depicted in Fig. 2, when the charging time window is increased to
6h, the maximum increment in the BEV flexibility value under the

Table 1 | Summaries of scenarios for comparing flexibility values of BEVs and FCEVs

Scenarios Charging duration or Time
window

Temperature Battery replace-
ment cost

Hydrogen pathway

Various char-
ging modes

Fast charging FCEVs (%) 1 h 25 °C – Electrolytic-only

BEV average (%) 15min,30min,
45min,60min

25 °C $100/kWh

BEV extreme (%) 10min

Normal charging FCEVs (%) 6 h 25 °C –

BEV
$50–100 (%)

25 °C $50–100/kWh

BEV
$100–150 (%)

$100–150/kWh

BEV
$150–200 (%)

$150–200/kWh

Hydrogen pathway Mixed FCEVs (%) 1 h 25 °C – Mixed

BEV average (%) 25 °C $100/kWh

Electrolytic-only FCEVs (%) 25 °C – Electrolytic-only

BEV average (%) 25 °C $100/kWh

Service temperature FCEVs (%) 1 h 25 °C – Electrolytic-only

BEV average
25 °C (%)

25 °C $100/kWh

BEV average
10 °C (%)

10 °C

BEV average
0 °C (%)

0 °C
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various scenarios reaches approximately 2% with a battery replacement
cost of $100/kWh. This ismainly caused by a longer battery lifetime and
less degradation owing to a relatively slower charging speed. In addi-
tion, when the battery replacement cost is reduced from $200/kWh to
$50/kWh, the flexibility values of BEVs increase at increasingly higher
rates. For instance, as shown on the left panel of Fig. 3a, when the
deferrable EV demand is 20 tonne H2/hour (~66MW), the flexibility
value of BEVs increases from 1.9% ($200/kWh) to 2.4% ($150/kWh), 3.1%
($100/kWh), and 4.4% ($50/kWh). This growing effect occurs because
the reduced battery degradation cost not only lowers the system cost
but also encourages the deployment of flexible BEV charging.

Flexibility values under different hydrogen pathways
Whether the hydrogen pathway of NG with CCS, which produces
hydrogenbasedon fossil fuelwithCCS, shouldbe considered hasbeen
debated because of the potential upstream carbon emissions in fossil
fuel production55,56. Here, we compute and evaluate how the flexibility

values of BEVs and FCEVs change as we switch from the mixed
hydrogen pathway, including both NG with CCS and electrolytic gen-
eration, to electrolytic hydrogen only. Figure 4 shows the impact of a
deferrable EVdemandof 15 tonneH2/hour on the total systemcost and
the VRE (including wind and solar), combined-cycle gas turbine
(CCGT) with and without CCS, hydrogen storage and battery storage
capacities, with the blue bars indicating the mixed hydrogen pathway
with NG with CCS and the green bars indicating the electrolytic
hydrogen only pathway without NG with CCS. Negative values denote
decreases in corresponding capacity resulting from EV flexible char-
ging, and vice versa. For FCEVs, the optimized hydrogen storage
(consisting of both stationary and mobile storage) is reduced as
increasing of the deferrable demand. More reduced hydrogen storage
is observed under scenarios with higher H2 demands. This can be
explained that with more flexibility provided by the FCEV fleet, less
flexibility is required for the storage process owing to the relatively
higher cost to achieve flexibility than FCEVs. The results illustrate how
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Fig. 2 | Net values of flexible battery electric vehicle (BEV) and fuel cell electric
vehicle (FCEV) fast charging with a charging window of 1 h under scenarios
with different carbon prices, H2 demands, and flexible electric vehicle (EV)
capacities. a The overall H2 demand scale is 1 Mtonne/year. b The overall H2

demand scale is 2 Mtonne/year. c The overall H2 demand scale is 4 Mtonne/year.
The panels from left to right in each subfigure show carbon prices of $1000/tonne,
$100/tonne, and $0/tonne. The blue lines with circle markers denote the cost
reduction due to the flexibility of FCEVs. The orange, green, and purple lines
indicate the flexibility values of BEVs without BEV degradation (marked as “BEV no

Degradation”), with BEV degradation combining 4 charging-time protocols (Sup-
plementary Fig. 8) in the same proportion (marked as “BEVAverage”), andwith BEV
degradation under extremely fast charging in only 10min (marked as “BEV
Extreme”), respectively. Deferrable demand here is the flexible consumption
capacity of hydrogen or electric power for EVs, measured by the maximum
deferred capacity per zone in tonne/hour for FCEV and MW for EV. A larger
deferrable demandmeans a larger level of electric vehicle flexible charging. LHV is
the abbreviation of lower heating value.
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the FCEV flexibility value interacts with the hydrogen storage process
and is attached to the flexibility of the supply chain.

The results show that ruling out hydrogen production from NG
with CCS could more notably influence the flexibility value from BEVs
than that from FCEVs (Fig. 4 and Supplementary Figs. 4 and 5, respec-
tively). The systemcost reductions resulting fromFCEVflexible charging
under both hydrogen pathways are similar, while those of BEVs under
the electrolytic hydrogen-only pathway are remarkably less, suggesting
reduced flexibility values of BEVs, especially when the H2 demand is
higher. The high sensitivity of the BEV flexibility value to the hydrogen
pathway can be explained by the stronger coupling of the hydrogen
supply chain to the power system, through electrolysis, and the sub-
stitution effect of the flexible hydrogen supply chain to BEVs. When the
electrolytic hydrogen-only pathway is adopted, the hydrogen supply
chain becomes more greatly coupled with the power system through
electrolysis and provides higher flexibility. In the coupled system, less
expensive hydrogen storage could lower the cost of electricity storage
and encourage VRE use, substituting the role of flexible BEV charging.

Effects of the service temperature on EV flexibility values
In practical cases, FCEVs and BEVs are used at various environmental
temperatures. For example, in our case study focused on the U.S.
Northeast region, where the annual average temperature ranges
between 8–15 °C, the local temperature hovers around 25 °C for
approximately a quarter of the year. For more than half the year, it
remains near 10 °C, andoccasionally is below0 °Cduringwinter. Based
on the BEV Average case and the electrolytic-only hydrogen pathway,
the flexibility values of BEVs and FCEVs under different temperatures
(i.e., 25 °C, 10 °C, and 0 °C) were analyzed considering BEV battery
degradation.

The flexibility values of BEVs significantly decrease with decreas-
ing temperature under all carbon prices and H2 demand scenarios
(Fig. 5). The reduced flexibility value couldmainly be attributed to the
higher cost induced by faster battery degradation at a lower tem-
perature. The battery simulation results show that the battery lifetime
using 60-min charging is reduced from approximately 3000 cycles to
approximately 1400 cycles when lowering the temperature from 25 °C
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Fig. 3 | Net values of flexible battery electric vehicle (BEV) and fuel cell electric
vehicle (FCEV) normal chargingwith a chargingwindowof 6 h under scenarios
with different carbon prices, H2 demands, and flexible electric vehicle (EV)
capacities. a The H2 demand is 1 Mtonne/year. b The H2 demand is 2 Mtonne/year.
c The H2 demand is 4 Mtonne/year. The panels from left to right in each subfigure
show carbon prices of $1000/tonne, $100/tonne, and $0/tonne. The blue line with
white circles denotes the cost reduction due to the flexibility of FCEVs, while the

orange line denotes that of BEVswithout considering degradation. The system cost
reduction of BEVs considering degradation given a $50–$100/kWh battery repla-
cement cost is marked as “BEV $50-$100/kWh”, with a yellow shadow, while the
scenarios considering $100-$150/kWh and $150-$200/kWh battery replacement
costs are marked as “BEV $100-$150/kWh” with a purple shadow and “BEV $150-
$200/kWh” with a green shadow, respectively. LHV is the abbreviation of lower
heating value.
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to 10 °C (for more information on battery degradation, see “Degra-
dation of BEVs with flexible charging” section and Supplementary
Table 6). As temperatures decrease, the accelerated battery degrada-
tion diminishes the benefits of BEVs as flexibility providers. The dis-
parity in BEV flexibility values between 10 °C and 0 °C is more
pronounced than that between 25 °C and 10 °C, due to the nonlinear
increase in degradation costs as temperatures drop. When the tem-
perature is reduced to0 °C, FCEVsoutperformBEVs inmore caseswith
a deferrable demand over 10 tonne H2/hour due to the particularly
rapid battery degradation and the corresponding increased cost at this
temperature. The clear reduction in BEV flexibility values with
decreasing temperatures indicates that for practical applications
aiming to enhance BEV flexibility, effective thermal management
should be adopted to prevent BEV batteries from operating and
charging at low temperatures.

Degradation of BEVs with flexible charging
As illustrated in Fig. 1b, a trade-off between the BEV charging cost and
degradation cost exists. In addition, there is also contradiction
between system benefits and personal profits. In other words, fast
charging might be profitable from a system perspective, whereas it is
not beneficial to BEV owners. The costs of BEV flexible charging and
battery degradation are examined below.

With an increasing VRE penetration rate, various BEV charging
protocols are often implemented based on the real-time power system
load and the requirements of users over awide range of environmental

temperatures. In terms of the charging cost of BEVs and system ben-
efits, faster charging is expected to be beneficial57. However, it is
generally acknowledged that battery charging strategies and the ser-
vice temperature impose considerable effects on battery degradation.
Fast charging often accelerates the degradation of batteries and
shortens their lifetime, resulting in additional costs. Therefore, the
trade-off between the charging cost and battery degradation must be
addressed when evaluating the flexibility values of BEVs. In this sec-
tion, we investigate the degradation and cycle life of batteries under
different charging protocols applied to lithium-ion batteries at various
environmental temperatures, which is simulated via PETLION58, a Julia
implementation of the PET-based model (see “Methods” section).

Capacity degradation trajectories of lithium-ion batteries under
various charging protocols (Supplementary Fig. 8 and Supplementary
Note 1) and service temperatures are shown in Fig. 6. The intersection
of a given curve and the X-axis denotes the battery cycle life. The
model-simulated battery cycle life at 25 °C is similar to the experi-
mental data retrieved from Severson et al.59, Attia et al.60, and other
measurement results mentioned in Wen et al.61. Hence, the obtained
cycle life used for the inputs of theDOLPHYNmodel could be regarded
as dependable. As shown in Fig. 6, the battery cycle life notably
decreased with decreasing charging time. The gaps between the two
curves at the same temperatures (lines with the same colors) illustrate
that the battery cycle life sharply decreased with decreasing charging
duration. At 25 °C, the cycle life of cells in the extreme cases is reduced
by approximately 90% fromaverage case levels. The reduction ratios at

Fig. 4 | Impact of the deferrable demand on the variation of system
cost reduction, variable renewable energy (VRE) capacity, combined-cycle gas
turbine (CCGT) capacity, hydrogen storage capacity and battery storage
capacity when the carbon price is $100/tonne. The blue bars and green bars
denote the mixed hydrogen pathway (using both electrolysis and steam methane
reformer (SMR) technology with carbon capture and storage (CCS)) and the

electrolytic-only pathway, respectively. The panels from left to right show changes
in the system cost reduction, VRE capacity, CCGT capacity, hydrogen storage
capacity, and battery storage capacity, in sequence. The bars from top to bottom
denote the H2 demand of 1 Mtonne/year, 2 Mtonne/year, and 4 Mtonne/year,
respectively. BEV is short for battery electric vehicle while FCEV is short for fuel cell
electric vehicle.
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10 °C and 0 °C are approximately 93% and 99%, respectively. In sum-
mary, batteries dramatically degrade with increasing charging speed
(see Supplementary Note 2 and Supplementary Fig. 9 for detailed
analyses). This finding explains the notable reduction in the flexibility
value after considering battery degradation in the “BEV Extreme”
case (Fig. 2).

The results show that extremely fast charging might not be ben-
eficial for improving system flexibility and reducing cost after con-
sidering the battery degradation of BEVs. Even though the reduced
charging time seems to reduce the charging cost andmake BEVsmore
operationally flexible, the significantly elevated degradation cost may
offset the provided advantages or may even surpass them. As a result,
BEVs may even attain a smaller flexibility value under the scenario of
extremely fast charging (Fig. 2). Therefore, the importance of battery
degradation and the corresponding cost should be considered when
evaluating the flexibility value of BEVs. In addition, charging optimi-
zation that balances the charging cost (or charging speed) and battery
degradation is required to achieve higher flexibility values.

By comparing battery degradation using the same charging pro-
tocol (same line style) at different temperatures (Fig. 6), it can be
observed that a lower temperature is adverse to battery capacity
retention, especially in the extreme case (solid lines in Fig. 6). In this
case, the battery cycle life at 10 °C is 52.4% smaller than that at 25 °C,
while the reduction at 0 °C is 86.8% of that at 10 °C. In the average
cases, the battery cycle lives at 10 °C and 0 °C are approximately 62.5%
and 44.1% of those at 25 °C. Particularly, in contrast to the average case
at 25 °C, the battery lifetime reduction in the extreme case at 0 °C
reaches 99.4%. This accounts for the remarkable decrease in the BEV
flexibility value at a lower temperature (Fig. 5).

Discussion
In this work, we evaluated and compared the values of BEV and FCEV
flexible charging in terms of system cost reduction. A cross-scale
methodological framework integrating macro-level and micro-level
models was developed to compute the system cost, considering the
battery degradation cost. At the macro level, the DOLPHYN model,
which couples various sectors, was applied to compute the minimum
system cost, after optimizing decision variables related to power and
hydrogen generation, storage capacity, and hydrogen transmission. At
the micro level, battery degradation and cycle life under various
charging-duration constraints and temperatures were analyzed and
calculated through a PET-based model. Then, the degradation results
and related cell parameters were used as inputs of the DOLPHYN
model to compute the system cost involving BEV degradation.

The results show that the flexibility value of BEVs significantly
decreased by more than 4.7% after considering battery degradation.
With battery degradation cost involved, whether BEVs or FCEVs is the
better choice in view of their flexibility values depends on the dec-
arbonization level, deferrable demand, H2 demand, charging speed,
service temperature, and policies such as the hydrogen pathway and
carbon price.

Fast charging and lower operating and charging temperatures
significantly diminish the flexibility value of BEVs. As a result, under
scenarios with extremely short charging durations and low tempera-
tures, FCEVs are more promising flexibility providers, which is pri-
marily due to the substantially reduced battery lifespan in such
conditions. Furthermore, escalating battery replacement costs can
also reduce BEV flexibility value. Typically, battery replacement costs
remain relatively consistent over time. To ensure a prolonged battery

Fig. 5 | Net values offlexible fuel cell electric vehicle (FCEV) andbattery electric
vehicle (BEV) fast charging for the different carbon prices and deferrable
demands under the various temperatures. The cost reductions of FCEVs and

BEVs in the “BEV Average” case at 25 °C, 10 °C, and 0 °C, are shown by bars of
different lengths and colors. The corresponding color legend is provided on the
right. LHV is the abbreviation of lower heating value.
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lifespan and greater BEV flexibility, it’s advisable to avoid conditions of
low temperatures and fast charging. However, this is not always fea-
sible. Thus, advancements in battery technology, particularly con-
cerning charging and thermal performance, are important to bolster
BEVs’ relative advantages as flexibility provider, since the lifespan and
associated degradation costs of BEV batteries are significant when
assessing the flexibility value. When the H2 demand is high (2 or 4
Mtonne/year) and the carbon price is low ($100/tonne or $0/tonne),
FCEVs show more potential to providing essential flexibility. In most
other scenarios, BEVs tend to have a superior flexibility value. Higher
carbon prices, which are often associated with medium to deep dec-
arbonization levels, promote a larger penetration of VRE, increased
battery storage capacity, and reduced reliance on CCGT for power
generation. This surge in flexibility requirements then favors BEVs.
HigherH2 demands lead to a tighter integration between the hydrogen
and power sectors. Consequently, in such scenarios, the flexibility
value of BEVs significantly decreases, making them less competitive
compared to FCEVs. Regarding the H2 generation pathway, when the
mixed hydrogen pathway is replaced by the electrolytic hydrogen-only
pathway, the flexibility value of BEVs is more evidently reduced, on
account of the stronger coupling of the hydrogen supply chain to the
power system throughelectrolysis due tohigherhydrogen storage and
less battery storage. Then, FCEVs could provide a greater flexibility
value than BEVs at lower carbon prices and higher H2 demands (Fig. 4).

These are how energy policies greatly influence the comparative
advantages of the two transportation electrification pathways in terms
of flexibility values. In the current and near termswith relatively less H2

demands, BEVs are expected to still dominate because they offer most
of the required flexibility value, while in the long termwhen the carbon
price and hydrogen demand are higher, FCEVs might be more pro-
mising even with the battery replacement cost reduced to $50/kWh.

To further increase the flexibility value of BEVs, the battery life-
time should be notably improved in the future. Twofold extended
lifetime due to technological improvement may offer more flexibility
by an additional 4% system cost reduction. To this end, when BEVs are
connected to power grids, smart charging or even vehicle-to-grid

(V2G) systems should be developed to meet system integration and
demandby rationally scheduling BEV charging under optimal charging
protocols. Within this context, it is essential to achieve a higher flex-
ibility value and lower system cost by adaptively optimizing charging
strategies to address the trade-off between the short charging-
duration demand and battery degradation and to forth a compro-
mise between systematical cost and BEV owner cost, in conjunction
with intelligent thermal management to avoid charging at lower
temperatures.

This work provides guidance for priority selection between BEVs
and FCEVs to meet the necessary flexibility requirements of the VRE
system with the least system cost, in line with the current society,
technology development, and policies. The effects of temperature and
charging durations on BEV flexibility value are separate. How the
coupling effects of the two factors are not involved in this work. A
future work is to develop models and algorithms that integrate tem-
peratures and charging times to evaluate EV flexibility values. In
addition, investigation on the depth of battery charging and dischar-
ging and its influence on BEV flexibility is considered as another
future work.

Methods
DOLPHYN model
The DOLPHYN model62 (see “Code Availability”) simultaneously opti-
mizes infrastructure investments and operations across both elec-
tricity and H2 supplies to determine the lowest total system cost to
meet electricity and H2 demands. Optimization is achieved while
adhering to a variety of technological and system operation con-
straints enforced over representative periods (weeks in this study) at
an hourly resolution as well as policy factors such as CO2 prices. The
DOLPHYN model can be configured to simulate the deployment of a
variety of generation technologies, storage technologies, and trans-
mission tomeet the hourly electricity and H2 demands in each defined
zone over the modeled representative periods. The developed model
can incorporate a wide range of power and H2 technology options,
includingVREgeneration, carbon captureand storage (CCS) applied to
power and H2 generation, and trucks (gaseous and liquid) and pipe-
lines for H2 transportation. Power systems and the H2 supply chain are
coupled through electrolysis and power generation technologies
fueled by H2, as well as electricity consumption in H2 compression/
liquefaction.

The operational constraints of the model, implemented at an
hourly resolution, include a) the supply-demand balance for H2 and
electricity in each zone, b) inventory balance constraints for stationary
storage technologies, c) inventory balance constraints related to
trucks at a given location (any of the zones and routes, including
arriving, departing or in transit trucks) and considering different states
(empty and full), and d) the linearized unit commitment for conven-
tional thermal power generation technologies and natural gas-based
H2 production technologies. We model these operational constraints
at an hourly resolution over a set of representative weeks selected by
applying time-series clustering to annual demand and VRE resource
profile data to approximate annual system operations. Time-domain
reduction preserves the chronological variability of energy demands
and VRE resource availability, as well as the correlations among them,
while reducing the model size to remain computationally tractable.
Process-level CO2 emissions are penalized with a price on emissions in
both sectors.

A greenfield 2050 systemwith the exceptionof existing interzonal
transmission, hydropower generation (both domestic and imported
from Canada) and pumped hydro storage capacity in the US northeast
was modeled in this study. More details on the system settings can be
found in He et al.63.

Considering the fact that some of the parameters are integer in
nature, the optimization problem should be solved by mixed integer

100 101 102 103

Cycle number

0.8

0.85

0.9

0.95

1
N

or
m

al
iz

ed
 c

ap
ac

ity
25°C Average
25°C Extreme
10°C Average
10°C Extreme
0°C Average
0°C Extreme

Fig. 6 | Battery degradation and lifetime under the different temperatures and
charging protocols. “Average” denotes average battery lifetimes using four char-
ging protocols with charging times of 60min, 45min, 30min, and 15min (see
Supplementary Table 6). “Extreme” denotes extremely fast charging with only a
10min duration. The blue, red, and green lines indicate battery degradation at
25 °C, 10 °C, and 0 °C, respectively. The solid lines denote the extreme cases, while
the dotted-dashed lines denote the average cases. When at 25 °C, “Average” is
associated with “BEV Average” case in Fig. 2, while “Extreme” is corresponding to
“BEV Extreme” case in Fig. 2 (BEV is short for battery electric vehicle). The battery
cycle life defined here is the cycle number corresponding to a reduction in the cell
capacity to 80% of the nominal capacity62.
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programming (MIP). However, our model size is too large to be opti-
mized with high efficiency using MIP. Hence, to improve computa-
tional tractability, weused prudent linearization to accelerate problem
solving, which was validated in our previous work49,63.

Flexibility value calculation
The flexibility values of BEVs and FCEVs are calculated based on the
objective values of the DOLPHYN model. The minimum system costs
under the scenarios without flexible EV charging (Y0), with flexible BEV
charging considering theBEVdegradationcost (YBEV), withflexible BEV
charging but without considering the BEV degradation cost (YBEVND),
and with flexible FCEV charging (YFCEV) are defined as follows:

Y0 = min
x2Φ0

CCAP xð Þ+COP xð Þ+CEM xð Þ� �
ð1Þ

YBEVND = min
x2ΦBEV

CCAP xð Þ+COP xð Þ+CEM xð Þ� �
ð2Þ

YBEV = min
x2ΦBEV

CCAP xð Þ+COP xð Þ+CEM xð Þ+CDEG xð Þ� �
ð3Þ

Y FCEV = min
x2ΦFCEV

CCAP xð Þ+COP xð Þ+CEM xð Þ� �
ð4Þ

where Ф0, ФBEV, and ФFCEV denote the operational and policy con-
straints of DOLPHYN including no flexible EV charging constraints,
flexible BEV charging constraints, and flexible FCEV charging con-
straints, respectively, CCAP, COP, CEM, and CDEG are the functions of the
capital cost, operational cost, emission cost, andBEVdegradation cost,
respectively, and x denotes the decision variables of DOLPHYN,
including planning and scheduling variables of the various resources in
electricity and hydrogen supply chains.

The flexibility values of FCEVs and BEVs with and without con-
sidering BEV degradation, indicated by VFCEV, VBEV, and VBEVND, are
calculated as the differences between the minimum system cost
without flexible charging (Y0) and the correspondingminimum system
cost with flexible charging:

VBEVND = Y0 � YBEVND ð5Þ

VBEV = Y0 � YBEV ð6Þ

V FCEV = Y0 � Y FCEV ð7Þ

It is noted that the flexibility values of BEVs and FCEVs are ana-
lyzed preconditioned on the existence of BEV and FCEV fleet and
corresponding charging/refueling infrastructure in the future. The
cost of hydrogen refueling infrastructure depends on the total FCEV
refueling demand, rather than the flexible part of the refueling
demand. From a marginal perspective we used in this study, flexibly
operating the refueling infrastructure does not directly add to the
refueling infrastructure capacity or cost. Hence, the cost of hydrogen
refueling infrastructure is not a significant factor (or cost) when
assessing the flexibility of FCEVs, since this cost is fixed and insus-
ceptible to the flexible scheduling of FCEVs.

Degradation cost calculation
The degradation cost of the BEV battery,CDEG ($/kWh), is calculated by
dividing the capital/replacement cost of the battery, Cbat ($/kWh), by
the cycle life Lbat (Supplementary Table 6), as follows:

cDEG =
Cbat

Lbat
ð8Þ

Under the various base electrode thickness and porosity sce-
narios, we assume a $200/kWh capital cost of battery replacement25.
In the other cases, we calculate an additional unit capacity battery
capital cost based on the required extra active materials, the price of
active materials, and the battery capacity change (Supplementary
Table 5).

Extra degradation of FCEV flexible charging was not considered
since the hydrogen quality and refueling pressure of FCEVs are fixed
andunaffectedby these variables. Thedemanddeferral shifts the FCEV
refueling time only; it does not shorten or extend it. The lifetimes of
electrolyzers and fuel cells are simplified as a fixed parameter (e.g., the
lifetime of the fuel cell is approximated as 10 years), as shown in
Supplementary Table 2.

Flexible charging modeling
Wemodel EV flexible charging as the deferrable demand, which can be
delayed after arrival. In other words, the deferrable demand is the
unserved demand in the following time window. It is readily compre-
hensible for BEV charging. Under this condition, we assume the EV
chargers are enough and available. FCEV refueling deferral can be
achieved through mechanism design, such as time-variant hydrogen
prices or coupons64. As the prices of gas stations can be checked and
compared on apps likeGoogleMaps, it is easy to provide incentives for
refueling deferral by sending customers the hydrogen refueling price
information, including the potential cost savings of refueling deferral,
through such apps. Although a vehicle might not be at the refueling
station, the FCEV refueling can be scheduled through the interaction
between the APPs and the vehiclewith the development of the internet
of vehicles. From a marginal perspective, there are always some vehi-
cles in a large EV fleet that need to be charged or refueled. Conse-
quently, the demands for FCEV refueling and BEV charging exist at all
times, whether on the road or in parking lots. The potential incentives
or programs for drivers as well as their willingness to shift BEV char-
ging and FCEV refueling are similar despite the difference in BEV
charging time and FCEV refueling time64,65. Drivers should tend to
charge or refuel EVs during the period when the electricity or hydro-
gen prices are at their lowest within a time window (1 h or 6 h in this
work). The time window represents the longest time the EV charging/
refueling demands can be shifted, or in other words, the maximum
time EVs canwait to be fully charged or refueled66. Therefore, the time
windows for FCEV refueling and BEV charging are treated similarly.

The maximum deferrable demand is a fraction of the available
capacity in a particular time step. For the marginal perspective, the
maximum scale of deferrable EV demand for each zone is kept within a
relatively small range (0 to 20 tonne H2 per hour or equivalent MW in
LHV, at a step of 5) in our analysis.

The total cumulated deferred charging demand at time t, denoted
by xFC S

y,z,t , can be obtained by deducting the served charging demand
xFC C
y,z,t from and adding the delayed charging demand xFC D

y,z,t to the
cumulated deferred charging demand in the last time step as:

xFC S
y,z,t = xFC S

y,z,t�1�xFC C
y,z,t + xFC D

y,z,t ð9Þ

where y and z denote the vehicle type and location of the EV charging
demand, respectively. The flexible charging of either BEVs or FCEVs is
characterized by the maximum deferrable demand capacity at a par-
ticular time step t, Dmax

y,z,t , and the maximum time this demand can be
delayed, defined by parameter Ty,z , as follows:

xFC D
y,z,t ≤Dmax

y,z,t ð10Þ

Xt +Ty,z

τ = t + 1

xFC C
y,z,τ ≥ xFC S

y,z,t ð11Þ
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In this work,Ty,z is set to one or six hours, andDmax
y,z,t ranges from0

to 20 tonneH2/hour or equivalentMW in LHV. The above formulations
are part ofФBEV and ФFCEV, not Ф0.

The electricity demand data are based on 2018 NREL electrifica-
tion futures study load projection for 205067. While the H2 demands
are developed based on available fuel consumption data, hourly
refueling profiles, and the relative penetration of FCEVs68 (Supple-
mentary Fig. 3).

Hydrogen supply chain and balance constraints
The model for hydrogen supply chain scheduling is involved as an
essential part of the whole DOLPHYNmodel, incorporating all steps in
the hydrogen supply chain including hydrogen production, compres-
sion, transmission, and storage, as shown in Supplementary Fig. 2.
Almost all critical technological options are considered in each step.

The total cost of hydrogen supply chain involves the cost of
hydrogen generation, conversion, transmission, and storage. For
hydrogen production, electrolyzer, SMR with and without CCS are
modeled. Regarding hydrogen transmission, gas/liquid trucks and
pipelines for flexible transmission are modeled.

The hydrogen supply chain is scheduled following the hydrogen
balance constraint. For a specific zone at a moment, the amount of H2

production hGEN
z,t plus the amount of transported H2 (positive for

imports) hTRA
z,t and the amount of H2 discharged from storage hDIS

z,t
should be equal to the amount of H2 charged to storage hCHA

z,t plus the
H2 demand Dz,t and minus the lost demand hLOS

z,t .

hGEN
z,t +hTRA

z,t +hDIS
z,t =hCHA

z,t +Dz,t � hLOS
z,t ð12Þ

Porous electrode theory-based battery degradation model
The PETmodel is themostwidely used first-principles electrochemical
model that describes many of the physicochemical details of lithium-
ion battery dynamics58,69. In the PET model, each porous electrode
contains an electrically conductive solid phase in close contact with a
liquid electrolyte, and the two phases are coupled via interfacial elec-
trochemical kinetics58,70. Lithium ions are dynamically transported
between the active particles in the electrolyte. Specifically, the main
governing equations of the PETmodel for charge conservation in solid
electrodes and the electrolyte can be expressed as follows:69,70

∇ � ðσeff
s ∇ϕsÞ= j ð13Þ

∇ � keff
e ∇ϕe

� �
+∇ � keff

e ∇lnce
� �

= � j ð14Þ

where σeff
s is the effective conductivity of the electrodes, keff

e is the
effective kinetic rate, ce is the concentration of the electrolyte, ϕs and
ϕe are the solid and electrolyte potentials, respectively, and j is the
volumetric current density.

The governing equations for species conservation of the elec-
trolyte and active material particles can be expressed as:69,70

∂ εce
� �
∂t

=∇ � Deff
e ∇ce

� �
+
1� t +

F
j ð15Þ

∂cs
∂t

=
1
r2

∂
∂r

ðDeff
s r2

∂cs
∂r

Þ ð16Þ

where cs is the concentration of solid particles, t + is the transference
number, F is Faraday’s constant, r is a one-dimensional spatial variable,
and Deff

e and Deff
s are the effective diffusion coefficients of the

electrolyte and electrodes, respectively.
In termsof battery degradationmodeling, thiswork uses the same

degradation modeling approach as that of Yang et al.70, which

considers lithiumplating as side reactions in the anode. Therefore, two
electrochemical reactions occur in the anode, and the volumetric
current density j comprises the transfer current density of lithium
intercalation and lithium deposition reactions.

The key parameters of the above electrochemical model used for
lithium-ion batteries with chemistries of lithium-manganese-cobalt-
oxide (NMC)/graphite in this work can be found in the Base columnof
Supplementary Table 5. This work uses PETLION58—a Julia imple-
mentation of the above electrochemical model based on the finite
volume method—as a battery simulator to compute the degradation
cost of BEVs considering different charging protocols. The cells are
simulated to be charged from 30% state of charge (SOC) to 80% SOC
using different charging protocols under various time constraints.
More details on the PET-based electrochemical model and its
software implementation can be found in Berliner et al.58 and
Fuller et al.69.

Notably, the PET model here is employed for battery cells. To
obtain the lifetime of battery modules, a conversion coefficient56 is
adopted. This coefficient can be calculated based on multiphysical
modeling involving electrochemical and series-parallel circuit models
to obtain the relationship between the cycle life of battery cells and
modules. The conversion coefficient used in this work is 0.44. More
details can be found in Xia et al.71.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its supplementary information files.

Code availability
The code for the macro-level DOLPHYNmodel generated in this study
is available at https://github.com/macroenergy/DOLPHYN /. The code
for the micro-level PET-based model to simulate battery degradation
and obtain battery lifespan is available at https://cloud.tsinghua.edu.
cn/d/f97ff4edb7384be49e13.
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