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Abstract: Neuropathic pain (NP) is caused by a lesion that triggers pain chronification and central 
sensitization and it can develop in a different manner, dependent of age. Recent studies have 
demonstrated the efficacy of transcranial direct current stimulation (tDCS) for treating NP. Then, we 
aimed to investigate the effects of tDCS and BDNF levels in neuropathic pain rats in development, 
with 30 days old in the beginning of experiments. Eight-five male Wistar rats were subjected to chronic 
constriction injury. After establishment of NP, bimodal tDCS was applied to the rats for eight 
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consecutive days, for 20 minutes each session. Subsequently, nociceptive behavior was assessed at 
baseline, 14 days after surgery, 1 day and 7 days after the end of tDCS. The rats were sacrificed 8 days 
after the last session of tDCS. An increase in the nociceptive threshold was observed in rats in 
development 1 day after the end of tDCS (short-term effect), but this effect was not maintained 7 days 
after the end of tDCS (long-term effect). Furthermore, brain derived neurotrophic factor (BDNF) levels 
were analyzed in the frontal cortex, spinal cord and serum using ELISA assays. The neuropathic pain 
model showed an effect of BDNF in the spinal cord of rats in development. There were no effects of 
BNDF levels of pain or tDCS in the frontal cortex or serum. In conclusion, tDCS is an effective 
technique to relieve nociceptive behavior at a short-term effect in neuropathic pain rats in development, 
and BDNF levels were not altered at long-term effect. 

Keywords: brain derived neurotrophic factor; development; neuropathic pain; noninvasive brain 
stimulation; transcranial direct current stimulation 
 

1. Introduction 

Neuropathic pain (NP) is defined as pain that arises as a direct consequence of an injury or disease 
that affects the somatosensory nervous system [1] due to multiple altered mechanisms, such as 
functional reorganization and hyperexcitability of the somatosensory and motor cortices [2]. Although 
uncommon, NP has been known to develop in young patients [3], and aging is an important factor for 
its development [4]. 

Additionally, several studies showed that the application of weak electrical currents to the cortex 
alleviates neuropathic pain symptoms [2,5]. Transcranial direct current stimulation (tDCS) is a 
noninvasive, safe and well-tolerated technique [6,7], consisting of the application of a weak electric 
current to the cortex [8]. tDCS has been shown to modify cortical excitability because it provides 
sufficient electrical current to the cortical and subcortical areas [8–10] and its effects have been 
described on NP in clinical [11] and preclinical studies [2,12]. 

Furthermore, several studies have shown that tDCS applied to the primary motor cortex or frontal 
cortex significantly reduces pain [13]. Some studies have described that the analgesic effect of tDCS 
is associated with a reduction in interleukin (IL)-1β and IL-10 levels in the spinal cord [2] and a 
decrease in brain-derived neurotrophic factor (BDNF) levels in the spinal cord and brainstem [14]. 
BDNF plays a crucial role in neuroplasticity [15] and is also related to the effects of tDCS during NP 
in some central nervous structures [16–18]. In addition, BNDF plays an important role in the 
development [19]. Low rates of age-related BDNF secretion can lead to synaptic connectivity 
alterations and to degeneration [20]. 

The effects of tDCS in the BDNF levels were describe in adult and/or older rats with neuropathic 
pain (55 to 65-day-old or (200–250 g or 260–320 g) in the beginning of experiments [12,21–23] and 
with inflammatory pain, in a previous study of our group [24]. However, despite of our knowledge, 
this is the first study that aimed to understand the effects of tDCS in rats in development (30-day-old 
(75–100 g) in the beginning of experiment) induced with NP through chronic constriction injury by 
evaluating nociceptive behaviour using the von Frey test and BDNF levels in the CNS structures and 
serum. In this study, we hypothesize that rats in development with neuropathic pain will develop 
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decreased nociceptive threshold and that tDCS treatment will increase the nociceptive threshold, at 
short and long-term effect, mediated by a reduction in the BDNF levels.  

2. Methods 

2.1. Animals 

Eighty-five male Wistar rats aged 30-day (75–100 g) were provided by the Central Vivarium of 
Federal University of Pelotas (UFPel). Before the experiments, the rats were acclimatized to the 
maintenance room for 4 days until they reached 30-day-old. They were randomly grouped by weight 
into three main groups (control, sham-lesion (SL) and NP) and kept in three to four in cages covered 
with wood shavings (65 × 25 × 15 cm). The animals were kept in a controlled environment with a 
light-dark cycle of 12 h at 22 ± 2 °C with water and food ad libitum. The Ethics Committee on Animal 
Experimentation approved all experiments and procedures (CEEA #10480-2014) that were performed 
following the Guide for Care and Use of Laboratory Animals, the Brazilian law 11.794/08 and 
ARRIVE guidelines, which establishes procedures for the scientific use of animals. 

2.2. Mechanical hypersensitivity test 

An automatic von Frey anaesthesiometer (Insight, São Paulo, Brazil) was used to detect 
nociceptive threshold. A day prior to the test, the rats were placed in the apparatus made of 
polypropylene cages (12 × 20 × 17 cm) and habituated for 20 min [25]. The test consists of applying 
force to the right paw of the rats to detect the threshold at which the paw was withdrawn, which is 
defined as nociceptive threshold. Pressure intensity was automatically recorded after paw  
withdrawal [26]. To the test, the threshold of each rat was verified three times and recorded in grams, 
and the average was used as a behavioral response. 

2.3. Neuropathic pain model  

Before NP induction, all rats were subjected to the von Frey test (baseline) to evaluate the 
homogeneity of nociceptive threshold. To induce NP, chronic constriction injury (CCI) of the sciatic 
nerve was used according to the model described by Bennett and Xie [27]. Briefly, rats were 
anesthetized with ketamine (80 mg/kg) and xylazine (10 mg/kg). The right leg was shaved in the 
procedure region, and skin antisepsis was performed using 2% iodine-alcohol. An incision was then 
made to expose the sciatic nerve, and three ligatures without impeding epineural blood flow were tied 
(Chromic Catgut 4.0) at 1 mm intervals. Only one researcher executed the ligatures to ensure equal 
constriction in all rats. Subsequently, the skin was sutured with Mononylon 4.0. For sham surgery, the 
sciatic nerve was exposed during the procedure, but the nerve was not ligated. Rats in the control group 
were not subjected to any surgical procedure. All animals that underwent the surgical procedure 
received analgesia by subcutaneous injection of 10 mg/kg of tramadol [4] immediately at the end of 
the surgery. 
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2.4. Experimental procedures and tDCS 

NP establishment was confirmed by a nociceptive test 14-day after surgery. Rats were then 
subdivided into the following subgroups: Control (C); control + sham-tDCS (C + sham-tDCS); control 
+ tDCS (C + tDCS); SL; SL + sham-tDCS; SL + tDCS; NP; NP + sham-tDCS; and NP + tDCS (Figure 
1). The rats were then subjected to tDCS treatment. tDCS consisted of a 20-min session of bimodal 
tDCS for 8 days, as described by Lopes et al. [22] and Santos et al. [28]. The battery-powered 
stimulator emitted a constant direct current of 0.5 mA to the electrodes. To ensure the adherence of the 
electrodes, the heads of CCI and sham rats were shaved. For sham stimulation, the electrodes were 
placed in the same position as the active tDCS, but the electrodes were turned off. Control rats were 
not subjected to any procedure. Subsequently, nociceptive threshold was verified 1 day after the last 
tDCS session (short-term effect) and 7 days after the last tDCS session (long-term effect). Eight days 
after the end of tDCS, the rats were killed by decaptation, and the CNS structures and total blood were 
collected (Figure 2). The frontal cortex, spinal cord and total blood samples were collected for 
biochemical analyses. Total blood was centrifuged at 3000 g for 15 min to obtain serum. All structures 
were kept frozen at –80 °C until processing. 

 

Figure 1. Groups of research. 

 

Figure 2. Timeline of experiments. 

2.5. BDNF assays 

Only one researcher executed the biochemical analyses, and the groups of research were blinded 
for this one person. BDNF levels were measured using a sandwich ELISA with monoclonal antibodies 
specific for BDNF (R&D Systems, Minneapolis, MN, USA). Bradford’s method was used to 
determine the total protein, using bovine serum albumin as the standard [29]. Results are expressed as 
pg/mg protein for central nervous structures and as ng/ml for serum. 
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2.6. Statistical analyses  

A generalized estimating equation followed by a Bonferroni correction was used to analyze the 
results of the behavioral tests, considering pain measured at different times and tDCS as independent 
variables. For biochemical analyses, a two-way analysis of variance followed by Tukey was performed 
to compare the biochemical data between groups, considering pain and tDCS as independent variables. 
Data were expressed as the mean ± standard deviation of the mean (S.D.) using an alpha of 5% and 
considered significant at P ≤ 0.05. SPSS (version 20.0) for Windows was used to process results from 
behavioral tests, and GraphPad Prism 8.4.3 was used to perform results from biochemical analyses.  

3. Results 

3.1. Nociceptive threshold 

Regarding the nociceptive behavior test, the generalized estimation equation presented a time 
effect (Wald χ2 = 2.010.04; 3, P < 0.001) characterized by a significative difference between basal, 14 
days after surgery, 1 day and 7 days after the end of tDCS verifications, except comparing 1 day and 
7 days after tDCS treatment (P = 0.191). A group effect (Wald χ2 = 1.455.90; 8, P < 0.001) was 
observed comparing NP groups (exposed to the CCI model) with the C and SL groups (P < 0.0001) 
and with NP + tDCS group (P = 0.007). Additionally, it was observed an interaction time x group 
(Wald χ2 = 1.709.97; 24, P < 0.001). At baseline, there were no significant differences between the 
groups (Wald χ2 = 12.03; 8, P = 0.150). At 14-day after surgery, the rats demonstrated increased 
threshold in the paw withdrawal test compared to the baseline measure, since they are in development 
(P < 0.001) and the three NP groups showed a significant increase in the nociceptive behavior (lower 
threshold) compared to all C and all SL groups (P < 0.001) (Figure 3, panel A). The treated rats (NP + 
tDCS) showed a significant increase in the nociceptive threshold at 1 day after the end of treatment 
compared to NP (P = 0.012) and NP + sham-tDCS (P = 0.002) groups, and NP showed a similar effect 
of NP + sham-tDCS group (P > 0.05), suggesting an anti-hyperalgesic effect. In addition, it was 
observed a decreased effect of C + tDCS (P = 0.001) and SL + tDCS (P = 0.039) compared to C + 
sham-tDCS (Wald χ2 = 1.429.56; 8, P < 0.001). However, 7-day after the end of tDCS, NP + tDCS 
group showed significant increase compared to NP group (P < 0.001), but this effect was similar to the 
sham effect (NP + sham-tDCS, P > 0.05) (Wald χ2 = 928.06; 24, P < 0.001) (Figure 3, panel B). 

3.2. BDNF analyses 

For biochemical analyses, only SL and NP rats were included, as the control and sham groups did 
not show differences in nociceptive threshold at the 7 days after tDCS treatment according to the von 
Frey test (a day prior rats being sacrificed). In the frontal cortex of rats in development exposed to the 
pain model BDNF levels did not show a statistically significant difference between the groups for pain 
(F(1,29) = 1.635, P = 0.211) or tDCS (F(2,29) = 1.272, P = 0.295), indicating that pain and tDCS treatment 
could not modify frontal cortex BDNF levels in the long term (Figure 4, Panel A). 

Moreover, in the spinal cord, an effect of pain was observed (F(1,29) = 4.322, P = 0.0466) in BDNF 
levels, but no effect was detected in the post hoc test. Furthermore, there was no effect of tDCS in 
BDNF levels regarding spinal cord analyses (F(2,29) = 0.3370, P = 0.7167) or interaction pain x tDCS 
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(F(2,29) = 0.1971, P = 0.8222) (Figure 4, Panel B). BDNF serum levels were not modified by the pain 
model (F(1,29) = 1.530, P = 0.2260) or tDCS treatment (F(2,29) = 0.1159, P = 0.8910) (Figure 4, Panel C). 

 

Figure 3. Effect of tDCS on the nociceptive threshold response by the von Frey electronics test of rats 
in development. Control (C); Control + sham tDCS (C + sham-tDCS); Control + tDCS (C + tDCS); 
Sham Lesion (SL); Sham lesion + sham-tDCS (SL + sham tDCS); Sham lesion + tDCS (SL + tDCS); 
Neuropathic pain (NP); Neuropathic pain + sham-tDCS (NP + sham-tDCS); Neuropathic pain + tDCS 
(NP + tDCS). Data are presented as the mean ± SD, (n = 7–11). Different letter subscripts (a through 
j) indicate a statistically significant difference between the groups. Panel A: Threshold at baseline and 
14 days after surgery C (n = 30), SL (n = 25), NP (n = 30). Panel B: Effects of tDCS 1 day and 7 days 
after the end of treatment (GEE/Bonferroni Interaction time x group (Wald χ2 = 1,709.97; 24, P < 
0.001, n = 7–11; C (n = 10), C + sham-tDCS (n = 10), C + tDCS (n = 10), SL (n = 7), SL + sham-tDCS 
(n = 9), SL + tDCS (n = 9), NP (n = 9), NP + sham-tDCS (n = 10), NP + tDCS (n = 11)). 
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Figure 4. BDNF levels of rats in development at the long-term effect. Sham Lesion (SL); Sham lesion 
+ sham-tDCS (SL + sham tDCS); Sham lesion + tDCS (SL + tDCS); Neuropathic pain (NP); 
Neuropathic pain + sham-tDCS (NP + sham-tDCS); Neuropathic pain + tDCS (NP + tDCS). Data are 
presented as the mean ± SD, (n = 5–6). Panel A: Frontal cortex BDNF levels: There were no effects 
of pain (F(1,29) = 1.635, P = 0.211) or tDCS F(2,29) = 1.272, P = 0.295) (Two-way ANOVA/Tukey, n = 
5–6). Panel B: Spinal cord BDNF levels: There was an effect of pain (F(1,29) = 4.322 P = 0.0466). 
tDCS effect was not statistically significative different between groups (F(2,29) = 0.3370, P = 0.7167) 
and no interaction pain x tDCS was found (F(2,29) = 0.1971, P = 0.8222) (Two-way ANOVA/Tukey, n 
= 5–6). Panel C: Serum BDNF levels: there were no differences between groups for pain (F(1,29) = 
1.530, P = 0.2260) or tDCS (F(2,29) = 0.1159, P = 0.8910) (Two-way ANOVA/Tukey, n = 5–6). 
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4. Discussion 

Here, we hypothesize that rats in development with neuropathic pain will develop decreased 
nociceptive threshold, and that tDCS treatment will increase the nociceptive threshold, at short and 
long-term effect, mediated by a reduction in the BDNF levels in rats with chronic constriction injury. 

Regarding nociceptive behaviour, at the baseline, rats presented a similar effect, characterizing 
the homogeneity of the nociceptive threshold. Fourteen days after NP induction, the rats demonstrated 
increased in the paw withdrawal compared to the baseline measure. It is important to note that the rats 
were 30-day-old at the induction of CCI and 64-day-old at the end of experiments. Our results show 
an increase of the nociceptive threshold according to the development of rats, corroborating  
Nunes et al. [30]. Furthermore, all rats subjected to CCI surgery showed increased nociceptive 
threshold, as the threshold increased significantly in rats in development. The test of hypersensitivity 
to mechanical stimuli is the most common method of measuring the magnification of a 
neuropathological condition [31]. Considering results obtained for CCI group, mechanical allodynia 
and hyperalgesia are behavioral signs of NP [32]. 

A study conducted by Howard et al. [33] investigated the effects of neuropathic pain in different 
developmental ages using the spared nerve injury (SNI) model. The authors investigated the effects of 
SNI at the 3-, 10-, 21- and 33-days old rats for 28 days, observing nociceptive behavior at 7, 14 and 
28 days after surgery. They found no differences in the threshold in rats of 3 days. For rats of 10 and 
21 days they found a decreased threshold in the SNI rats compared to control group or contralateral 
paw, but the effects were not maintained for 14 and 28 days. At 33 days old they found decreased 
threshold at the 7, 14 and 28 days after surgery. In this same work the authors evaluated the effects of 
NP using CCI model in rats aged at 10 and 60 days. The authors found no differences in the threshold 
of 10 days old rats at any point observed (7, 14 and 28 days after surgery). At 60 days, old rats with 
CCI showed a significative difference was observed 7, 14 and 28 days after surgery, compared with 
contralateral paw. We demonstrate the influence of age in nociceptive behavior of NP development. 

 In addition, our results corroborate previous studies using the CCI model in Wistar rats aged 55–
65 days [2] and 8 weeks and 60 days [22,28]. The CCI model is the most used method in peripheral 
nerve injury NP experiments. It can produce significant and stable pain hypersensitivity for at least 1-
month after NP induction. This model is widely used to investigate the pathophysiological mechanisms 
and potential therapeutic agents for the treatment of NP [4]. 

Interestingly, bimodal tDCS was able to promote hyper nociceptive behavior 1day after the last 
session, but at 7 days after the last session, the analgesic effect was lost in rats in development, 
demonstrating just a short-term effect of treatment. These effects show the possible effects of 
manipulation and/or immobilization in the sham-tDCS groups, which characterizes a limitation of our 
study. In contrast, in our previous study, we demonstrate the effects of bimodal tDCS in neuropathic 
pain rats at 60 days old at long term-effect (7 days after the last session of tDCS), but this effect was 
not observed at the short-term effect (24 hours after the last session of tDCS) [34]. Then, we can 
suggest different responses to the tDCS treatment in different ages. Other studies have shown that 
tDCS can reverse hyper nociceptive behavior at the long-term effects of tDCS in adult rats using 
similar tDCS protocol and NP model [2,22]. 

Additionally, it was observed a decreased nociceptive threshold in rats of the C and SL groups 
that received tDCS treatment compared to rats of the C group that received sham stimulation, 
demonstrating an effect of tDCS treatment in rats without CCI, but these results were not maintained 
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at long term-effect. In this study, we showed the effects of tDCS in rats in development with NP. In 
addition, age can significantly influence the development of NP after CCI induction [4]. According to 
studies with 40 healthy adult humans (median, 68 years) and young adults (median, 23 years), older 
adults exhibited a delayed response to anodal tDCS compared with young adults [15]. The induced 
after-effects of tDCS depend on the polarity, duration and stimulation intensity [35]. Studies have 
shown that anodal tDCS increases the corticospinal excitability of local stimulation and distant areas 
of the stimulation site, attributed to interconnections between these sites [36]. The full mechanism of 
action of tDCS is not well understood; however, evidence suggests that tDCS can act through direct 
and indirect pathways [37]. We used bimodal stimulation, and BDNF levels in rats in development in 
the frontal cortex, spinal cord and serum were assessed. 

At 30 days with neuropathic pain, BDNF levels in the frontal cortex of the NP group were not 
modified. This may be because the young rats demonstrated that the tDCS effects increased the 
threshold of NP rats (NP + tDCS group) compared with the NP and NP + sham-tDCS groups in the 
short term (1day after the end of tDCS), but not in the long term (7-day after the end of tDCS). 

 The rats were sacrificed 8 days after the end of treatment; thus, tDCS effects were not observed 
in these rats. For the same reason, serum BDNF levels were not altered. However, BDNF is widely 
distributed in the human brain, plays an important role in supporting neuronal structure and  
function [38] and plays various roles in development [39]. Studies by Filho et al. [12] in Wistar rats 
aged 5565-day-old found a short-term (48-h after the end of tDCS) and a long-term (7-day after the 
end of tDCS) decrease in the brain stem BDNF levels, a short-term increase in spinal cord BDFN 
levels and a long-term decrease in serum BDNF levels in rats with NP. Corroborating, in our study, it 
was found a pain effect in the spinal cord BDNF levels, and comparing these analyses evaluated by 
Filho et al. [12] in old rats with increased nociceptive threshold by tDCS treatment with short- and 
long-term effects. Thus, we suggest that differences in BDNF levels in these structures should be 
related to age. 

tDCS can induce and modulate neuroplasticity [40,41]. Boudes and Menigoz [42] showed that 
BDNF mediates changes in excitatory synaptic transmission in the dorsal horn of rats with sciatic nerve 
injury and other studies have demonstrated the influence of this neurotrophin in NP and tDCS 
treatment. 

Lopes et al. [21] investigated the effects of tDCS plus exercise over BDNF levels in neuropathic 
pain rats (280 g, approximately). The researchers evaluated the nociceptive behavior and they observed 
that rats exposed to CCI procedure decreased the nociceptive threshold 7 and 14 days after surgery. 
Thereafter, we evaluated the effects of treatment immediately, 24 hours and 7 days after the end of 
tDCS. The rats with neuropathic pain exposed to tDCS, exercise and tDCS plus exercise had increased 
nociceptive threshold immediately, 24 hours and 7 days after the end of treatment and tDCS plus 
exercise increased the nociceptive threshold compared to tDCS isolated, 7 days after the end of 
treatment. The authors observed that cortical cerebral BDNF levels were increased in rats with NP 
treated with tDCS, 48 h after treatment and tDCS plus exercise increased BDNF levels 7 days after the 
end of treatment. In the brainstem, the authors found decreased levels of BDNF in NP groups 48 hours 
after the end of treatment with tDCS. In the spinal cord, they found increased BDNF levels in NP 
group that did not receive any treatment, and 48 hours after the end of treatment, decreased BDNF 
levels were observed in NP group that received sham-stimulation plus exercise compared with the 
group with sham of NP that received sham-stimulation plus exercise. 
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In a similar study, Lopes et al. [22] verified the effects of tDCS associated with exercise in the 
BDNF levels in rats (8 weeks old) with neuropathic pain. The authors observed increased hippocampal 
BDNF levels occasioned by tDCS plus exercise in NP groups, at the short-term. Long-term, they found 
that tDCS and exercise prevented a reduction in BDNF levels in the hippocampus. In the sciatic nerve. 
Short-term, it was observed increased BDNF levels in NP groups by the effects of tDCS and exercise. 

We found an effect of pain in the spinal cord BDNF levels in rats in development. For cortical 
and serum analyzes, no effects were found in this study long-term; however, the effects of tDCS were 
well described in other studies with adult rats, showing its influence in NP and its modulation by tDCS 
treatment. 

Our findings add new information since tDCS effectively reduces hyper nociceptive behavior in 
rats in development with CCI injury, showing that tDCS can reduce hyperalgesia at this phase of 
development in the short-term effect. Biochemical analyses of BDNF levels in rats in development 
were insufficient to elucidate the effects of tDCS on neuroplasticity because it was evaluated only in 
the long term, and more studies are warranted to evaluate short-term BDNF levels in rats in 
development. We believe that BDNF will be modified by tDCS treatment at this time point for young 
neuropathic pain rats, in different nervous systems structures. 

It is relevant to know the effects of tDCS and intermediates of NP in the phase of development 
since age can influence the levels of these intermediates (biomarkers and immunity cells), and 
consequently the response to the treatment in young people. Although NP occurs less frequently at the 
early age, it could happen and need of another kind of intervention them the used in old patients.  

This study contributes to understand the effects of tDCS in the nociceptive behavior and BDNF 
levels of neuropathic pain rats in development. Furthermore, the NP and tDCS effects in the 
nociceptive behaviour and in BDNF levels of rats in development was discussed using previous 
published studies conducted with adult/older rats with NP treated with tDCS and that evaluate the 
influence of BDNF levels and other biomarkers in NP and tDCS treatment. Despite that, further studies 
are necessary to elucidate the effects of BDNF and tDCS on NP at the early age.  

Finally, our study had some limitations, including that we used only male rats; we used the whole 
spinal cord for analyses, but different regions of the spinal cord could reflect in different levels of 
intermediates of NP; BDNF levels were evaluated only at long-term, but important modifications could 
occur short-term effect since a tDCS effect was observed in the nociceptive threshold just at this time 
point; and it was observed a sham-effect occasioned by manipulation and/or immobilization of rats, as 
it was previously mentioned in this discussion, so a different form of immobilization of rats should be 
considered for future studies. 

5. Conclusion 

Analyzing these data made it possible to conclude that NP was induced 14-day after CCI, and 
tDCS promoted relief of hyperalgesic behavior, in the short term, in 30-day-old rats. Additionally, it 
was observed an effect of pain in the spinal cord BDNF levels; however, this effect was not confirmed 
in the post hoc test. The frontal cortex and serum BDNF levels were not altered by pain or long-term 
tDCS. In conclusion, these results bring the novelty of behavioral and biochemical responses to the 
tDCS effects in neuropathic pain rats in development; however, more studies are necessary to elucidate 
the effects of tDCS in the BDNF levels in rats in development with NP at the short-term. 
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6. Future directions 

For future research, we recommend using another kind of immobilization of rats for tDCS 
application, since immobilization used in this experiment showed to influence some parameters 
analyzed. Furthermore, new studies about the effects of tDCS in neuropathic pain rats in development 
are necessary to evaluate other intermediates/biomarkers associated with the early age nociceptive 
responses. 
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