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Abstract

Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable
economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a
milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data
integration and sharing. However, the existing databases cannot fully satisfy researchers’ requirements due to the relatively limited integration
level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-
omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo
assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles
from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics
data, enabling cross-species comparisons based on homology relationships, but also offers userfriendly online tools for efficient data mining and
visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective
breeding and trait biology of tropical crops.
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mand, making a significant positive impact on the economic

Tropical crops, cultivated in tropical regions, encompass a
wide range of varieties and can be classified into different cat-
egories based on their uses, including rubber crops, tropical
food crops, tropical fruit trees, tropical oil crops, tropical spice
beverages, tropical medicinal plants and more (1). The func-
tional diversity of these crops gives rise to a broad market de-

growth of tropical agricultural producing countries world-
wide. Meanwhile, the rapid advancement of next-generation
sequencing technologies has facilitated the generation and ac-
cumulation of vast amounts of multi-omics data in tropical
crops, enabling the comprehensive elucidation of gene func-
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tions and networks under diverse physiological and environ-
mental stress conditions (2).

In the field of genomics, the genomes of diverse tropical
crops have been successfully deciphered, with the utilization
of advanced technologies such as Hi-C, BioNano optical map-
ping and Telomere-to-Telomere (T2T), leading to enhanced
precision and integrity of the genome sequences (3-10). Based
on population genome studies, variation maps have been gen-
erated for several tropical crops, including pineapple, mango,
cassava and longan, revealing valuable insights into their do-
mestication history (11-14). In the field of transcriptomics, ex-
tensive identification of key genes and signalling pathways has
provided crucial clues for increasing yields (e.g. rubber tree la-
tex production, sugarcane sugar content) and enhancing toler-
ance to biotic and abiotic stresses (e.g. pests, diseases, drought,
cold and high salinity) (15-17). Additionally, some multi-
omics analyses have facilitated a comprehensive exploration
of complex physiological processes and polygenic traits, lead-
ing to a deeper understanding of the interactions and intri-
cate regulatory mechanisms among different molecules (such
as mRNAs, proteins and metabolites) underlying phenotypic
traits. (18-21). However, the raw sequencing data and genome
sequences of these studies are scattered in different databases,
which poses great challenges for data reuse and integrated
analysis. Therefore, it is necessary to establish a centralized
data sharing platform to provide convenient data sharing ser-
vices for researchers.

Optimal data integration needs to cover a broad range of
species and omics levels while ensuring high-quality datasets.
At present, several internationally developed tropical crop
databases, such as CassavaBase (22), HeveaDB (23), PGD
(24), Sapbase (25), ArecaceaeMDB (26) and TropGeneDB
(27), have emerged. CassavaBase, HeveaDB and PGD inte-
grate multi-omics data, but they are only designed for a sin-
gle species. Similarly, Sapbase and ArecaceaeMDB incorporate
multi-omics data from multiple species, but they serve the fam-
ily Sapindaceae and Arecaceae, respectively. TropGeneDB, is
an information system to manage genetic, molecular and phe-
notypic data for 11 tropical crops, but it lacks multi-omics
data and is not up to date. A comprehensive compilation of
data encompassing diverse species not only facilitates cross-
species research, but also helps to break bottlenecks caused
by insufficient data for some species (28). While discoveries
of new gene functions and transcriptome conservation levels
in Arabidopsis, rice and barley through homologous genes
(29,30), cross-species studies on tropical crops remain lim-
ited. Therefore, integrating multi-omics data from multiple
tropical crops, refining homologous gene relationships among
species and creating an inclusive database for data archiving,
analysis, and visualization will significantly advance tropical
crop research.

Here, we present TCOD (https://ngdc.cncb.ac.cn/tcod), a
specialized, integrated and open-access resource for trop-
ical crops. Currently, TCOD includes whole-genome se-
quencing (WGS) data, RNA sequencing (RNA-Seq) data,
genomes, gene functional annotations, homolog relationships
and germplasm information for 15 tropical crops. Multiple
WGS and RNAseq datasets are analyzed using standardized
workflows, resulting in the generation of comprehensive vari-
ation maps and expression profiles for each species. In addi-
tion, TCOD is well-equipped with a diverse set of online anal-
ysis tools for data mining, further bolstering its role in provid-
ing free public service for scientific research.
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Materials and methods

Data collection

High-throughput sequencing data, genome sequences, anno-
tation information and germplasm resource entries for 15
tropical crops were compiled from major databases, with de-
tailed volumes and sources are shown in Table 1.

Processing of WGS-Seq data

The collected WGS data were processed using the standard
analysis pipelines provided by the Genome Variation Map
(GVM) (41). After performing quality control on raw se-
quencing reads using Trimmomatic v0.36 (42), clean reads
were mapped to the reference genome using BWA-MEM (43).
Then the mapping results were converted and sorted us-
ing Samtools v1.13 (44), and duplicates were marked using
MarkDuplicates in GATK v4.1.2.0 (45). For lack of known
variations, the high-quality variants called by GATK Haplo-
typeCaller and Bcftools v1.13 (44) were merged and then in-
put to Basic Quality Score Recalibration (BQSR). Intermedi-
ate GVCEF files were generated for each sample by Haplotype-
Caller, which then were pooled together to generate a VCEF file
containing all raw variants using CombineGVCFs and Geno-
typeGVCFs in GATK. These raw variants were further filtered
using SelectVariants and VariantFiltration in GATK with rec-
ommended parameters. The functional effects of the variants
were annotated using VEP v8.4 (46). The minor allele fre-
quency (MAF) of the variants were calculated using veftools
v.0.1.13 (47).

Processing of RNA-Seq data

The collected RNA-Seq data were processed using the stan-
dard analysis pipelines provided by the Gene Expression Neb-
ula (GEN) (48). After quality control with Fastp v0.20.0 (49),
the reads were aligned to the reference genome using Hisat2
v2.0.5 (50) to evaluate data quality. Projects with an average
alignment rate above 50% were selected for subsequent anal-
ysis. RseQC v2.6.4 (51) was used to determine strand-specific
library sequencing. The high-quality reads were aligned to the
genome using the STAR v2.7.1a (52), generating BAM results,
which were subsequently processed by the RSEM v1.3.1 (53)
for expression quantification, resulting in the generation of
gene expression and transcript expression matrices. Addition-
ally, Limma (54) was utilized to perform differential expres-
sion analysis under various sample comparison scenarios.

Functional annotation of genomes

To address the issue of lacking information or inconsistent de-
scriptions in genome annotation, we conducted a unified func-
tional annotation on each gene while preserving the original
annotation. This involved utilizing the Nr (55) and Uniprot
(56) databases to identify similar functional proteins, the Pfam
(57) and Interpro (58) databases to identify conserved do-
mains, and the eggnog-mapper webserver (59) to obtain the
GO (60) terms and KEGG (61) pathways associated with the
genes.

Identification of homologous genes

The protein sequences of each gene are collected and inputted
into the OrthoFinder v2.5.4 (62) to identify their homologous
genes in other species. The parsing and tabulation of homol-
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RNASeq samples

Genomes

Cultivars

Table 1.  Statistics and sources of data collected

Species ‘WGS projects ‘WGS samples RNASeq projects

areca - - -

banana 5 from NCBI SRA (33) 65 from NCBI SRA 12 from NCBI SRA
3 from EBI ENA (34) 165 from EBI ENA 1 from EBI ENA

cassava 8 from NCBI SRA 399 from NCBI SRA 13 from NCBI SRA
1 from CassavaBase (22) 174 from CassavaBase

cocoa 2 from NCBI SRA 207 from NCBI SRA 4 from NCBI SRA

coconut - - 1 from NCBI SRA

coffee 1 from NCBI SRA 93 from NCBI SRA 5 from NCBI SRA

4 from EBI ENA

litchi 1 from NCBI SRA 72 from NCBI SRA 10 from NCBI SRA

longan 1 from NCBI SRA 95 from NCBI SRA 3 from NCBI SRA

mango 1 from NCBI SRA 48 from NCBI SRA 4 from NCBI SRA

oil palm 1 from NCBI SRA 26 from NCBI SRA 9 from NCBI SRA
1 from DDBJ DRA (39) 72 from DDBJ DRA 1 from EBI ENA

pepper - - -

pineapple 1 from NCBI SRA 86 from NCBI SRA 8 from NCBI SRA

rubber tree

sugarcane

vanilla
Total

1 from DDBJ DRA

1 from NGDC GSA (40)

28

1 from DDBJ] DRA
545 from NGDC GSA

2,048

6 from NCBI SRA

6 from NCBI SRA

1 from NCBI SRA
88

388 from NCBI SRA
21 from EBI ENA
356 from NCBI SRA

130 from NCBI SRA
9 from NCBI SRA
123 from NCBI SRA
57 from EBI ENA
228 from NCBI SRA
90 from NCBI SRA

49 from NCBI SRA
126 from NCBI SRA
16 from EBI ENA
2_08 from NCBI SRA
102 from NCBI SRA
82 from NCBI SRA

12 from NCBI SRA
1,997

1 from CNGB CNSA (31)

3 from Banana Genome
Hub (35)

2 from ITBB-CATAS

1 from HNU

1 from NCBI Genome (36)

1 from Phytozome (37)
2 from NCBI Genome
1 from NCBI Genome
4 from NCBI Genome

1 from NCBI Genome
1 from NCBI Genome

1 from NGDC GWH (38)

2 from NCBI Genome
1 from NGDC GWH
1 from NCBI Genome

1 from HZAU
2 from NCBI Genome

1 from RRI-CATAS

1 from NCBI Genome
1 from NCBI Genome
1 from NGDC GWH
4 from NCBI Genome
34

42 from GRIN (32)
209 from GRIN

6,074 from CIAT
4,359 from IITA

208 from GRIN
60 from GRIN
500 from GRIN

91 from GRIN
68 from GRIN

310 from GRIN
91 from GRIN

43 from GRIN
362 from GRIN

110 from GRIN
682 from GRIN

172 from GRIN
13,381

Note: CIAT: The International Center for Tropical Agriculture (https:/ciat.cgiar.org); IITA: International Institute of Tropical Agriculture (https://my.iita.org/accession2/); HNU: Hainan University;
HZAU: Huazhong Agricultural University; ITBB-CATAS: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science; RRI-CATAS: Rubber Research

Institute, Chinese Academy of Tropical Agricultural Sciences.

ogous gene results are guided by the structural framework of
the Homologous Gene Database (HGD) (63).

Genome synteny analysis

Collinearity analysis includes comparisons between refer-
ence genomes of different species and comparisons between
genomes of different subspecies within the same species.
Genome-wide synteny analysis was performed using MUM-
mer v4.0.0.rc1 (64). Initially, the ‘nucmer’ program was uti-
lized to generate comprehensive comparisons of nucleotide se-
quences, employing the parameters -g 1000 -¢ 100 for inter-
species comparisons and default parameters for intraspecies
comparisons. Subsequently, the intraspecies comparison re-
sults were filtered using the ‘delta-filter’ program with the pa-
rameters -m -i 90 -1 10000.

Database implementation

TCOD was implemented by SpringBoot (https:/spring.io/
projects/spring-boot; a free and powerful framework for de-
veloping standalone java applications) and Mybatis (https:
//mybatis.org/mybatis-3; a first-class persistence framework
with support for custom SQL, stored procedures and ad-
vanced mappings), referring to the framework of iDog and
iSheep database (65,66). Data storage and management were
realized using MySQL (https://dev.mysql.com; the world’s
most popular relational database management system). Web
user interfaces were developed using JSP (Jakarta Server Pages,
a template engine for web applications), HTML (HyperText
Markup Language), CSS (Cascading Style Sheets), Bootstrap
(https://getbootstrap.com; a powerful, feature-packed fron-
tend toolkit), AJAX (Asynchronous JavaScript and XML;
a technique for creating fast and dynamic web pages, al-
lowing partial updates of web pages without reloading the
whole page.) and Jquery (https://jquery.com; a fast, small and
feature-rich JavaScript library). For dynamic data visual-
ization, Echart (https://echarts.apache.org/en/index.html; a
declarative framework for rapid construction of web-based

visualization), Highcharts (https://www.highcharts.com; a
JavaScript plug-in to create interactive charts) and DataTables
(https://datatables.net; a plug-in for the jQuery JavaScript li-
brary to render HTML tables) were incorporated to generate
charts and tables. Furthermore, third-party software, includ-
ing NCBI BLAST+ (55), JBrowser2 (67), Primer3Web (68) and
ClusterProfiler (69), are invoked for the secondary develop-
ment of online tools.

Database content and usage
Overview of TCOD

TCOD is dedicated to becoming a comprehensive multi-omics
data platform that serves the field of tropical crop research, of-
fering users a one-stop solution for data acquisition and on-
line analysis. By integrating the genome, variome, transcrip-
tome and cultivar data from 135 typical tropical crops, TCOD
has achieved the integration of multi-omics data within indi-
vidual species, utilizing genes as a bridge to connect various di-
mensions of omics data. Furthermore, leveraging homologous
genes as entry points enables the comparison of omics charac-
teristics across different species. As of 1 August 2023, TCOD
houses 34 chromosome-level de novo assemblies, 1 255 004
genes with functional annotations, 282 436 992 unique vari-
ants from 2048 WGS samples, 88 transcriptomic profiles from
1997 RNA-Seq samples and 13 381 germplasm items. Addi-
tionally, TCOD incorporates a range of online tools to facili-
tate data mining within the database and visualization of anal-
ysis results (Figure 1).

Genome

The genome in TCOD includes whole genome sequences
and genes, and the genome sequences comprise the ‘Assem-
bly’ module in the system. By integrating assemblies released
by multiple public platforms and provided by partners, 34
chromosome-level de novo genomes from 15 species have
been collected, covering 30 different varieties. Focusing on
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Figure 1. The construction pipelines of TCOD, including data collection, data processing and database implementation.

each genome, users can browse basic information such as se-
quencing technologies, coverage, total length, scaffold num-
ber, N50 value, GC content and published literature. In addi-
tion, We calculated the number of genes on each chromosome
and used the Rideogram package (70) to create a heatmap of
gene density distribution, visualizing the gene-rich regions in
each genome (Figure 2A).

The ‘Gene’ module was committed to facilitate researchers
to find functional genes. By collating gene structure and func-
tion descriptions extracted from each genome annotation, 1
255 004 gene entries were captured to build this module. It
supports dynamic conditional retrieval and target gene set
downloads by selecting genome version, chromosome coordi-
nate, gene name and gene function. Gene acts as bridges con-
necting multiple omics data in TCOD. The detailed gene infor-
mation includes ‘basic information’, ‘genome and sequence’,
‘homolog information’, ‘variant information’, ‘expression in-
formation’ and ‘visualization’, from which users can infer the
potential biological function of the gene.

Variation

The ‘Variation” module was designed to provide researchers
with an overall and reliable genome-wide variation dataset.
By collecting WGS data from different samples and using
a standard variation analysis pipeline, this module provides
genome-wide variation maps for 10 species (Figure 2B). To
facilitate the search and download of interested variants, a
unique identifier was assigned to each variant and a multi-
conditional retrieval method was supported. For each variant,
we provide not only basic information such as variant coor-
dinate, reference and alternative allele, minor allele frequency,
etc., but also detailed functional annotation information such
as consequence type, variant effect and genotype distribution

in the population, which supplies pointcuts for population di-
versity research.

Expression

The ‘Expression’ module is dedicated to providing evidence
to explore the diverse regulatory mechanisms involved in
genes. Through the unified analysis of high-quality RNA-Seq
datasets from different projects, this module offers transcrip-
tome profiles of 13 species under various experimental con-
ditions. Moreover, to cater to specific research interests, we
have included category tags for each project, such as biotic
stress, abiotic stress, disease and infection, allowing users to ef-
ficiently access datasets of their interest categories (Figure 2C).
For each dataset, we support the visualization and download
of gene expression profiles, and provide a list of differentially
expressed genes under different comparison conditions.

Cultivar

The ‘Cultivar’ module was intended to provide germplasm
data to support research on crop breeding and domestica-
tion. By integrating varieties from CIAT, IITA and GRIN, a
total of 13 381 non-redundant entries have been collected
and the number of varieties in specific geographic regions was
plotted on a world map, offering a visual representation of
the global distribution of germplasm resources for 15 tropi-
cal crops (Figure 2D). Taking the cassava accession as an ex-
ample, researchers can view copious descriptive information
for a more comprehensive assessment of the sample. The de-
scription consists of three parts, including passport data (such
as accession name, synonyms, DOI, origin country), botani-
cal characteristics (such as plant height, stem color, developed
leaf color, petiole color) and agronomic characteristics (such
as storage root form, root color, dry matter content, hydro-
cyanic acid content).
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Figure 2. Screenshots of TCOD. (A) Gene density distribution in the genome of rubber_tree_reyan8-79. (B) Genome-wide variation maps for 10 species.
(C) Classification of RNA-Seq studies. (D) Global distribution map of multiple tropical crops. (E) Visualizing collinearity between the genomes lychee_FZX
and longan_shixia, the red circle indicates the selected region for a more detailed linear synteny view. (F) Heatmap of homologous genes between

genome pairs.

Species

The ‘Species’ module organizes multi-species and multi-omics
data collected in the database on a species basis, helping re-
searchers to rapidly access the data resources of concerned
species. By aggregating data information from different sec-
tions, it not only provides concise scientific overview of each
species (including geographical distribution, applications and
genome sequencing), but also grants direct access to genomes,
genes, variants, expressions, projects, samples and cultivars.

Tools

To facilitate data mining and analysis on TCOD, we have set
up several commonly easy-to-use tools in the “Tools’ mod-
ule, including BLAST, Genome Browser, Primer Design, Lit-
erature Search, GO Enrichment, KEGG Enrichment, Syn-
teny Viewer and Homolog Finder. The BLAST tool, built on
NCBI BLASTH+, is specifically designed for sequence search-
ing against the genome, coding sequence (CDS) and protein

sequences of 15 tropical crops. The Genome Browser pro-
vides smooth visualization of genomic sequences, genes and
variants in selected region by selecting a reference genome,
and supports exporting the visualization results of selected
regions to images. The Primer Design is developed based on
Primer3web, aimed at assisting users in designing primers
for downstream experiments. The Literature Search utilizes
the interface offered by the NGDC OpenLB database (71)
to facilitate rapid retrieval of relevant literature in the field
of tropical crops. The GO Enrichment and KEGG Enrich-
ment tools facilitate enrichment analysis of GO and KEGG
pathways for target gene sets, providing downloadable re-
sults and visualizing enrichment pathway bubble diagrams.
The Synteny Viewer allows users to visualize collinear rela-
tionships between genomes, offering inter-species and intra-
species collinearity views with dot plots, and the ability to
zoom in on specific regions to explore the genes within the
collinear regions (Figure 2E). The Homology Finder offers a
heat map to illustrate the number of homologous gene be-
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tween genome pairs (Figure 2F) and supports user searches
based on gene ID, gene function and custom species combina-
tions.

Metadata and download

To ensure data traceability and reusability, we included meta-
data information for all used projects and samples, catego-
rizing them into their corresponding omics categories. Raw
sequencing data can be downloaded from the FTP or HTTP
addresses provided via the ‘runs’ link within each module, and
variant files (GVCF/VCEF) for each WGS sample can also be
downloaded. Additionally, the download page provides access
to genomes and annotation files, variant results, expression
matrices and germplasm resources for local data mining.

An example of using TCOD

Carotenoid production is limited by the expression level of
phytoene synthase (PSY). A non-conservative amino acid ex-
change (A191D) triggered by a single nucleotide polymor-
phism (C > A) in PSY2 was reported to lead to a marked
increase of carotenoid synthesis in cassava storage roots (72).
Here, we use PSY2 as an example to demonstrate how to ac-
cess data in TCOD.

First, the PSY2 protein sequence (NCBI accession number:
ACY42667) is aligned to the database using the ‘BLAST” tool,
revealing 100% sequence similarity with Manes.01G124200
(Figure 3A). Clicking the ID link in the ‘See details’ column
redirects to view detailed gene information, the ‘Basic Infor-
mation’ reveals its function as phytoene synthase and provides
its functional domains, as well as GO and KEGG annotations
(Figure 3B). When searching for the keyword ‘A191D’ in the
‘variant information’, we can quickly find the consistent vari-
ant as mes5524597 (Figure 3C). Clicking on it leads to the
‘Variation’ module, where we discover that among the 573
cassava samples, 63 have this variation, all of which belong
to the Manihot esculenta population (Figure 3D). For sam-
ples of interest, such as TCODI00359, representing the CM
507-37 variety from Colombia, we can either click on the
samplelD to access the ‘Sample’ module for metadata infor-
mation (Figure 3E) and download the variant GVCF file, or
click on the cultivarID mesb4894 to enter the ‘Cultivar’ mod-
ule and view corresponding phenotype data, such as the root
color being crema (Figure 3F). The ‘Expression information’
displays Manes.01G124200’s expression level (TPM value) in
each sample of the project. In the project TCODP0025, the
TPM value of wild two-month-old cassava seedling samples
was lower than that of cassava seedling samples treated with
abscisic acid (ABA). The differential expression analysis indi-
cated its significance, suggesting that the gene may be involved
in the response to ABA stress (Figure 3G).

In addition to supporting published studies with larger-
scale sample datasets, the ‘homologous information’ offers in-
spiration for cross-species functional studies. By utilizing the
visualized orthologous gene relationship graph, we can make
preliminary predictions regarding which tropical crops may
possess similar gene functions (Figure 3H). In light of this,
our emphasis lies on banana species, as elevating the vita-
min A content in banana fruit can effectively combat vita-
min A deficiency in developing countries across Africa and
Southeast Asia (73). The ‘Homologous gene list’ shows that
the gene Manes.01G124200 has two orthologous genes and
two paralogous genes in the banana genome (banana_DH-
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Pahang), suggesting potential similar roles in banana as the
gene Manes.01G124200 in cassava and functional analysis
can be further conducted based on the GO pathway, KEGG
pathway, variation and expression information of the homol-
ogous gene. Notably, the expression of Macma4_09_g09940
(with 95% similarity to MtPsy2a protein sequence) has been
confirmed to lead to an increase in vitamin A content (74),
implying the PSY2 gene plays universally applicable function
in both cassava and banana. Moreover, TCOD supports gene
sequence downloads (Figure 3I) and genomic region visual-
ization (Figure 3]), facilitating users in conducting subsequent
analyses conveniently.

Discussion and future plans

Tropical crops have significant economic value and incompa-
rable biological status, and the rapid development of multi-
omics research has highlighted an urgent need for the inte-
gration and sharing of massive data. Internationally, existing
tropical crop databases either lack multi-omics data or have
a limited scope, focusing solely on specific species or fami-
lies. Presently, TCOD stands as the most comprehensive multi-
omics database, encompassing the largest diversity of tropical
crop species.

When compared to other established databases, TCOD
exhibits the following key characteristics: (i) multi-species
and multi-omics data integration: TCOD aggregates diverse
data resources covering 15 tropical crop species, including
genome sequences, genome variations, gene functions, gene
expressions and germplasm information. By correlating multi
datasets in units of genes, TCOD provides a user-friendly plat-
form with efficient data browsing, retrieval and download-
ing capabilities, making it a one-stop resource for researchers
seeking valuable information on tropical crops. (ii) High-
quality datasets: Genomes incorporated into TCOD reach a
level of chromosomal integrity and are accompanied by uni-
form and comprehensive gene annotation. Additionally, by
collecting raw sequencing data from diverse sources and im-
plementing a standardized analysis pipeline, TCOD gener-
ates relatively complete variation maps for each species, along
with expression profiles under different physiological condi-
tions, providing a valuable dataset for the artificial intelligence
breeding of tropical crops. (iii) Diverse online tools: To en-
hance effective data mining, TCOD offers a series of online
tools for sequence similarity comparison, downstream primer
design, literature searches, genes pathway enrichment and
pairwise genome consensus linear views. (iv) Cross-species
analysis: TCOD furnishes gene homology relationships across
various species, allowing cross-species comparisons of gene
functions and multi-omics characteristics, which facilitates in-
depth exploration into the shared biological attributes among
different organisms.

In the future, Multi-omics data of tropical crops with ex-
tremely rich species diversity will be generated and collected
in TCOD. We also plan to add additional types of omics
data (e.g. metabolome, proteome) and establish Variant-Gene-
Trait associations through manual collection and curation
of GWAS related literature, providing a comprehensive prior
knowledge module for tropical crop trait research. Moreover,
the advancement in machine learning and artificial intelli-
gence technology holds the promise of integrating biological
knowledge and omics data to achieve precise breeding (75).
At present, it has been realized in some staple crops such as
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Figure 3. Using TCOD to obtain data for each section associated with the PSY2. (A) The gene Manes.01G124200 was identified with 100% sequence

similarity to PSYZ2 in the tropical crop protein database by blastp. (B) The function annotation of the gene Manes.01G124200 in TCOD. (C) The variant ID
mesb524597 was obtained by filtering with the keyword ‘A191D" among the 2480 variants in the gene Manes.01G124200. (D) Genotype distribution of
variant mesb524597 in 573 cassava samples. (E) Sample metadata corresponding to the samplelD TCODIO0359. (F) Cultivar information corresponding

to the cultivarlD mesb4894. (G) The expression level of gene Manes.01G124200 in different samples of project TCODP0025. (H) Homologous

relationship of gene Manes.01G 124200 in other species. (I) The corresponding genome and sequence of the gene Manes.01G124200. (J) Genome
browser for visualizing different tracks in the gene Manes.01G124200.
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rice, maize and wheat (76-78), but it is still relatively behind
in the field of tropical crops. To bridge this gap, TCOD will
continue its unwavering commitment to extensively explore
multi-omics data using these cutting-edge methods and tech-
nologies, providing vital data support for tropical crop breed-
ing to enter the generation of the ‘5Gs’ - (genome, germplasm,
gene, genomic breeding and gene editing) (79). We also en-
thusiastically welcome comments and suggestions from re-
searchers worldwide to enhance and improve TCOD.

Data availability

TCOD is freely available online at https:/ngdc.cncb.ac.cn/
tcod and does not require user to register.
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