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Abstract 

Target disco v ery is one of the essential steps in modern drug de v elopment, and the identification of promising t argets is fundament al for 
de v eloping first-in-class drug. A v ariety of methods ha v e emerged f or target assessment based on druggability analysis, which refers to the 
likelihood of a target being effectively modulated by drug-like agents. In the therapeutic target database (TTD), nine categories of established 
druggability characteristics were thus collected for 426 successful, 1 0 14 clinical trial, 212 preclinical / patented, and 1479 literature-reported targets 
via sy stematic re vie w. T hese characteristic categories w ere classified into three distinct perspectives: molecular interaction / regulation , human 
system profile and cell-based expression variation . With the rapid progression of technology and concerted effort in drug discovery, TTD and 
other databases were highly expected to facilitate the explorations of druggability characteristics for the discovery and validation of innovative 
drug target. TTD is now freely accessible at: https:// idrblab.org/ ttd/ . 
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Introduction 

Target discovery is one of the essential steps in modern drug
development, and the identification of promising targets lays
the foundation for the successful development of first-in-class
drug ( 1 ). To ensure the success and efficiency of drug devel-
opment, the quality of the selected target needs to be assessed
during the early stage of drug discovery, which has been fre-
quently conducted by evaluating the druggability of target ( 2–
4 ). The druggability of a target refers to the likelihood of target
being effectively modulated by drug-like agents with various
evaluation methods proposed ( 5–7 ). For example, the pres-
ence of suitable binding poc k et is crucial for the target’s drug-
gability, which is known as one standard procedure in target
selection ( 8 ); the human system profiles such as human simi-
larity proteins and affiliated pathways have been explored for
characterizing target druggability, with their ability to differ-
entiate the targets of rapid (speedy) and slow (non-speedy)
clinical development process ( 9 ). Moreover, div er se cell-based
differential expressions of targets are found informative for
identifying new targets that play a crucial role in disease ( 10 ).

Notably, the target assessment using single druggability
characteristics is often insufficient, and comprehensive eval-
uation of multiple druggability characteristics is a more help-
ful approach ( 9 ). Therefore, related databases are needed to
provide comprehensive druggability characteristics of targets
from multiple perspectives. So far, a variety of established
databases have been developed to collectively provide drug
& target data. Some describe pharmacological information
on drugs, such as DrugBank ( 11 ), DrugCentral ( 12 ), Super-
DRUG2 ( 13 ), DrugMap ( 14 ) and DRESIS ( 15 ); some oth-
ers focus on presenting therapeutic targets, such as TTD ( 16 )
and Open Target ( 17 ); the remaining offer general molecule
and bioactivity information, such as PubChem ( 18 ), ChEMBL
( 19 ) and BindingDB ( 20 ). Although these databases have al-
ready accumulated great popularities and substantial impacts
on chemical / biological / pharmaceutical communities, the in-
formation of target druggability characteristics have not yet
be covered by any of the existing databases. 

Herein, the therapeutic target database (TTD) was thus
significantly updated to its 2024 version, which pro-
vided comprehensive information on the druggability char-
acteristics of 426 successful, 1014 clinical trial, 212
preclinical / patented and 1479 literature-reported targets.
Particularly, such characteristics were of three perspectives
(Figure 1 ): molecular interactions / regulations , human sys-
tem profiles and cell-based expression variations . Molecu-
lar interactions / regulations offered (1 a ) ligand-specific spa-
tial structures of target in its drug binding pocket, (1 b ) net-
work properties of target measured based on protein-protein
interactions & (1 c ) bidirectional regulations between the mi-
crobiota and therapeutic agents. Human system profiles pro-
vided (2 a ) similarity profile of target to human proteins out-
side its families, (2 b ) involvements of target in well-established
life-essential pathways & (2 c ) distributions of target among
a variety of organs in human. Cell-based expression varia-
tions described (3 a ) varied expression of target across cells
of different diseases, (3 b ) differential expressions of target in-
duced by exogenous stimuli & (3 c ) modified expressions of
target altered by human endogenous factors. The statistics of
targets & drugs in TTD over the past decade were provided
in Table 1 , and the detailed data on the major contents inte-
grated into TTD were explicitly described in following sec-
tions. With the rapid progression in the techniques of drug 
discovery, the wealth of druggability data incorporated into 

TTD are expected to establish a solid foundation for the iden- 
tification of novel targets and discovery of new therapeutics.
TTD is now freely accessible without any login requirement 
at: https:// idrblab.org/ ttd/ . 

Factual content and data retrieval 

Due to the importance of target druggability data (as de- 
scribed above) in modern drug discovery, therapeutic tar- 
get database (TTD) was mainly updated to its 2024 ver- 
sion by comprehensively providing three types of drugga- 
bility information for each therapeutic target. As shown in 

Figure 1 , compared with the previous versions, the TTD 

2024 updated three major types of druggability: molecu- 
lar interactions / regulations , human system features and cell- 
based expression variations . These druggability data were not 
covered by any of the previous versions of TTD. Each of these 
three types of druggability was further elaborated using three 
distinct sub-sections of data, which were explicitly discussed 

and described as follows. 

Druggability illustrated by molecular interactions or 
regulations 

Ligand-specific spatial structure of a target within drug bind- 
ing pocket 
The drug binding site of therapeutic target was usually consid- 
ered to be indispensable for modern drug discovery ( 21–25 ).
The binding pocket structure of established targets was essen- 
tial for drug design and lead optimization ( 26 ), and the bind- 
ing pocket of promising new targets could further expand the 
druggable genome and enable development of new strategies 
for targeted therapeutics ( 8 ). Among the > 80 FDA-approved 

kinase inhibitors, many of them were inspired by the binding 
pocket structure of the catalytic domain of kinases ( 27 ). In 

other words, it is essential to have the valuable drug-specific 
spatial structures of studied target within its drug binding 
pocket. 

Such structures of drug binding pocket were systematically 
collected to TTD using the following procedure. First , a com- 
prehensive search of all TTD targets in PDB ( 28 ) was real- 
ized based on the name and synonyms of the targets. Sec- 
ond , all retrieved structures were carefully checked to remove 
false matches, which resulted in > 25 000 target crystal struc- 
tures. Third , the availability of drug binding to these structures 
was investigated, and the corresponding drugs were identi- 
fied. Forth , the co-crystal structures containing both target 
and its interacting drug were obtained, and the distance be- 
tween drug and each residue was calculated based on biopy- 
thon ( 29 ). All residues that interacted with drug at a distance 
of < 5 Å were defined as the ‘drug binding pocket’ ( 30 ). As 
shown in Figure 2 A, the binding pocket information was pro- 
vided in ligand-specific manner for any studied target. For 
certain complex, the pocket residues together with detailed 

distances were provided in TTD and highlighted based on 

their van der Waals surface calculated by iCn3D ( 31 ). Ad- 
ditional information (such as structure resolution, sequence,
and mutation) was also provided in online TTD. As a re- 
sult, the ligand-specific binding pockets of 319 successful (tar- 
geted by at least one FDA-approved drug), 427 clinical trial 
(not targeted by any approved drug, but targeted by at least 

https://idrblab.org/ttd/
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Figure 1. Three major contents integrated into the TTD 2024. A wealth of data was collected to describe target druggability from three distinct 
perspectives: molecular interactions / regulations , human system features and cell-based expression variations . Each perspective was elaborated in detail 
through three different sections of data, which were further explicitly described. 
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ne clinical trial drug), 116 preclinical / patented (not targeted
y any approved / clinical trial drug, but targeted by at least
ne preclinical / patented drug), 375 literature-reported (tar-
eted by experimental drugs only) targets were identified from
2 431 complex structures. 

etwork properties of target measured by protein–protein in-
eractions 
arget’s network properties derived from complex connec-
ions among numerous protein–protein interactions (PPI)
ave been extensively employed for evaluating the target drug-
ability ( 32–36 ). Proteins demonstrating high node degrees
are posited to exert considerable influence on network func-
tion due to the huge amount of interactions ( 37 ), while pro-
teins exhibiting high betweenness centrality are considered
pivotal in network communication and signaling information
flow ( 38 ). A multitude of network descriptors have been re-
ported as potential indicators to differentiate the targets of
rapid (speedy) and slow (non-speedy) clinical development
process ( 9 ). 

The collection of target’s network properties to TTD
was accomplished in the following manner. First , PPIs with
high confidence score ( ≥0.95) were collected from STRING
database ( 39 ), and a human PPI network consisting of 9309
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Table 1. Number of drugs and their corresponding therapeutic targets in different versions of TTD over the past decade 

Different versions of TTD published during the past decade 

Statistics of targets and drugs in different 
versions of TTD 2024 2022 2020 2018 2016 2014 

All targets 3730 3578 3419 3101 2589 2360 
Successful targets 532 498 461 445 397 388 
Clinical trial targets 1442 1342 1191 1121 723 461 
Preclinical / patented targets 239 185 155 0 0 0 
Literature-reported targets 1517 1553 1612 1535 1469 1467 
All drugs 39 862 38 760 37 102 34 019 31 614 20 667 
Approved drugs 2895 2797 2649 2544 2071 2003 
Clinical trial drugs 11 796 10 831 9465 8103 7291 3147 
Preclinical / patented drugs 5041 5009 4845 0 0 0 
Experimental drugs 20 130 20 123 20 143 18 923 17 803 14 856 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proteins and 52 713 PPIs was then constructed. Second ,
nine representative network properties (including: between-
ness centrality, clustering coefficient, etc.) were calculated for
each target ( 40 ). As shown in Figure 2 B, a two-layer PPI net-
work for a target was illustrated, together with a download-
able file of the complete human PPI network. As an outcome
of this process, a variety of network properties for 426 suc-
cessful, 727 clinical trial, 143 preclinical / patented, and 867
literature-reported targets were provided in TTD 2024. 

Bidirectional regulations between microbiota and targeted
agents 
The regulation between microbiota and targeted agents is
complex and bidirectional ( 41 ). On the one hand, microbiota
can modulate bioavailability, bioactivity and toxicity of drugs;
on the other hand, drugs can impact growth, composition, and
function of microbiota ( 42 ). Taking irinotecan (one medica-
tion for treating colon cancer) as an example, it is metabo-
lized to SN-38 glucuronide by beta-glucuronidase of gut mi-
crobiota, which resulted in the great elevation of gastrointesti-
nal toxicity ( 43 ), and the selective inhibition of bacterial beta-
glucuronidase showed the potential to alleviate drug-induced
toxicities ( 44 ). In other words, unraveling such regulations is
anticipated to shed light on the identification of novel thera-
peutic targets, the discovery of new therapies and the poten-
tial modification of existing drug prescription methodologies
( 45 ,46 ). 

Bidirectional regulation data between microbiota and tar-
geted drugs were collected to TTD using the following pro-
cedure. First , systematic literature review was conducted in
PubMed ( 47 ) using such keyword combinations as ‘drug + mi-
crobiota’, ‘drug + microbe’, ‘drug + microbiome’, etc. All re-
trieved literatures were carefully reviewed, and the interac-
tions between drugs and microbe were manually recorded.
As illustrated in Figure 2 C, all the interactions were classi-
fied into two categories: microbes affecting drug metabolism
& drugs regulating microbe abundance . For the former inter-
action type, the detailed information (such as involved micro-
bial enzymes, metabolic reactions of studied microbiota, re-
sulting metabolites, and metabolic effects) was also explicitly
described. For the latter type of interaction, the detailed infor-
mation (such as abundance variation of microbe, a variety of
species origins and specific experimental samples) was further
extracted. As a result, a total of 9812 interactions between
663 drugs and 686 microbes were collected to TTD, which
came from 20 phyla, 36 classes, 59 orders, 101 families and
135 genera. 
Drugg ability characteriz ed by different human 

system profiles 

Similarity profile of target to human proteins outside Its family 
Drug candidates are typically designed to selectively interact 
with their intended target, and their interactions with other 
proteins outside target’s biochemical family should therefore 
be carefully evaluated at the early stage of drug development 
( 48 ). As reported, the target having fewer human similarity 
proteins outside its biochemical family is commonly regarded 

to have greater capacity to avoid undesired interaction and 

thus increase the possibility of discovering drug-like molecule 
( 9 ). Therefore, it is highly demanded to have the valuable data 
on the number of human similarity proteins outside target’s 
functional family to assess the off-target collateral interactions 
( 9 ). 

As shown in Figure 3 A, such similarity profiles were in- 
cluded into TTD. First , the sequences of TTD targets and all 
human proteins were extracted from UniProt ( 49 ). Then , the 
protein families to which each protein belonged were obtained 

from InterPro ( 50 ). For a TTD target, its similarity to human 

proteins was calculated using BLAST ( 51–53 ). The similarity 
proteins of a target were defined as those with E -value < 0.005 

and outside the protein families of the target. On the target 
page, the data of protein name, protein family, BLAST identi- 
ties, and E -values were listed. As a result, the similarity pro- 
file information was made available for 389 successful, 933 

clinical trial, 204 preclinical / patented and 1479 literature- 
reported targets in TTD 2024. 

Involvements of Target in the Well-established Life-essential 
Pathways 
Targets affiliating with fewer life-essential pathways were re- 
ported to have greater likelihood of success, while those asso- 
ciated with more signaling pathways were found to increase 
the chances of undesirable interferences with other human 

process ( 48 ). The target-directed toxicity had been identified 

as originating from the participation of the targets in poten- 
tially harmful pathways ( 1 ). Furthermore, in circumstances 
where the understanding of drug targets’ functions is inade- 
quate, the valuable information of target-affiliating pathways 
can be very informative ( 54 ). 

As illustrated in Figure 3 B, the life-essential pathways that 
TTD targets involved were gathered. First , all available path- 
way information for each target was collected from KEGG 

( 55 ). Second , the target-affiliated pathways were double- 
checked based on two criteria: ( Ca ) the pathways of the stud- 
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Figure 2. Druggability of therapeutic target illustrated by molecular interactions and regulations. ( A ) ligand-specific spatial str uct ure of targets in their 
drug binding pocket . The crystal str uct ures complexed with ligands were comprehensively collected for a target, and the residues interacting with drugs 
at a distance of < 5 Å were defined as drug binding pockets and highlighted using their van der Waals surface for each complex. ( B ) network properties 
of target measured using protein-protein interactions . The human protein-protein interaction network consisting of 9309 proteins and 52 713 
interactions was constructed based on the STRING data with confidence score ≥0.95, and diverse network descriptors (degree, connectivity, etc. ) were 
calculated for each target based on PPI network. ( C ) bidirectional regulations between microbiota and therapeutic agents . On the one hand, microbiota 
in diverse human tissue or organs (e y e, lung, oral ca vity, etc. ) can alter the bioa v ailabilit y, bioactivit y, and toxicit y of therapeutic agent; on the other hand, 
therapeutic agent can also change the abundance and composition of microbiota. 
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ed target should be life-essential for both healthy individuals
nd patients, and ( Cb ) the studied targets should occupy an
pstream position in pathway, and thus are capable of regu-
ating biological function. Finally , 241 life-essential pathways
ere included. For a target, all affiliated pathways were inte-

rated to online TTD with the detailed data of pathway hierar-
hy. Moreover, other targets that belonged to the same path-
ay were also fully described. All in all, a variety of target-

ffiliating life-essential pathway data were made available for
73 successful, 897 clinical trial, 196 preclinical / patented,
nd 1415 literature-reported targets in TTD 2024. 
Distributions of target among a variety of tissues or organs in
human 

The distribution of targets among different tissues / organs
needs to be carefully considered, when assessing the tar-
get druggability, as it is widely known that the wider the
target distributions, the greater the concern over adverse
drug reaction ( 1 ,56 ). A previous study on the distribution
of 158 successful targets identified that over 50% of these
targets were distributed in no more than three tissues, indi-
cating the significance of tissue selectivity in target discovery
( 48 ). 
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Figure 3. Druggability of therapeutic targets illustrated by human system features. ( A ) Similarity profile of target to human proteins outside its family . 
The degree of similarity between target and all human proteins was calculated using BLAST, and the cutoff of E -values was set to 0.005 (the similar 
proteins of targets were defined as those with E -value < 0.005 and outside those functional families of the targets). ( B ) Involvements of target in the 
well-established life-essential pathways . All life-essential pathways involved by a target were described on the TTD website with detailed information 
provided, such as the name, hierarchy & map of, and other targets belonging to these pathways. ( C ) Distributions of target among a variety of 
tissues / organs in human . The expressions of studied target across different tissues / organs were provided in the boxplot format, and det ailed dat a (such 
as tissue name and various statistic values describing the boxplot) were specified. 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the substantial discordance in target’s expres-
sion at the levels of proteins and RNAs ( 57 ), the distribu-
tions of TTD targets among various tissues / organs were de-
termined. A landmark study that quantified over 12 000 genes
across 32 normal human tissues at both protein and RNA lev-
els was adopted to fulfill our research needs ( 57 ). For a target,
the relative expressions among tissues / organs were provided,
which were displayed in boxplot format together with the de-
tailed abundances (Figure 3 C). As a result, the distributions
across 32 human tissues of 338 successful, 600 clinical trial,
143 preclinical / patented and 920 literature-reported targets
were provided. 
Druggability reflected by di ver se cell-based 

expression variations 

Varied expressions of target across different cells of diverse 
diseases 
Recent studies had indicated that the heterogeneity among cell 
types could result in distinct drug responses ( 58 ). For instance,
FGFR2-amplified gastric cancer cell lines (KatoIII & SNU16) 
were sensitive to AZD4547 (an FGFR2 inhibitor), while those 
without FGFR2 amplification (AGS & SNU1) were reported 

insensitive to AZD4547 ( 59 ). In other words, understanding 
the pattern of target expression among cell types is essential 
for the selection of representative cell line models and the un- 
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was also described. 
erstanding of the mechanism underlying drug response or
esistance ( 60–64 ). 

Such expression pattern among different cell lines were col-
ected using the following procedure. First , an exhaustive re-
iew was carried out in GEO ( 65 ) & Expression Atlas ( 66 ) em-
loying the keyword combinations of ‘cell line + expression’,
cell type + expression’, ‘cell line + differential expression’,
tc. This approach generated a total of 226 datasets contain-
ng the expression profile of thousands of proteins across cell
ines. Second , detailed information for each dataset, including
ell type, disease, etc., was meticulously recorded, which re-
ulted in a total of 1742 types of cell lines from 7289 samples,
panning 121 disease classes as defined by the WHO ICD-
1 (such as tuberculosis, skin cancer, allergic rhinitis, and ul-
erative colitis). Third , various OMIC data types were pro-
essed independently. For microarray data, the original CEL
les were downloaded and processed using the RMA function
n oligo package ( 67 ) to calculate the gene expression matrix;
or RNA-seq data, the raw count data were normalized us-
ng DESeq2 package ( 68 ). For a studied target, its varying
xpression levels across diverse cell types were visually repre-
ented (as shown in Figure 4 A). In summary, varying expres-
ions across various cell types for 347 successful, 939 clinical
rial, 188 preclinical / patented, and 1371 literature-reported
argets were provided. 

ifferential expressions of target induced by many exogenous
auses 
ifferent cell types manifest diverse perturbation signals in re-

ponse to exogenous stimuli, such as drug administration ( 69 ).
or the same stimulus (such as particular kinase inhibitor), a
ariety of cell lines were reported to be phenotypically respon-
ive, but the transcriptomic profiles among these cell lines af-
er the stimulation (such as the treatment by kinase inhibitor)
ere identified to be extremely different ( 70 ). Such perturba-

ion signals were valuable for providing novel insights into
nderstanding drug mechanisms of action and identifying po-
ential drug targets ( 70–73 ). 

The target’s expression profiles induced by exogenous stim-
li were collected and provided using the following proce-
ure. First , the differential expression data induced by exoge-
ous cause were retrieved from GEO ( 65 ) & Expression Atlas
 66 ) using the keyword combination of ‘cell line + drug’, ‘cell
ine + exogenous causes’, ‘cell line + therapy’, ‘cell line + en-
ironment’, etc. Second , all retrieved datasets were carefully
xamined, and the detailed exogenous stimuli were recorded,
hich were classified into three groups: treatment with drugs ,

nfection by bacterium / virus and stimulation by environmen-
al factors . Moreover, the explicit description of each dataset
as also provided, which included cell line, disease, pertur-
ation factor, etc. Third , different OMIC-based data types
ere processed independently. For microarray data, the CEL
les were processed with the RMA function of oligo pack-
ge ( 67 ) to normalize expression matrix; for RNA-seq data,
aw count data were normalized using DESeq2 package ( 68 ).
inally , the cell line-specific expression profile was shown in
TD using violin plots for any studied target (shown in Fig-
re 4 B). All in all, a total of 625 exogenous stimuli (hypoxia,

nterferon treatment, influenza infection, etc.) that modified
he expression profiles of 357 successful, 926 clinical trial,
97 preclinical / patented & 1382 literature-reported targets
mong 313 cell lines were made available in TTD 2024. 
Modified expressions of target altered by human endogenous
factors 
Given that a gene can play distinct roles in different con-
texts, particularly where the cell-specific function is involved,
human endogenous gene perturbation (mutation, expression
variation, etc.) is considered as a powerful way to explore tar-
get functions under different cell contexts ( 74–77 ). In other
words, cell line-specific gene perturbations are valuable for un-
derstanding the molecular mechanism underlying target dif-
ferential expression among cell lines, which can help to iden-
tify new cell-specific functions, protein-protein interactions
and regulatory cascades ( 78–81 ). 

Such target’s expressions regulated by endogenous factors
were collected based on the following procedure. First , the
GEO ( 65 ) & Expression Atlas ( 66 ) were manually reviewed
to retrieve gene expression data altered by diverse human
endogenous factors, which included protein mutations, ex-
pression variations, etc. Second , detailed information of each
dataset (such as cell line, disease, and human endogenous fac-
tor) was meticulously extracted, which resulted in over 400
types of human endogenous factors (such as KRAS mutation,
and MYC over-expression), and the factor-induced expression
variation was also illustrated in Figure 4 C. The process and
normalization of OMIC-based raw data were conducted by
following the same procedure as that was discussed in the
above two sections. All in all, the expression profile of 352 suc-
cessful, 934 clinical trial, 192 preclinical / patented, and 1363
literature-reported targets among 198 cell lines were provided.

Regular update on the drug & target data and 

di ver se functions 

The integration of newly emerged drugs and targets to TTD
was also routinely conducted in this update. First , the drugs
approved during the past two years were collected from two
authoritative publications ( 82 ,83 ). Second , new drugs in clin-
ical trials were collected from various established resources,
such as ClinicalTrials.gov, PhRMA medicines in development
reports, and numerous Drug Pipeline Reports of > 200 com-
panies (such as Pfizer , Roche , Sanofi and GlaxoSmithKline ).
Third , the trial status of drugs available in TTD were contin-
uously updated using the timely data provided in ClinicalTri-
als.gov, company’s official reports, etc. Fourth , the preclinical
and patented drugs were collected from diverse data sources,
such as company’s pipeline reports, large number of patents
authorized by the patent offices of many countries, and recent
literature reports. 

For each of the collected drugs, its corresponding therapeu-
tic target(s) was further validated by following a routine pro-
cess that showed the functional roles of the target(s) in disease
phenotype and the ability of drug-like molecule to modulate
the activities of the target to achieve therapeutic efficacies ( 84 ).
Finally , the status of each therapeutic target was determined
based on the highest status of its corresponding drugs, which
were then classified to successful target (approved drug), clin-
ical trial target (clinical trial drug), preclinical target (drug in
preclinical trial), patented target (drug protected by the au-
thorized patent), and literature-reported target (investigative
agent). As a result (provided in Table 1 ), a total of 3730 tar-
gets and 39 862 drugs were finally provided in TTD 2024 and
the total numbers of drugs and their corresponding therapeu-
tic targets in different versions of TTD over the past decade
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Figure 4. Targets’ druggability sho w ed b y cell-based e xpression v ariation. ( A ) Varied e xpressions of target across different cells of div erse diseases . 
Targets’ expression data for different cell types in normal and untreated conditions were collected and illustrated by pictorial bar chart, and 1742 cell 
types from 7289 experimental samples were reported, which covered several (a total of 121) disease classes (such as skin cancers, tuberculosis, allergic 
rhinitis, and ulcerative colitis) defined by ICD-11. ( B ) Differential expressions of a target induced by exogenous stimuli . Cell type-based differential 
expressions of targets induced by exogenous causes (a total of 625 exogenous causes, such as interferon treatment, influenza infection and h ypo xia) 
among 313 cell types were shown. ( C ) modified expressions of a target altered by human endogenous factor . Cell type-based target’s expression 
modifications mediated by exogenous causes (a total of 447 endogenous factors, such as KRAS mutation and MYC o v er-e xpression) among 198 cell 
types were explicitly described. 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, a ‘ batch search ’ function allowing the upload
of a list of TTD drug IDs or Target IDs was implemented
to the TTD 2024 ( https:// db.idrblab.net/ ttd/ ttd-search/ batch-
search ), and a ‘ full download ’ function of all search results
was also realized by simply clicking the ‘ Download the Search
Results ’ button. Such functions could be very helpful to broad
audiences, especially those pharmacologically inclined users.
It should be noted that, although it was technically feasible
to implement the search function based on multiple types
of entries other that drug / target IDs (such as drug / target
name / synonyms), that function could have substantial chance
to return many false positive search results, which had there-
fore not been made available in TTD 2024 yet. 
Conclusion and perspectives 

Identification and validation of therapeutic targets is one of 
the critical steps in drug development ( 85 ). Insufficient anal- 
ysis of target druggability in the early stage of drug dis- 
covery remains one of the key issues of high drug attri- 
tion rates, which should therefore be systematically consid- 
ered and carefully assessed ( 86 ). Taking a recent study as 
an example ( 9 ), it identified several essential features of tar- 
get druggability (such as ‘ distribution of target among var- 
ious tissues or organs in human ’, ‘ similarity profile of tar- 
get to human proteins outside its f amil y ’, ‘ inv olv ements of 
target in well-established life-essential pathways ’ and two 

https://db.idrblab.net/ttd/ttd-search/batch-search
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Table 2. Three major contents and their corresponding statistics integrated to this version of TTD , whic h included: target druggability illustrated by 
molecular interactions or regulations, characterized by different human system features and reflected by diverse cell-based expression variations 

Target druggability illustrated by molecular interactions or regulations 
✩ Ligand-specific spatial structures of target in its drug binding pocket 
No. of targets with drug binding sites information No. of ligands No. of structures 
Successful Clinical trial Preclinical / patent Literature-reported 
319 427 116 375 16373 22431 
✩ Netw or k properties of target measured by protein–protein interactions 
No. of targets with protein–protein interaction information No. of Interacting Protein No. of protein–protein 

interactions 
Successful Clinical trial Preclinical / patent Literature-reported 
426 727 143 867 9309 52713 
✩ Bidirectional regulations between microbiota and therapeutic agents 
No. of microbe(s) affecting the metabolism of drugs No. of drugs No. of microbe and drug 

interactions 
Order Family Genus Species 
59 101 135 194 663 9812 
Target druggability characterized by different human system features 
✩ Similarity profile of target to human proteins outside its amily 
No. of targets with human similarity proteins outside the target families No. of similarity proteins No. of protein families 
Successful Clinical trial Preclinical / patent Literature-reported 
389 933 204 1479 3128 1004 
✩ Inv olv ements of target in the well-established life-essential pathways 
No. of targets with affiliated life-essential pathways information No. of life-essential pathways No. of targets with only one 

pathway 
Successful Clinical trial Preclinical / patent Literature-reported 
373 897 196 1415 241 679 
✩ Distributions of target among a variety of tissues or organs in human 
No. of targets with human tissues or organs distribution information No. of tissues / organs No. of experimental samples 
Successful Clinical trial Preclinical / patent Literature-reported 
338 600 143 920 32 201 
Target druggability reflected by diverse cell-based expression variations 
✩ Varied expressions of target across different cells of div er se diseases 
No. of targets with varied expressions across different cell types No. of cell types No. of disease classes 
Successful Clinical trial Preclinical / patent Literature-reported 
347 939 188 1371 1742 121 
✩ Differential expressions of target induced by many exogenous causes 
No. of targets with differential expressions induced by exogenous causes No. of cell types No. of exogenous causes 
Successful Clinical trial Preclinical / patent Literature-reported 
357 926 197 1382 313 625 
✩ Modified expressions of target altered by human endogenous factors 
No. of targets with modified expressions altered by endogenous factors No. of cell types No. of endogenous factors 
Successful Clinical trial Preclinical / patent Literature-reported 
352 934 192 1363 198 447 
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 netw or k properties of target measured by PPIs ’) from 89
uccessful targets. These features were reported to denote
he difference between the targets of rapid and slow clini-
al progression processes. In the TTD 2024, all those ‘es-
ential features’ of target druggability were collected and
ignificantly extended to 426 successful, 1014 clinical trial,
12 preclinical / patented, and 1479 literature-reported ther-
peutic targets. All in all, the valuable data on target drug-
ability provided in TTD 2024 (as described in Table 2 )
ogether with the future updates of established databases
ere essential in facilitating the explorations of the drugga-
ility characteristics of targets for guiding target and drug
iscovery. 
TTD has been committing to provide comprehensive data

n therapeutic targets to facilitate new drug and target dis-
overy. Since the beginning of the 21st century, it has un-
ergone many updates ( 16 ,87–89 ) and accumulated world-
ide impacts during the past twenty years. Particularly, there
ere many online tools that adopted TTD data for server
evelopment. Some of them used TTD data to establish
ervers facilitating drug repurposing, such as LigAdvisor ( 90 )
 DrugRep ( 91 ); discovery of drug / target, such as CoVex
( 92 ) & DeepCancerMap ( 93 ); prediction of adverse drug
reaction / synergistic combination, such as MEDICASCY ( 94 )
& H-RACS ( 95 ); compound-based functional enrichments,
such as MBROLE3 ( 96 ) & MMEASE ( 97 ). Moreover, TTD
information has also been adopted by recent studies to pro-
mote various scientific discoveries. Some identified the asso-
ciation between genetic variant and disease ( 98–103 ); some
others revealed the molecular characteristics crucial in virus
infection ( 104 ), target variability key in determining drug re-
sponse ( 62 ), and target promising in discovering antifungal
therapy ( 105 ). With the rapid progression of modern technol-
ogy and concerted effort in current drug discovery, the wealth
of data amassed in TTD and other databases ( 11–20 ) over the
past decades collectively established solid foundations for the
identification of novel targets and the discovery of new thera-
peutics ( 98–100 ). 

Data availability 

TTD is freely accessible to all users without any login require-
ment at: https:// idrblab.org/ ttd/ . 

https://idrblab.org/ttd/
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