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Abstract 

Pathw a y Data Integration Portal (PathDIP) is an integrated pathw a y database that was developed to increase functional gene annotation cover- 
age and reduce bias in pathw a y enrichment analy sis. PathDIP 5 pro vides multiple impro v ements to enable more interpretable analysis: users 
can perform enrichment analysis using all sources, separate sources or by combining specific pathw a y subsets; the y can select the types of 
sources to use or the types of pathw a y s f or the analy sis, reducing the number of resulting generic pathw a y s or pathw a y s not related to users’ 
research question; users can use API. All pathw a y s ha v e been mapped to se v en representativ e types. T he results of pathw a y enrichment can 
be summarized through knowledge-based pathway consolidation. All curated pathways were mapped to 53 pathway ontology-based categories. 
In addition to genes, pathDIP 5 now includes metabolites. We updated existing databases, included two new sources, PathBank and Metabol- 
icAtlas, and remo v ed outdated databases. We enable users to analyse their results using Drugst.One, where a drug-gene network is created 
using only the user’s genes in a specific pathw a y. Interpreting the results of any analysis is now improved by multiple charts on all the results 
pages. PathDIP 5 is freely a v ailable at https:// ophid.utoronto.ca/ pathDIP . 
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athway enrichment analysis is a powerful method to help
nterpret the collaborative role and molecular functions per-
ormed by a set of genes, proteins or non-coding RNAs. In-
reasingly, multi-omics and single-cell analyses are further en-
arging the number and size of lists of genes or proteins of
nterest that require interpretation and characterization of the
asks performed in a cell. Because pathways are entities cre-
ted by researchers to describe a phenomenon, there is large
ariability in the representation of each entity. This leads to
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poor overlap among databases ( 1 ), and the rationale behind
the creation of Pathway Data Integration Portal (PathDIP)
( 2 ). Since its first release, we have increased the number of
databases included and extended the gene coverage across or-
ganisms, to try to depict the most complete picture available
for each pathway in multiple species. One side effect of this ap-
proach has always been the large number of human-curated
pathways, which creates a challenge with multiple-testing cor-
rection, and sometimes results in lists of pathways that are too
long and challenging to summarize and interpret. 
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Pathway consolidation, the process of unifying pathways
from multiple databases, is a powerful method aimed to help
reduce the number of pathways while increasing the com-
pleteness of pathway coverage and characterization. While the
goal is clear, its implementation is non-trivial in an automated
fashion, assuring consistency, and with an aim of biological
relevance. Pathway databases create some challenges in the
integration of similar pathways, as discussed in ( 3 ). We ad-
dress this challenge in PathDIP 5 by providing more specific
pathway enrichment filters and annotations, and knowledge-
based pathway consolidation. We created an integrated ontol-
ogy using KEGG and Reactome and mapped all 6535 human-
curated pathways to 53 representative categories, aiming to
reduce and prioritise lists of pathways and make it easier for
researchers to perform function-specific validation in vitro or
in vivo , creating a valuable feedback loop between experimen-
tal laboratory and computational analyses. 

Materials and methods 

Data collection, processing and membership 

prediction 

Core pathways 
We removed 10 source databases from pathDIP as they have
not been updated in the past 10 years. Moreover, SMPDB
is now part of PathBank, and NetPath is now included in
WikiPathways; for this reason, the original SMPDB and Net-
Path were removed. We added PathBank and MetabolicAtlas
as new sources and collected updated versions of the remain-
ing 10 databases (May 2023). We excluded from the collected
data all the pathways that included only one gene ( n = 2776).
Table 1 lists the details for each database, including the non-
human organisms we curated from them and whether they
included metabolite species. 

Protein IDs, orthologs and interactions 
Mappings between UniProt IDs, NCBI Gene IDs, gene sym-
bols and protein names were obtained from HGNC ( 16 )
(2023-08-30) and genekitr ( 17 ) version 1.2.2. We have
switched Primary IDs from NCBI Gene to UniProt, as in Re-
actome and IID ( 18 ). One-to-one orthologs were downloaded
from Ensembl ( 19 ) release 103. Physical protein–protein in-
teractions (PPIs) were downloaded from IID ( 18 ) version
2021–05. 

Predictions based on orthology 
For each non-human organism, we replaced members of core
human pathways with their orthologs and kept only pathways
with at least three ortholog members (i.e. we did not con-
sider a single protein or a single interaction (two proteins) as a
pathway). 

Predictions based on physical network connectivity 
As in the previous versions, we predicted statistically signifi-
cant protein-pathway associations for each species in pathDIP
5, using species-specific PPIs from IID. Supplementary Table 1
shows the databases integrated in IID and used for the pre-
diction. Due to the continuously increasing size and density
of the interactome and the number of curated pathways, we
modified the method used since version 1 to increase reliabil-
ity. We predicted an association between a protein, prot i , and
a pathway, path j , if prot i had a significant number of interac-
tion partners that were members of path j , according to core 
pathway data. Significance was calculated in two steps. First,
the probability of protein, prot i , having at least k interaction 

partners from pathway, path j , was calculated using a hyperge- 
ometric distribution as follows: 

Pr 
(
X ≥ k 

) = 

min ( n,M ) ∑ 

m = k 

(
M 

m 

) (
N − M 

n − m 

)
(

N 

n 

)

where N = number of proteins in the PPI network, M = num- 
ber of proteins in the PPI network that are core path j mem- 
bers, n = total number of prot i interaction partners, m = num- 
ber of prot i interaction partners that are core path j members.
Such probabilities were calculated for all core pathways in- 
volving prot j interaction partners. Second, these probabili- 
ties were adjusted for multiple testing using the Benjamini–
Hochberg method ( 20 ). Pathways with adjusted probabili- 
ties < 0.01 were kept as predicted pathways associations of 
prot i . This prediction method differs from previous pathDIP 

versions, where N was the number of network proteins with 

pathway annotations and n was the number of interaction 

partners with pathway annotations. The new method pro- 
vided pathway annotations for 355 proteins that previously 
had no curated or predicted pathway annotations. 

For human, we provide predicted protein-pathway associa- 
tions using core pathways and two sets of PPIs: (i) experimen- 
tally detected PPIs and (ii) the full set of human PPIs avail- 
able in IID (i.e. the combination of experimentally detected 

and computationally predicted physical protein interactions).
For non-human species, we used only one set of PPIs, i.e. the 
full set of species-specific PPIs, to predict strong physical as- 
sociations between each protein and each pathway in core (if 
available) or ortholog pathway sets. 

Pathway types and categories 
Each pathway in PathDIP 5 was mapped to one of seven path- 
way types and one of fifty-three pathway categories (Sup- 
plementary Table 2). Pathway types are broad topics (e.g.
metabolism, disease) that can be selected prior to running en- 
richment analysis, to increase the relevance and statistical sig- 
nificance of enrichment results. Pathway categories are smaller 
groups of pathways sharing a similar function (e.g. carbo- 
hydrate metabolism), disease type (e.g. immune diseases), or 
other properties. PathDIP 5 uses categories to provide a con- 
solidated view of enrichment results: while full enrichment re- 
sults may include several thousand pathways, a consolidated 

view displays up to 53 pathways, each one being the most en- 
riched pathway in its category. 

Pathway types and categories are largely based on the on- 
tology of the KEGG pathway database ( 21 ). Several new cat- 
egories were added (e.g. Cellular response to stimuli, Muscu- 
lar and bone system) to accommodate certain pathways not 
present in KEGG. 

Pathways were mapped to types and categories using path- 
way ontologies, regular expression rules, and manual cura- 
tion. Pathways from Reactome ( 22 ) and WikiPathways ( 23 ) 
were mapped using Reactome ontology and Pathway Ontol- 
ogy ( 24 ), respectively. In this approach, high-level terms in 

an ontology were manually assigned to categories (e.g. Reac- 
tome term ‘Metabolism of carbohydrates’ was assigned to cat- 
egory ‘Carbohydrate metabolism’) and then a term’s descen- 
dent pathways were mapped to the term’s category. Pathways 
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Table 1. List of databases included in pathDIP 5 

Source Downloaded from Citation Organisms * Metabolites 

ACSN2 Source website ( 4 ) Hs No 
BioCarta MSigDB ( 5 ) Hs No 
HumanCyc * PathwayCommons ( 6 ) Hs No 
KEGG CPDB ( 7 ) Hs, Mm, Sc Yes 
MetabolicAtlas Source website ( 8 ) Hs, Ce, Dm, Mm, Rn, Sc Yes 
Panther Source website ( 9 ) Hs, Bt, Ce, Cf, Dm, Ec, Gg, Mm, Rn, Sc, Ss No 
PathBank Source website ( 10 ) Hs, Bt, Ce, Dm, Mm, Rn, Sc Yes 
PharmGKB Source website ( 11 ) Hs Yes 
Reactome Source website ( 12 ) Hs, Bt, Ce, Cf, Dm, Gg, Mm, Rn, Sc, Ss Yes 
SIGNOR 3.0 Source website ( 13 ) Hs Yes 
UniPro t.P athways Source website ( 14 ) Hs, Bt, Ce, Cf, Cp, Dm, Ec, Gg, Mm, Oa, Oc, 

Rn, Sc, Ss 
No 

W ikiPathwa ys Source website ( 15 ) Hs, Bt, Ce, Cf, Dm, Ec, Gg, Mm, Rn, Sc, Ss No 
* Hs = Homo sapiens, Bt = Bos taurus, Ce = Caenorhabditis elegans, Cf = Canis lupus familiaris, Cp = Cavia porcellus, Dm = Drosophila melanogaster, 
Ec = Equus caballus, Gg = Gallus gallus, Mm = Mus musculus, Oa = Ovis aries, Oc = Oryctolagus cuniculus, Rn = Rattus Norvegicus, Sc = Saccharomyces 
cerevisiae, Ss = Sus scrofa 
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rom sources without ontologies were mapped either with reg-
lar expressions, if pathway names from the same category
hared common patterns, or through manual curation. 

athway enrichment analysis 
athway enrichment p-values are calculated as in ( 13 ), using
isher’s Exact test. Multiple testing correction q -values are cal-
ulated by two methods: Bonferroni and False Discovery Rate
Benjamini–Hochberg) ( 8 ). Enrichment of a user-defined pro-
ein (gene) list, U -list, for a given pathway, Pw , is calculated
s follows: 

p - value 
(
U - list, Pw 

) = 

min ( N U ,N Pw ) ∑ 

n u −= N u −

( 

N Pw 

n u −

) ( 

N S − N Pw 

N U 

− n u −

) 

(
N S 

N U 

)

here N s = number of proteins in user-selected pathway
atabases and pathway types (background), N U 

= number of
roteins in U -list that are also in the background, N Pw 

= num-
er of proteins in pathway Pw , N u = number of proteins in
 -list that are also in Pw . 

ortal description 

nrichment analysis improvement 
istorically, pathDIP provided pathway enrichment analysis

sing all available (or selected) sources combined. While this
rovided strong results with largely adjusted P -values, it could
lso provide vast lists of pathways or be too stringent and pro-
ide no results at all. To address both challenges, a researcher
an now perform the search by source across all databases,
here results are calculated and presented by the individual
atabase source. This enables researchers to familiarise them-
elves with different types of pathways provided by specific
ources, their relevance to the question at hand, their possible
iases, and to obtain smaller adjusted P -values for enriched
athways. Moreover, a user can choose to obtain only results
ith adjusted P -values lower than 0.01, 0.05 or 0.1. For ex-
lorative purposes, they can also choose not to filter by ad-

usted P -value and retrieve all the available results. 
We also consolidated pathways inside and across databases,

roviding mapping for each pathway to a type and a category.
his important feature can be used either before searching or
fter retrieving the results. For example, pathway databases
like KEGG and WikiPathways include multiple disease path-
ways that may not be of interest to a researcher, who would
previously had to either exclude such sources or retrieve a list
of pathways with pathways not of interest. In this example,
the researcher can now select the types of pathways for the
analysis, reducing the number of resulting generic pathways
or pathways not related to the research question at hand. 

Finally, pathway enrichment analysis in the microRNA
page can now be performed on genes targeted by all query mi-
croRNAs, and not only on all the targets of each microRNA.

New features 
We substantially modified pathDIP to improve its integra-
tion into complex bioinformatics workflows. As mentioned in
methods, in addition to genes, pathDIP 5 also covers metabo-
lites from each source database, and we developed a dedicated
metabolic pathway enrichment analysis page. 

Users can integrate pathDIP with their workflow using the
API, as before, and can query microRNAs directly without go-
ing through mirDIP, as in version 4; now they can also anal-
yse their results using Drugst.One ( 25 ), a tool that integrates
proteins with their interactome and annotates them with in-
formation like targeting drugs or known disease associations.
For Drugst.One, the network is created per enriched pathway
using only the user’s genes in that pathway. 

Multiple charts have been included on all the results pages.
We now provide bar charts to show the q-value for the top
seven pathways in each source (if available). We also provide
the ratio of annotated query proteins over the pathway size.
We provide lists and pie charts of identified query genes per
source and per set (i.e. literature curated or predicted) so that
researchers can investigate if their query genes are more well-
known and annotated across databases or if they tend to be
less studied or even pathway orphans. 

The Gene / Pathway matrix now is available as a heatmap
style chart as well, colour-coded by source. 

Results 

PathDIP content 

PathDIP 5 now includes protein and metabolite members of
6535 human-curated pathways from 12 pathway databases.
From version 1, pathDIP had significantly broader genome
coverage with pathway annotation compared to any other
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Figure 1. Genes and pathw a y s distribution across pathDIP database versions. Panel A shows the number of genes annotated with any pathway in each 
version of pathDIP and for each set (curated, extended using only experimental, and extended using experimental and predicted PPIs). Panel B shows 
the distribution of the number of pathw a y s per gene across versions and sets. For panel B, only genes present in at least tw o v ersions w ere considered. 
Panel C shows the number of genes present in each pathway type, for every set. Panels D and E show for each degree interval, with the degree being 
the number of protein interactions as identified using IID, the number of pathw a y s the proteins are annotated with, for each set. In Panel D, protein 
degree was calculated using only experimental PPIs, while in Panel E it was calculated using experimental and predicted PPIs. Panel F shows the 
number of genes annotated with a certain number of pathw a y s in each set, separated by pathway type. 
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Figure 2. Number of genes ( A ) and pathw a y s ( B ) present in each species (e x cluded human) in pathDIP 5 compared to the numbers in pathDIP 4. 
Numbers are shown per each set (i.e. curated or predicted). 
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atabase. Figure 1 A shows how not only updated pathway
uration and database integration improved the number of
uman-annotated proteins with consecutive versions, but also
he scale of the extension of pathway orphans’ annotation. At
resent, 14046 human genes are annotated with curated path-
ays, while extended pathways provide annotation for 3236

dditional genes. Moreover, as visible in Figure 1 B, the num-
er of pathways per human gene reached a plateau around
ersion 3, while the same number has been increasing steadily
cross versions for predicted pathway associations. The cur-
ent version also includes 5783 metabolites across species. 

Interestingly, while the number of genes present in each
ype of pathway varies in the literature-curated sets, with
he metabolic and drug-related pathways including the low-
st number of genes (as expected), our predicted annotations
re homogeneously and proportionally distributed for genes
cross categories (see Figure 1 C). Figures 1 D and E show that
e can predict a larger number of pathways for proteins that
ave a higher number of protein interactions, as expected, but
lso that proteins with a larger number of interactions have a
arger number of pathway annotations. This is very likely due
o the well-known study bias, where ‘famous’ proteins (such
s TP53) are studied in depth and are annotated with multiple
unctions, while less-known proteins lack interactions, anno-
ations or both. Using predicted protein interactions provides
 way to obtain protein interactions for less-known proteins,
and to predict their pathway annotations, giving a researcher
studying protein and pathway orphans the same ability to
identify relevant molecular functions as a researcher study-
ing more famous proteins. Thus, reducing bias. When con-
sidering the number of pathways per gene, we can see that
most genes are annotated with a large number of pathways
and that our predictions add a large number of pathways per
gene only in the metabolic and drug-related pathway types
(Figure 1 F). 

The number of organisms other than human for which cu-
rated pathways are available is now 13, from 7 in the previous
version. For the 7 in common, the number of curated path-
ways is larger in pathDIP 5: it varies by organism, but it goes
from doubling the number (in yeast) to 20 times more path-
ways (in cow). Moreover, the number of pathways curated or
predicted per organism increased as well (30% median across
organisms), as shown in Figure 2 . 

Example applications 

Value of pathway consolidation 

In a previous study ( 26 ) pathDIP 3 was used to perform path-
way enrichment analysis in eight sets of comparisons (up- and
down-regulated in glomeruli and in tubulointerstitial kidney
tissues, comparing samples with antibody-mediated rejection
to ones with acute tubular necrosis or acute cellular rejection),
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Figur e 3. P athw a y consolidation of eight sets of pathw a y enrichment. AMR = antibody -mediated rejection, ATN = acute tubular necrosis, ACR = acute 
cellular rejection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and at the time manual pathway consolidation was performed
on the 1685 pathways to group them into 8 meaningful cat-
egories. We re-analysed the same genes using pathDIP 5, and
we obtained 907 pathways, still a large number to get insight
from. We used the default consolidation available now on the
portal to recreate Figure 4 A from the paper ( 26 ). In our cat-
egories, apoptosis and cell cycle are grouped in ‘Cell growth
and death’, which we renamed ‘Cell cycle’ for this compari-
son. We also renamed our category ‘Cell motility’ to ‘ECM
and cell communication’ for the same reason. As visible in
Figure 3 , there are some expected differences in the number
of pathways for each category, but the trend observed in the
original paper remains: ECM is observed only in the enrich-
ment analysis of down-regulated genes, immune system re-
lated pathways are mainly present in the enrichment anal-
ysis of upregulated genes in glomeruli, and signal transduc-
tion is more prominent in the enrichment analysis of down-
regulated genes. There is a larger number of metabolic path-
ways in our analysis, not surprisingly as pathDIP 5 has more
metabolic pathways compared to version 3 used in the original
publication. 
Pathwa ys link ed to microRN As in tr aumatic br ain injury 
A recent study performed a metanalysis of microRNAs differ- 
entially expressed in biofluids of patients with traumatic brain 

injury (TBI) ( 27 ). The researchers gathered the gene targets of 
the microRNAs from mirDIP ( 28 )—a database of microRNA–
target interactions—and subsequently used them to perform 

pathway enrichment analysis using pathDIP 4. We re-run the 
analysis using the ‘Search miRNAs’ tab of pathDIP 5. Sim- 
ilarly, the majority of shared pathways are linked to signal 
transduction, but while the researchers used word enrichment 
analysis for this finding, we used the automated pathway con- 
solidation. As visible in Figure 4 A, this provides a faster way 
to identify which categories of pathways are shared (or exclu- 
sive) when comparing different sets. We also looked at spe- 
cific signalling pathways as in the original paper and identified 

the same types of signalling as in the original paper, highlight- 
ing that a large reduction in the number of databases did not 
drastically change the message obtained in previous analyses.
Figure 4 B shows the q -value of signalling pathways present 
in all three biofluids, as those were the focus of the original 
paper discussion, and provides an unbiased and reproducible 
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Figure 5. Drugs targeting the genes annotated with MATRIX 
REGULATION pathw a y. Genes are the blue hexagons while drugs are the 
pink diamonds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

view of the pathways obtained, while in the original paper,
due to the number of pathways, the researchers had to manu-
ally select the most representative candidates to highlight. We
then demonstrated that using a combination of the miRNA-
specific tab and the preset consolidation can provide a faster,
unbiased and reproducible way to reach the same (or similar)
desired results. 

Investigation of gene co ver age b y source and set 
PathDIP has always aimed to reduce bias and increase cover-
age by integrating multiple databases to expand the number
of annotated genes provided and predicting pathway associ-
ations to augment the number of pathway annotations per
gene as well as the number of annotated genes. This results
in providing annotations also for genes that have no path-
way annotation in the literature so far (what we refer to as
pathway orphans , analogous to interactome orphans ( 29 )).
Using 138 genes most frequently deregulated in osteoarthri-
tis, as described in ( 30 ), we queried pathDIP and exported the
pie charts to investigate the gene coverage per source and set.
As visible in Supplementary Figure 1, most of our genes have
literature-curated annotation in Reactome, but still, 21% of
our genes would not be annotated if we were using only Re-
actome, compared to 11% using all the available databases.
More importantly, the 16 genes missing from the literature-
curated set are clearly pathway orphans. Using pathway pre-
dictions, we can provide annotation for 4 (using only exper-
imental PPIs) or 13 (using experimental and predicted PPIs)
more genes, reaching annotation coverage for 98% of the
genes of interest. Having annotations for all the genes of inter-
est is important to ensure pathway enrichment analysis identi-
fies pathways from the full gene set, not only a (small) fraction
of genes, which leads to biased conclusions. These results also
highlight one reason for irreproducible results, as results from
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pathway enrichment analysis often drive follow-up functional
studies; and depending on which database one uses, the re-
sults could be drastically different, especially for the database-
specific pathway orphans. 

Drugs targeting specific pathways 
Using the same 138 osteoarthritis-related genes as above,
we performed pathway enrichment analysis using extended
pathway association with experimentally detected and com-
putationally predicted PPIs. We obtained 724 pathways, the
one with the lowest p-value being ‘MA TRIX REGULA TION’
from ACSN2. Running Drugst.One ( https://drugst.one ) on
this pathway and selecting to show the drugs that target the
query genes in MA TRIX REGULA TION, we obtained the
network in Figure 5 . Quercetin is the drug that, in this net-
work, targets the highest number of genes (4: MMP1, MMP3,
MMP9 and MMP13). Quercetin has been shown to prevent
osteoarthritis progression through the reduction of inflamma-
tion and ECM degradation, and by regulating cartilage matrix
degradation and remodelling ( 31 ,32 ), and has been shown to
be effective in improving the health of osteoarthritis patients
( 33 ). 

Discussion 

PathDIP 5 addresses the shortcomings related to the number
of pathways obtained by the integration of multiple databases:
genome coverage, annotation biases, and statistical power. 

The ability to reduce and select different kinds of path-
ways beforehand provides more specific results with lower
adjusted p-values. No other pathway database, to our knowl-
edge, provides the possibility to perform pathway enrichment
analysis using only a subset of pathway types. It is important
to note, though, that the selection should focus on reducing
the noise and not increasing the bias. For example, removing
disease-related pathways when studying genes linked to a spe-
cific disease reduces the noise, while selecting only metabolic
pathways involved in a specific process increases the bias. A
researcher needs to be aware of the difference and alert to
their own biases, which should all be described in the paper
to ensure reproducible science (note, results downloaded from
pathDIP include those details as well). 

The possibility of grouping the enriched pathways based
on their type or category provides the researchers, as shown
in our examples, with the ability to select subsets or showcase
high-level functions performed by the genes of interest even
when the number of results is quite large. This is important
because it provides the ability to obtain better annotations
for the genes at hand (the original aim of pathDIP) without
getting overwhelmed by the number of annotations obtained.
Pathway consolidation has been attempted by a few groups,
and released in databases with aims different compared to
pathDIP. PathMe ( 34 ) integrates only KEGG, Reactome and
WikiPathways, and is focused on the exploration and visual-
ization of integration, consensus and cross-talks among path-
ways. Similarly, PathCards ( 35 ) focuses on the integration
and visualization of pathways from Reactome, KEGG, Phar-
mGKB, WikiPathways, QIAGEN, HumanCyc, Pathway Inter-
action Database, Tocris Bioscience, GeneGO, Cell Signaling
Technologies (CST), R&D Systems and Sino Biological, with-
out providing data download or pathway enrichment analy-
sis. ComPath ( 36 ) includes WikiPathways, KEGG and Reac-
tome and provides the possibility to either perform enrich-
ment analysis or visualize pathway similarity and overlap.
While the data can be obtained in multiple tabs, it is harder 
to integrate than in pathDIP. NCATS BioPlanet ( 37 ) integrates 
KEGG, BioCarta, Reactome, WikiPathways, NCI-Nature, Sci- 
ence Signaling and NetPath, and provides pathway enrich- 
ment as well as consolidation. The portal is quite user-friendly 
and provides several useful annotations, but the downloaded 

files do not provide enrichment results. All these databases 
provide data only for Homo sapiens . 

The integration with other tools, like mirDIP and 

Drugst.One, enables faster and more streamlined analyses.
The ability to query pathDIP through API leads to integration 

in diverse bioinformatics workflows, providing a useful tool 
for bioinformaticians and computational biologists. To in- 
crease pathDIP usability and thus user base, the database now 

provides multiple tables and graphs, supports more immedi- 
ate visualization of multiple results, and offers less computer- 
savvy users more options for interpretable and publication- 
ready results. 

Data availability 

PathDIP 5 is freely available at https://ophid.utoronto.ca/ 
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