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Abstract 

High-throughput plant phenotype acquisition technologies ha v e been e xtensiv ely utiliz ed in plant phenomics studies, leading to vast quantities of 
images and image-based phenotypic traits (i-traits) that are critically essential for accelerating germplasm screening, plant diseases identification 
and biotic & abiotic stress classification. Here, we present the Open Plant Image Archive (OPIA, https:// ngdc.cncb.ac.cn/ opia/ ), an open archive of 
plant images and i-traits derived from high-throughput phenotyping platforms. Currently, OPIA houses 56 datasets across 11 plants, comprising 
a total of 566 225 images with 2 417 186 labeled inst ances. Not ably, it incorporates 56 i-traits of 93 rice and 105 wheat cultivars based on 18 644 
individual RGB images, and these i-traits are further annotated based on the Plant Phenotype and Trait Ontology (PPTO) and cross-linked with 
GWAS Atlas. Additionally, each dataset in OPIA is assigned an e v aluation score that takes account of image data volume, image resolution, and 
the number of labeled instances. More importantly, OPIA is equipped with useful tools for online image pre-processing and intelligent prediction. 
Collectiv ely, OPIA pro vides open access to valuable datasets, pre-trained models, and phenotypic traits across diverse plants and thus bears 
great potential to play a crucial role in facilitating artificial intelligence-assisted breeding research. 
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Introduction 

Plant phenomics, as an innovative area for rapid and accu-
rate acquisition of diverse phenotypic data ( 1 ), has been ex-
tensively utilized to discover favorable traits due to the ad-
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esulting in the accumulation of images and i-traits at a fast-
rowing rate ( 3 ). In plant phenomics, i-traits refer to numer-
us quantifiable characteristics obtained through image analy-
is techniques, such as plant height and grain length. Recently,
here has been an increasing utilization of image datasets ac-
uired from various high-throughput plant imaging platforms
o explore multi-tissue phenotypes. These datasets have en-
bled in-depth investigations into grain recognition and ap-
earance inspection ( 4–6 ), plant density estimation ( 7–12 ),
eaf disease symptoms detection ( 13 ,14 ), and biotic & abiotic
tress classification ( 15 ). Furthermore, images have become
n indispensable source in revealing the intricate correlations
etween i-traits and agronomic traits powered by computer
ision technology and plant image processing tools ( 16–18 ).
learly, plant image datasets and their resulting i-traits data
re essential to identify valuable germplasm resources and ac-
elerate the breeding process. 

Over the past several years, several resources have been de-
eloped to collect plant image datasets from various image
ensors ( 3 ,19–23 ). Among them, representative examples are
uantitative-plant ( 3 ,24 ), X-Plant ( 19 ), and Annotated Crop

mage Dataset (ACID) ( 21 ). Quantitative-plant ( 3 ,24 ), devel-
ped in 2013, includes 31 image datasets, among which 13
atasets are associated with annotated instances. X-Plant ( 19 )
s a computed tomography (CT) database specifically created
o gather three-dimensional structural images of plants and
heir organs such as roots and leaves. ACID ( 21 ), with the aim
o review and compile annotated plant datasets for computer
ision, provides limited metadata for only four plant image
atasets across four species. Although valuable efforts have
een made by existing resources, there are two primary lim-
tations in common. For one thing, none of them integrates
etadata extensively nor provides annotated details for each

mage, which is actually essential for promoting the reusability
f plant image data. For another, they do not offer i-traits to
xplore novel traits, thus hindering further dynamic analysis
f plant growth structures. As a result, there is an urgent need
o establish a comprehensive resource specifically designed for
lant image-based phenotypic data with high-quality meta-
ata information. 
Here, we introduce OPIA ( https:// ngdc.cncb.ac.cn/ opia/ ), a

urated resource that houses numerous image datasets and i-
raits for both staple crops and model plants. In contrast to
urrent plant-relevant databases, OPIA focuses on collecting
mage datasets that encompass the two primary tasks in plant
henotype analysis: image classification and object detection
 25 ). OPIA features manual curation and image analysis and
chieves well collection and organization of significantly valu-
ble meta-information using controlled vocabularies. In ad-
ition, it offers user-friendly web interfaces and online tools
or retrieving, browsing, downloading, and preprocessing im-
ge data. Overall, OPIA provides a valuable resource for plant
mage-phenotypic analysis and thus bears great utility to con-
ribute to germplasm resource identification and accelerate
lant breeding research. 

ata curation and dataset evaluation 

he aim of OPIA is to provide high-quality meta-information,
hich is achieved through a standardized curation pipeline

hat involves several critical steps – data integration, data
uration, and dataset evaluation (Figure 1 ). Firstly, relevant
ublications or datasets are retrieved by using plant species
names (scientific name and common name) or plant images
as keywords (Supplementary Table S1). Then, the metadata
of datasets is curated from publications, and the property
of each image is extracted by a python script, respectively.
All these meta-information are summarized into six main
categories (description, biological information, function in-
formation, imaging, image properties, and citation) for each
dataset. Furthermore, plant images of whole-growth period
are captured by a high-throughput phenotyping facility (Scan-
Lyzer, LemnaTec GmbH, Germany, https://www.lemnatec.
com/). The ScanLyzer is a fully automated greenhouse sys-
tem that enables controlled growth conditions. ScanLyzer cap-
tured RGB images of growing plants and culm. According to
the image analysis process ( 26 ), plant-related traits, and culm-
related traits are obtained. In addition, the SegNet ( 27 ) deep
learning network is adopted to segment rice panicles, thus
panicle-related traits are also obtained (Supplementary Figure
S1). Phenological i-traits were analyzed based on these plants
and panicles traits acquired during the whole growth period.
Subsequently, each i-trait is mapped to the Plant Phenotype
and Trait Ontology (PPTO) term, a controlled vocabulary that
is used to describe plant traits, and cross-linked with GWAS
Atlas ( 28 ,29 ). To evaluate the dataset overall, ten indicators
are adopted to reflect the quantity of the image dataset (num-
ber of images), the quality of the images (resolution, storage
size), the richness of the images (potential application tasks,
number of labeled instances, sampling device prototypes, sam-
pling location, presence of labels, presence of traits), and the
balance of categories (Gini index) (Supplementary Table S2).
Using the aforementioned meta-information and i-traits, ten
quantified and normalized indicators are combined to yield
an evaluation score for each dataset. This score allows users
to evaluate and compare the integrity and applicability of var-
ious datasets. The evaluation score is calculated as follows: 

Evaluation _ score ( d ) = 

10 ∑ 

i =1 

X 

i −X 

i 
min 

X 

i 
max −X 

i 
min 

, (1)

where d indicates the d th image dataset and X 

i represents the
i th indicators. Among these ten indicators, the Gini index is
adopted to measure the balance of class distribution in image
classification tasks: 

Gini _ index ( p ) = 

K ∑ 

k =1 

p k ( 1 −p k ) = 1 −
K ∑ 

k =1 

p 

2 
k , (2)

where k represents the number of categories in the image clas-
sification dataset and p k is the probability of the image sample
belonging to the k th category. More details about the ten in-
dicators are publicly available at https:// ngdc.cncb.ac.cn/ opia/
helps . The ranking of the indicators and the final evaluation
scores of 56 datasets are shown in the Supplementary Figure
S2. 

Implementation 

Frontend 

The frontend of OPIA was built adopting Semantic UI
( https://semantic-ui.com; a development framework that
helps create beautiful, responsive layouts HTML) frame-
work. The web interfaces were constructed utilizing JSP
(Jakarta Server Pages, a template engine for web applications)
and JQuery ( https://jquery.com; a fast, small, and feature-rich
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Figure 1. Data curation and dataset e v aluation pipeline adopted by OPIA. The pipeline includes three critical steps. First, publications and datasets 
corresponding labels file are integrated from publicly a v ailable repositories. T hen the information of all images and labels are filtered and extracted by the 
python scripts, and the meta-information of all datasets are manual curated from the publications. Third, all datasets are assigned an evaluation score 
based on ten indicators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JavaScript library). Furthermore, to make the webpage concise
and intuitive, data visualization was built employing Echarts
( https:// echarts.apache.org/ zh/ index.html; a declarative
framework for rapid construction of web-based visualiza-
tion) and DataTables ( https://datatables.net; a plug-in for
the jQuery JavaScript library to render HTML tables). The
interface enables users to retrieve datasets through perti-
nent information and browse the detailed meta-information
and images of datasets easily. In addition, the interface
allows users to download the images or the whole dataset
conveniently. 

Backend 

OPIA was implemented using Spring Boot ( https://spring.io/
projects/spring-boot; a framework that follows the classic
Model-View-Controller pattern) as the back-end framework.
The meta-information was stored and managed in MySQL
( http://www.mysql.org; a reliable and widely used relational
database management system), and all image files were stored
on a Linux server. The backend system responds to the re-
quests from the frontend interface and retrieves pertinent data
from the database. It ensures data security , stability , and effi-
ciency, delivering accurate and rapid data support to the fron-
tend interface. 

Database contents and usages 

OPIA features comprehensive integration of plant images and
image-based phenotypic-traits (i-traits) data. The current ver-
sion of OPIA includes 566 225 high-quality images with 56 

datasets, comprising 2 417 186 annotated instances and six 

tissues across 11 plant species. OPIA also comprises 56 i-traits 
that are obtained from individual-based RGB images across 
the whole growth period of 93 rice and 105 wheat cultivars.
The detailed statistical data mentioned above is summarized 

in Table 1 (as of August 2023). These data are organized by 
OPIA in a publicly accessible manner, primarily consisting of 
three core modules: datasets, i-traits, and tools & data ser- 
vices. 

Datasets 

OPIA integrates the 56 plant image datasets, which were man- 
ually curated from 24 publications and multiple freely acces- 
sible databases. In OPIA, these datasets are available in two 

formats, a thumbnail view (Figure 2 A) and a tabular format 
(Figure 2 B) for user-friendly browsing. These formats allow 

for easy filtering by species, tissue, and computer vision tasks,
thus enabling users to efficiently navigate the extensive list 
of datasets. The thumbnail view offers a concise summary 
of each dataset, covering key information such as the name,
species, tissue, computer vision task, and images. Additionally,
the table format presents metadata in terms of sensor, sam- 
pling platform, evaluation score, potential application, tags,
and citation, allowing users to sort the table fields accord- 
ing to their preferences. Crucially, OPIA supplies a plethora of 
meta-information for each specific dataset (Figure 2 C), cover- 
ing general description, biological and functional information,
imaging, image property, and citation. Each dataset could be 
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Table 1. Data statistics in OPIA (as of 1 August 2023) 

Species # Images # Datasets 
# Labeled 
instances # Tissues # i-traits 

Arabidopsis ( Arabidopsis thaliana ) 11051 3 152276 2 −
Buckwheat ( Fagopyrum esculentum ) 168 1 168 1 −
Cassava ( Manihot esculenta ) 40879 3 31863 2 −
Common bean ( Phaseolus vulgaris 
L.) 

1400 1 1507 1 −

Maize ( Zea mays ) 42929 8 214209 4 −
Rapeseed ( Brassica napus ) 120 1 77806 1 −
Rice ( Oryza sativa ) 177374 6 353578 4 41 
Soybean ( Glycine max ) 27097 4 27097 2 −
Sunflower ( Helianthus annuus ) 328 1 328 1 −
Sugar beet ( Beta vulgaris ) 20720 2 7001 1 −
Wheat (Triticum aestivum) 244159 26 1551353 6 15 

Note: - not available. 

A

B

C

Figure 2. Screenshots of OPIA web pages, including ( A ) datasets in thumbnails, ( B ) datasets in table and ( C ) datasets with detailed information. 
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A

C

B

Figure 3. Screenshots of OPIA web pages, including ( A ) i-traits, ( B ) details of a specific i-trait and ( C ) tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

briefly described as a curated collection of multiple tags, which
aids users in quickly understanding the characteristics of any
dataset of interest. Moreover, in OPIA, users are allowed to
download either a single image or all images belonging to any
specific dataset. 

i-traits 

OPIA involves 56 i-traits, namely, 41 from rice and 15 from
wheat, corresponding to 198 crop accessions including 93 rice
cultivars and 105 wheat cultivars. These i-traits are associated
with three single plant image datasets (WGSR, WGSW172,
WGSW173), which were captured from the whole growth pe-
riod by the ScanLyzer plant phenomics platform. The i-traits
are categoried into seven groups including 5 plant-related
traint, 3 plant growth-related traits, 6 culm-related traits, 20
panicle-related traits, 4 panicle development-related traits 8
grain-related traits and 10 phenological traits. The definitions 
and categories of analyzed i-traits are shown in Supplemen- 
tary Table S3 (publicly avaiable at https://ngdc.cncb.ac.cn/ 
opia/traits ). For a given i-trait, OPIA provides basic descrip- 
tive information and detailed phenotype values of all culti- 
vars. Basic information comprises trait definition, phenotypic 
value, and PPTO (Plant Phenotype and Trait Ontology), which 

is presented in a tabular format that allows users to sort the ta- 
ble based on key fields in the header (Figure 3 A). The PPTO for 
each i-trait is annotated and cross-linked according to GWAS 
Atlas ( 28 ,29 ). In addition, OPIA offers Box-plot to illustrate 
the phenotypic value of all accessions in a species, which facil- 
itates comparative analysis among phenotypic traits. Accord- 
ingly, detailed i-traits of all corresponding accessions are listed 

in the table (Figure 3 B), including the general information of 
all accessions such as cultivar name, species, and subspecies.

https://ngdc.cncb.ac.cn/opia/traits
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A

B

Figure 4. Applications of images and image-based traits in ( A ) yield estimation, ( B ) whole-genome association studies and whole-genome selection 
breeding. 
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All these i-traits results are tabulated in OPIA and publicly
available for download as a tab-delimited file in XLSX for-
mat. 

Tools and data services 

OPIA is also equipped with multiple online analysis and in-
telligent prediction tools to process plant image data for ma-
chine vision tasks. These tools are organized according to
tasks such as image cropping, image resizing, image flipping,
image denoising, and image partitioning supporting batch im-
age preprocessing (Figure 3 C). To run any tool in OPIA, a
task ID will be generated, which can help users find the pro-
cessed results in a convenient manner. The intelligient pre-
diction tools support the estimation of yiled per plant and
wheat head number. Furthermore, OPIA provides data up-
loading and downloading services. Various image formats
(e.g. JPG, TIF, PNG, JPEG) captured by different types of
imaging sensors (e.g. visible light, near-infrared, depth cam-
era and chlorophyll fluorescence sensors) can be submitted
via opia@big.ac.cn. Users can also submit a compiled dataset
with relevant metadata (Supplementary Figure S3). All image
datasets can be freely downloaded in a compressed zip format
from https:// ngdc.cncb.ac.cn/ opia/ downloads , which contains
label records of image data in diverse formats (e.g. RSML ( 30 ),
JSON, TXT, XML, MAT, CSV or H5). Collectively, these on-
line tools and data services are invaluable for plant phenotyp-
ing research and application. 

Potential applications of datasets and i-traits 

To highlight the potential applications of the in-house datasets
in OPIA, we select WGSR dataset acquired by a controlled
environment stationary platform as a case to describe the
process of estimating the yield per plant (Figure 4 A). First,
users could access the dataset in the download interface. Then,
they can process images utilizing the online tools equipped
in OPIA including image cropping, image flipping, and im-
age partitioning. In particular, the images could be partitioned
into high yield, medium yield and low yield according to
the phenotypic value of the yield per plant trait (available at
https:// ngdc.cncb.ac.cn/ opia/ traits ). The pre-processed images
could further be fed into the deep convolutional neural net-
work ( 27 ,31 ) to learn features like shape, color and texture.
After the deep network model is continuously optimized and
iteratively updated until the loss is reduced to a certain range,
users can utilize the unseen images (testing set) to predict the
yield per plant. Accordingly, the combination of dataset and
model have the potential to assist breeding researchers in ac-
cession selection. 

Furthermore, phenotypic traits analyzed from images of
the whole growth period also have potential application in
genome-wide association studies and genome selective breed-
ing (Figure 4 B). Using a large amount of individual rice image
data in OPIA, dozens of i-traits have been obtained through
the image analysis pipeline. Users can perform correlation
analysis with corresponding genetic data to identify genetic
loci related to crop traits, e.g.Tang et al. found that 84.8% of
phenotypic variation in rice yield could be explained by 58
i-traits ( 18 ), and Wang et al. identified 4945 trait-associated
SNPs, and 1974 corresponding candidate genes ( 16 ). In addi-
tion, users can combine genotypes and i-traits to assist genome
selection breeding using deep learning methods ( 32 ,33 ). 
Discussion and future directions 

OPIA features extensive collection of image datasets and their 
associated traits for a broad range of plants and offers user- 
friendly web interfaces designed to facilitate data browsing 
and reuse. The current version of OPIA has 56 datasets for 
11 different plant species, containing a curated collection of 
566 225 images and 2 417 186 labeled instances. Moreover, it 
houses 56 i-traits that are derived from RGB images encom- 
passing 93 rice and 105 wheat cultivars. Thus, OPIA is an 

important plant phenotypic repository for providing datasets 
that have great utility in specific computer vision tasks. The 
plant image data available in OPIA is already quite exten- 
sive, although certain aspects require further improvement.
For example, there are no types of fruit plants, which play 
a vital role in human diets. OPIA offers a download func- 
tionality for pre-trained machine learning models; however, it 
currently lacks a comprehensive description of these models.
The addition of specific information on these models would 

undoubtedly attract more users from intelligent agriculture.
The existing meta information of image datasets is limited. In- 
spired by management strategies of biomedical imaging data 
( 34 ) and the plant phenotyping experiment (MIAPPE) stan- 
dard ( 35 ), we expect to mine richer metadata with controlled 

vocabulary and ontologies. Future directions include frequent 
integration of more image datasets and i-traits across a wider 
range of plant species. Moreover, we aim to design a high- 
performance deep-learning algorithm to automatically extract 
geometric-related traits based on image datasets. Since there 
are multiple datasets with similar applications, we plan to in- 
tegrate and normalize these corresponding datasets in order to 

expand training data for deep learning. We also call for col- 
laborations worldwide to build OPIA as a valuable resource 
that covers a more diverse range of images and i-traits. 

Data availability 

OPIA is freely available online at https:// ngdc.cncb.ac.cn/ opia/ 
and does not require the user to register. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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