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Abstract

VarCards, an online database, combines comprehensive variant- and gene-level annotation data to streamline genetic counselling for coding
variants. Recognising the increasing clinical relevance of non-coding variations, there has been an accelerated development of bioinformatics tools
dedicated to interpreting non-coding variations, including single-nucleotide variants and copy number variations. Regrettably, most tools remain as
either locally installed databases or command-line tools dispersed across diverse online platforms. Such a landscape poses inconveniences and
challenges for genetic counsellors seeking to utilise these resources without advanced bioinformatics expertise. Consequently, we developed
VarCards2, which incorporates nearly nine billion artificially generated single-nucleotide variants (including those from mitochondrial DNA) and
compiles vital annotation information for genetic counselling based on ACMG-AMP variant-interpretation guidelines. These annotations include (I)
functional effects; (ll) minor allele frequencies; (lll) comprehensive function and pathogenicity predictions covering all potential variants, such as
non-synonymous substitutions, non-canonical splicing variants, and non-coding variations and (IV) gene-level information. Furthermore, VarCards2
incorporates 368 820 266 documented short insertions and deletions and 2 773 555 documented copy number variations, complemented by
their corresponding annotation and prediction tools. In conclusion, VarCards2, by integrating over 150 variant- and gene-level annotation sources,
significantly enhances the efficiency of genetic counselling and can be freely accessed at http://www.genemed.tech/varcards?2/.
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Introduction

Rapid advances in sequencing technology over the last few
years have provided unprecedented opportunities and chal-
lenges for genetic counselling (1). To help clinicians and clini-
cal laboratory geneticists address new challenges in sequence
interpretation, standards and guidelines for interpreting se-
quence variants were developed by the American College of
Medical Genetics and Genomics (ACMG) (2). It is well estab-
lished that these standards and guidelines from ACMG are the
best practices for genetic counselling. However, most datasets
and in silico algorithms recommended by the ACMG for se-
quence variant interpretation are dispersed across various on-
line platforms and databases. In response, we introduced Var-
Cards (http://www.genemed.tech/varcards/), a comprehensive
online database, to equip users with essential genetic and clin-
ical knowledge for genetic counselling on specific coding vari-
ants (3). Because VarCards streamlines genetic counselling by
offering gene- and variant-level annotation information rec-
ommended by the ACMG, VarCards has accessed more than
372 000 visits since its launch.

With the clinical significance of non-coding single-
nucleotide variants (SNVs) and copy number variants (CNVs)
of the human genome in genetic counselling raised more em-
phasis (4-8), a growing number of genomic tools or databases
were developed to facilitate the interpretation of these non-
coding variations (9-32). Still, they were either locally in-
stalled databases (such as GREEN-DB (9) and regBase (28))
or command-line tools (such as ClassifyCNV (33) and DIVAN
(14)). In addition, many important annotation sources, such
as allele frequencies, expression quantitative trait loci (eQTL),
and regulatory information, have been dispersed across vari-
ous online platforms. This widespread dispersion complicates
the process for general clinicians, genetic counsellors and clin-
ical laboratory geneticists trying to quickly access up-to-date
data to interpret the function and pathogenicity of variations
in the whole human genome in line with the standards and
guidelines of the ACMG.

Although comprehensive human variation annotation
databases, such as VARAdD (34) and VannoPortal (35) ex-
ist, their primary emphasis is on providing detailed data on
regulatory profiles and evolutionary signatures. This is conve-
nient for biologists to explore the underlying molecular mech-
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anisms but does not specifically address the need for clinical
genetic counselling. In addition, some of these databases, such
as VARAdD (34), compiled a total of 577 283 813 variations,
of which the majority were single-nucleotide polymorphisms
(SNPs) with a low likelihood of pathogenicity; however, there
should theoretically be nearly nine billion SN'Vs in the human
genome. Moreover, these databases did not include CNVs or
detailed gene-level annotations.

To support clinicians, genetic counsellors, and clinical labo-
ratory geneticists in providing effective genetic counselling, we
developed VarCards2, an intuitive online database. It houses
nearly nine billion SNVs, over 360 million documented short
insertions and deletions (INDELSs), and more than two million
CNVs. VarCards2 provides in-depth annotations at both the
variant and gene levels, including 7 silico predictions of func-
tion and pathogenicity, minor allele frequencies (MAFs) across
diverse populations, splicing predictions for both canonical
and non-canonical splicing regions, and gene functionality, all
in alignment with standards and guidelines from ACMG.

Materials and methods

Variant-level data source

To optimise the support for genetic counselling, VarCards2 en-
compassed nearly nine billion SNVs, representing any base in
the human reference genome GRCh38 (including mitochon-
drial DNA) that had mutated into one of the three possi-
ble bases. Additionally, VarCards2 houses all reported short
INDELs (length < 50 bp) and CNVs (length > 50 bp) ex-
tracted from the subsequent seven databases: (I) the Genome
Aggregation Database (gnomAD) (36); (II) the International
Cancer Genome Consortium (ICGC) (37); (II) the clinical
variations database (ClinVar) (38); (IV) the Catalogue of So-
matic Mutations In Cancer (COSMIC) (39); (V) de novo mu-
tations database called Gene4Denovo (40); (VI) the NCBI
database of genetic variation named dbSNP (41) and (VII) the
NCBI database of human genomic structural variation named
dbVar (42).

We sourced allele frequency (AF) data for various eth-
nic backgrounds from several publicly accessible population
databases, such as (I) gnomAD v2.1.1 (125748 exomes and
15 708 genomes) (43), (I) gnomAD v3.1.2 (76 156 genomes)
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(36), (III) the Exome Aggregation Consortium (ExAC) (60 706
exomes) (44), (IV) 1000 Genomes Project (2504 individu-
als genomic data) (45), (V) Exome Sequencing Project (ESP)
(6503 exomes) (46), (VI) Kaviar genomic variant database
(13200 genomes and 64600 exomes) (47), (VII) the Haplotype
Reference Consortium (HRC) (64976 haplotypes) (48) and
(VIII) a database for the human mitochondrial genome named
MITOMAP (51836 full-length mitochondrial sequences) (49).
Additionally, we retrieved information on variants and their
associated diseases or phenotypes from ClinVar (38), ICGC
(37), COSMIC (39), InterVar (50) and the NHGRI-EBI cat-
alogue of human genome-wide association studies (GWAS)
(51). Moreover, we extracted functional and pathogenicity
prediction scores from more than 100 in silico algorithms
and tools. These tools encompass 50 coding region SNVs, 24
non-coding region SNVs, 19 splice variants, 4 INDELs (52—
55),4 CNVs (33,56-58) and 25 mitochondrial DNA variants.
In particular, the prediction scores of non-synonymous vari-
ants for coding regions were sourced from the dbNSFP v4.4
database (59,60), in addition to two recently introduced pre-
diction tools: CAPICE and AlphaMissense (53,61); prediction
scores for non-coding regions and splice variants were sourced
from our previous studies (62,63); prediction score for mito-
chondrial DNA variants was sourced from a collection of ge-
nomic, clinical, and functional annotations for human mito-
chondrial DNA variants named Mitlmpact (64,65). Further-
more, some variant information, such as reported de novo mu-
tations (40) and splice variants (63), and some regulatory in-
formation, including expression quantitative trait loci (eQTL)
(66), splicing quantitative trait loci (sQTL) (66), summary
data from VARAdD (34), GREEN-DB(9), and EPimap EPige-
nomics (67), were also catalogued (Table 1). Additionally, to
offer a more intuitive and straightforward interface, we have
visualized EpiMap Epigenomics data using heatmaps and fur-
nished an additional panel named “Variant Summary’ employ-
ing the following measures: (I) The corresponding rsID for the
variant and the link redirecting to the dbSNP database. (II)
The corresponding positions in GRCh37 and GRCh38 for the
variant, along with the link redirecting to the UCSC Genome
Browser. (III) The corresponding amino acid change associ-
ated with the variant. (IV) A variant is designated as a ’rare
variant’ if its AF is below 0.1% in the gnomAD database, ver-
sion 3.12. (V) Summarised information from ClinVar, includ-
ing *Clinical Significance’, ‘Review Status’ and *Condition’, is
displayed. (VI) If a variant is predicted to be deleterious by
more than 60% of the prediction tools, it is considered puta-
tively harmful.

Gene-level data source

The basic information, such as gene symbol, gene synonyms,
and the location, was sourced from NCBI Gene (68). The
functional information was sourced from the Gene Ontology
(GO) (69,70), the Universal Protein Knowledgebase (UniPro-
tKB) (71), the InterPro (an integrated database for protein
families, domains and functional sites) (72), the NCBI BioSys-
tems database (73) and InBio Map, a scored human protein—
protein interaction network (74). Moreover, the quick links
of a gene symbol to online databases, including NCBI Gene
(68), Online Mendelian Inheritance in Man (OMIM) (75),
HUGO Gene Nomenclature Committee (HGNC) (76), En-
sembl project (77), and GeneCards (78) were also integrated.
Furthermore, we collected the following genic intolerance
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score of each gene: (I) the residual variation intolerance score
(RVIS) (79); (I) the loss-of-function (LoF) intolerance (80);
(I) the heptanucleotide context intolerance score (81); (IV)
the gene damage index (GDI) (82); (V) the epigenetic cell
type deconvolution using single-cell omic references (EPIS-
CORE) (83); (VI) probability of loss-of-function intolerance
(pLI) and (VII) the upper bound of 90% confidence inter-
val for observed/expected ratio for LoF variants (LOEUF)
(43). Additionally, information related diseases or phenotypes
with each gene was curated from various databases: OMIM
(75), ClinVar (38), GeneReviews (84), the Clinical Genome
Resource (ClinGen) (85), the Human Phenotype Ontology
(HPO) (86), the Gene Curation Coalition (GenCC) (87), DE-
CIPHER (a database of genomic variation and phenotype in
humans using ensembl resources) (88), the Orphanet database
(Orphadata) (89,90), a database of gene-disease associations
named DisGeNET (91), the Genetic Testing Registry (GTR)
(92), an integrated knowledge database for non-coding RNAs
named NONCODE (93), the Mouse Genome Informatics
(MGI) (94), and Gene4Denovo (40). Furthermore, we gath-
ered data on gene expression across various tissues from
databases such as the Brainspan (95), the Genotype-Tissue
Expression (GTEx) project (66), and the Allen Brain Atlases
(96) and the protein subcellular location from the Human
Protein Atlas (97). Finally, the Drug-Gene Interaction data
were sourced from the following databases: the Drug-Gene
Interaction database (DGIdb) (98), an online drug informa-
tion resource named DrugCentral (99), Drug Target Com-
mons (DTC) (100), Pharmacogenomics Knowledgebase (Phar-
mGKB) (101) and Comparative Toxicogenomics Database
(CTD) (102) (Table 1).

Annotation and the conversion of genomic
coordinate

Following the approach of VarCards (3), we utilised AN-
NOVAR (103), an efficient annotation tool, to annotate all
SNVs and INDELs (including mitochondrial DNA) using our
variant- and gene-level data sources. Additionally, we anno-
tated all curated CNVs using AnnotSV (an integrated tool for
CNV annotation) (56). VarCards2 incorporates the genomic
coordinates for GRCh37/hg19 and GRCh38/hg38 to facili-
tate queries. Therefore, for this reason, we employed LiftOver
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert one
genomic coordinate of some raw data which only provided
GRCh37/hg19 or GRCh38/hg38 to the other in this study.

Database construction and interface

To ensure that users quickly adapt to the functionality of Var-
Cards2, we maintained the simple and popular user interface
style characteristic of VarCards. The VarCards2 database was
written in Java, JavaScript, Python, and Perl by applying front-
and back-end separation models. The back-end was based
on Java Spring Boot(https://spring.io/projects/spring-boot), a
server-side Java framework that provides services through Ap-
plication Programming Interface (API) endpoints. The front
end, namely the interactive web interface, was powered by
the JavaScript libraries Vue (https://vuejs.org) and Element
Plus (https://element-plus.org/), which is a Vue 3-based com-
ponent library for designers and developers that supports all
modern browsers across platforms, including Google Chrome,
FireFox, Safari, and Microsoft Edge. Annotation of the ge-
nomic variants and calculation of all precomputed scores of
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Table 1. Summary of integrated data sources in VarCards2

Category Data source

Part one: variation-level implication
Allele frequency

In silico function and

pathogenicity prediction

gnomAD, ExAC, 1000 Genomes, ESP, Kaviar, HRC, Mitomap

ReVe, CADD, DANN, Eigen, Fathmm-MKL, FATHMM, FitCons, GenoCanyon, REVEL,
SIFT, PolyPhen2-HDIV, PolyPhen2-HVAR, LRT, MutationTaster, MutationAssessor,
PROVEAN, VEST4, MetaSVM, MetalLR, M-CAP, GERP++, phyloP100way-vertebrate,
phastCons100way-vertebrate, SiPhy, Eigen-PC, Fathmm-XF, SIFT4G, LINSIGHT,
MutPred2, MVP, MPC, PrimateAl, DEOGEN2, BayesDel-addAF, BayesDel-noAF,
ClinPred, LIST-S2, ALoFT, bStatistic, phyloP470way-mammal, phyloP17way-primate,
phastCons470way-mammal, phastCons17way-primate, gMVP, VARITY-R, VARITY-ER,
VARITY-R-LOO, VARITY-ER-LOO, AlphaMissense, FitCons2, Funseq2, ReMM, CScape,
Orion, FIRE, PAFA, CDTS, DVAR, ncER, regBase-REG, regBase-CAN, regBase-PAT,
Divan-TSS, Divan-Region, CADD-splice, SCAP, spliceAl, dpsi-max-tissue, dpsi-zscore,
dbscSNV-ADA-SCORE, dbscSNV-RF-SCORE, MaxEntScan, GeneSplicer, ESRseq,
Spliceogen, Squirl, RegSNPs-intron, MMSplice, KipoiSplice, Synvep, SPiCE-MES,
SPiCE-SSE, SPiCE, CADD-SV, AnnotSV, ClassifyCNV, StrVCTVRE, FatHmmW, EFIN-SP,
EFIN-HD, PANTHER, PhD-SNP, SNAP, Mitoclass1, SNPDryad, Meta-SNP, CAROL,
Condel, COVEC-WMYV, MtoolBox, APOGEE, MitoTIP, PON-Classification, CAPICE,
FATHMM-indel, PROVEAN:-indel

Disease-related

Variant information
Regulatory information

Part two: gene-level implication
Basic information

Genic intolerance

Gene function

Disease-related

Gene expression
Target drug

ClinVar, InterVar, ICGC, COSMIC, GWAS Catalog
Gene4Denovo, SPCards
GTEx, VARAdb, GREEN-DB, EPimap EPigenomics

NCBI Gene, Entrez, OMIM, HGNC, Ensembl, GeneCards, UniProtKB

RVIS, LoFtool, GDI, Episcore, heptanucleotide context intolerance score, pLI score
Gene Ontology, UniProtKB, InterPro, NCBI BioSystems, InBio Map™

OMIM, ClinVar, GeneReviews, ClinGen, Human Phenotype Ontology, GenCC,
DECIPHER, Orpha data, DisGeNET, GTR, Noncode, MGI, Gene4Denovo
BrainSpan, GTEx, Allen Brain Atlases, The Human Protein Atlas

DGIdb, PharmGKB, CTD, Drug Central, Drug Target Commons

Note: gnomAD, Genome Aggregation Database; EXAC, Exome Aggregation Consortium; 1000 Genomes, The 1000 Genomes Project; ESP, Exome Sequencing
Project; Kaviar, Known VARiants; HRC, Haplotype Reference Consortium; Mitomap, A Human Mitochondrial Genome Database; CADD, Combined Annota-
tion Dependent Depletion; DANN, Deep Neural Network-based Annotation; Fathmm-MKL, Functional Analysis Through Hidden Markov Models-Multitask
Learning; FATHMM, Functional Analysis Through Hidden Markov Models; FitCons, Fitness Consequences; REVEL, Rare Exome Variant Ensemble Learner;
SIFT, Sorting Intolerant From Tolerant; PolyPhen2-HDIV, Polymorphism Phenotyping v2 - HumDiv model; PolyPhen2-HVAR, Polymorphism Phenotyping
v2 - HumVar model; LRT, Likelihood Ratio Test; PROVEAN, Protein Variation Effect Analyzer; ClinVar, Clinical Variation Database; ICGC, International
Cancer Genome Consortium; COSMIC, Catalogue of Somatic Mutations in Cancer; GWAS Catalog, Genome-Wide Association Studies Catalog; GTEx,
Genotype-Tissue Expression project; NCBI, National Center for Biotechnology Information; OMIM, Online Mendelian Inheritance in Man; HGNC, HUGO
Gene Nomenclature Committee; UniProtKB, Universal Protein Knowledgebase; RVIS, Residual Variation Intolerance Score; LoFtool, Loss-of-Function tool;
GDI, Gene Damage Index; pLI score, probability of Loss-of-Function Intolerance; ClinGen, The Clinical Genome Resource; GenCC; Gene Curation Coalition;
DECIPHER, Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources; GTR, Genetic Testing Registry; MGL, Mouse Genome

Informatics; DGIdb, The Drug Gene Interaction Database; PharmGKB, The Pharmacogenomics Knowledgebase; CTD; The Comparative Toxicogenomics

Database.

the genomic variants were performed using Python. The in-
tegrated data were stored in a MySQL database, and tab-
delimited files were indexed using Tabix (104). The website,
database, and search index were deployed on Alibaba Cloud
(https://www.alibabacloud.com/).

Results and web interface

The best practices for offering high-quality services in clinical
variant interpretation have been established by the ACMG (2).
To streamline genetic counselling in line with the best prac-
tices established by the ACMG, VarCards2 integrates a wealth
of variant-level and gene-level data sources (Figure 1). In the
variant-level section, we include iz silico predictions, allele fre-
quencies across various populations, information on variants
associated with diseases or phenotypes, reported de novo mu-
tations and splice variants, and regulatory information such
as eQTL, sQTL and epigenomics. In the gene-level section,
we offer basic gene information, gene function, associations
between genes and diseases or phenotypes, gene expression
data, the number of variants in specific genes across diverse
populations, and drug-gene interactions. All these features are
presented via an intuitive web interface for user convenience.

Variant-level implications

Overall, 8812917339 SNVs, 368820266 INDELs, and
2773555 CNVs in the nuclear genome, and 49704 SNVs and
785 INDELSs in the mitochondrial genome were included in
VarCards2. When users query rsIDs, genomic positions and
regions, gene symbols, genetic variants, or transcript acces-
sions via a quick or advanced search, the search results are
displayed in four distinct tables: (I) VarCards2 SNV, (II) Var-
Cards2 MT, (III) VarCards2 INDEL and (IV) VarCards2 CNV.
This structured presentation ensures clarity and ease of nav-
igation for users. Each table presents essential details regard-
ing the various types of variants, including chromosomes, ref-
erence alleles, alternative alleles, and their impact on amino
acids, among other attributes. Upon clicking the "annota-
tion" button in the first column of each table, users are di-
rected to a dedicated page that provides comprehensive func-
tional annotations for the respective variant. The new page
displays all variant-level implications, including (I) summary
for genetic counselling, (II) in silico prediction of function and
pathogenicity, (III) AF data sourced from several public pop-
ulation databases, (IV) disease-related information, (V) addi-
tional variant insights, such as whether a particular variant is
reported as a de novo mutation or splicing variant and (VI)
regulatory information (Figure 2).
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VarCards2 gene-level implications
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Figure 1. A general workflow of VarCards2. VarCards2 enables the identification of candidate variants from useruploaded VCF files or through a quick
search. For effective prioritization of these variants and the genes associated with genetic diseases, a comprehensive assessment of genomic, genetic,
and clinical data sources is imperative. Accordingly, VarCards2 has integrated a range of variant-level and gene-level implications. Note: BA1, Benign
Stand-alone; BS1/BS2/BS3/BS4, Benign Strong; BP1/BP3/BP4/BP7 Benign Supporting; PP1/PP2/PP3, Pathogenic Supporting;
PM1/PM2/PM4/PM5/PMB6, Pathogenic Moderate; PS1/PS2/PS3/PS4, Pathogenic Strong; PVS1, Pathogenic Very Strong.

According to the ACMG guidelines, in silico prediction
of function and pathogenicity is crucial for determining the
potential pathogenicity of a variant. Several criteria, both
pathogenic and benign, rely on these predictions, including
(I) PVS1, which has a very strong pathogenic weight; (II) PS1,
which carries a strong pathogenic weight; (III) PM4 and PMS,
with a moderate pathogenic weight; (IV) PP3, with support-
ing pathogenic weight and (V) BP1, BP3, BP4 and BP7, each
with supporting benign weight. To meet the requirements of
the above criteria, the number of in silico prediction algo-
rithms or tools has been expanded from 23 to 105 compared
with its predecessor, VarCards (Supplemental Table 1). These
tools cater to various variations, including non-synonymous
substitutions, non-coding SNVs, canonical and non-canonical
splicing variants, short INDELs, and CNVs. Additionally, AF
is a crucial metric according to the ACMG guidelines. If a
variant is not detected in several large-scale public popula-
tion databases, such as gnomAD, 1000genomes, and HRC,
this can be considered moderate evidence (PM2) supporting
the pathogenicity of the variant. Furthermore, several assess-
ment criteria set by the ACMG guidelines require informa-
tion regarding other pathogenic variants at identical posi-
tions, reported de novo mutations, identified splicing sites, and
whether the variant is situated on or proximate to a recognised
pathogenic or risk gene.

Gene-level implications

In addition to variant-level annotations, VarCards2 offers the
corresponding gene-level information to assist with genetic
counselling. Gene-level information provided six distinct pan-
els showing annotation details for genes containing or close
to the given variant (Figure 3). The ’Basic Information’ panel
includes details such as: (I) gene names, encompassing the of-
ficial symbol, full official name, and synonyms sourced from
NCBI Gene (68); (II) a summary of the molecular functions
of proteins encoded by the specified gene, as sourced from
UniProtKB (71); (III) the genetic intolerance score from six
studies (43,79-83). The *Gene Function’ panel aggregates in-
formation, including GO terms, protein length, mass, subunit
structure, domains, biological pathways, gene constraint met-
rics from gnomAD, and protein-protein interactions corre-
sponding to the protein encoded by the specified gene. The

‘Phenotype and disease’ panel retrieved the reported disease-
associated variants or genes from OMIM (75), ClinVar (38),
GeneReviews (84), ClinGen (85), HPO (86), GenCC (87), DE-
CIPHER (88), Orphadata (89,90), GTR (92), NONCODE
(93), MGI (94) and Gene4Denovo (40). For the ‘Gene expres-
sion’ panel, the expression data sourced from Brainspan (95),
the GTEx project (66) and the Allen Brain Atlases (96) were
illustrated using heatmaps or bar plots separately. Users can
view variant counts based on functional effects and observe
the overall mutation rates across various populations in the’
Variants in Different Populations’ panel. For the drug-gene in-
teraction panel, the drugs which affected the given gene were
DGIdb (98), DrugCentral (99), DTC (100), PharmGKB (101)
and CTD (102). In contrast to their predecessors, VarCards
and VarCards2 have enriched their gene-level annotation re-
sources by integrating additional sources such as gene func-
tion, gene expression, gene—drug interactions, and phenotype
and disease information (Supplemental Table 1).

Customised annotations

VarCards2 incorporates a feature that allows users to upload
genetic data files in the VCF4 format for customised anno-
tations, akin to its predecessor, VarCards. In addition to se-
lecting specific annotations and setting threshold values for in
silico prediction scores, VarCards2 not only can pinpoint co-
segregated mutations in non-trio-based samples but also can
identify de novo, homozygous, compound heterozygous, and
X-linked hemizygous mutations in trio-based samples. This
functionality can be achieved using a straightforward four-
step process: (I) users provide an email address to receive an-
notation results; (II) they choose between the Trio or Non-
trio options for the VCF4 data; (III) VCF4 genetic data files
are uploaded and (IV) for the Trio option, users must input
the sample IDs for the father, mother, and proband, includ-
ing the proband’s gender. If the Non-trio option is selected,
users specify the genotype information for each sample, such
as heterozygous, homozygous, and wild type.

Other sections in VarCards2

VarCards2 also provided additional sections, including (I) the
upload, which permitted users to upload additional annota-
tion datasets for customised annotations; (II) the data source,



Nucleic Acids Research, 2024, Vol. 52, Database issue

| COr20-63413484-63413404 | CAMT-16-20 1 BRCAT / MT-ATPS | SCH2A:R.R1BEW /| BRCA1:C.O1098T | NM_000950 | chr10:87925557:T0:- | chrl 0:87825379:x- |

Variant level implications

D1483

Specify snnatation datasets.

VarCards2 SNV

Chr Start End Ref Alt Func Gene Symbol Gene Detail

Variant summary

In silico prediction
Coding variants

Non-coding variants

Example Example Example Example

Search terms

m et

Chr chri Start 11845727 o :
Splicing variants
End 11845727 Ref T Allele frequency in population
= G = e Allele frequency in population
. e e Disease-related information
Gene Symbol NPPA Gene Detail Clinvar
Exonic Func Amino acids change InterVar
ICGC
Total 1 10/page
COSMIC-Coding
COSMIC-Noncoding
VarCards2 MT
e GWAS Catalog
VarCards2 Indel Variant information
Gene4Denovo
VarCards2 SV
Advanced search
Reference  hg?
Query By @ Genomic Re Gene Symbol Variant Transcript Genomic Coordinate

Figure 2. Snapshot of variant-level implications in VarCards2. There are three approaches to access variant-level implications, including ‘Quick
search’/Advanced search’ and ‘Annotate’. As an example, the results of a quick search for the variant 'chr1:11845727 T > G (GRCh38)’, including predicted
the damaging severity of the variants, allele frequencies in different populations and information in disease related database. VarCards?2 offers three
methods for accessing variant-level implications: 'Quick search’, Advanced search’ and ‘Annotate’. For instance, a quick search for the variant
'chr1:11845727 T > G (GRCh38)’ yields results that include the damaging severity of the variant, allele frequencies across various populations, and

relevant information from disease-associated databases.

which provided a summary of the integrated data sources;
(II) the updates, which provided the latest news about Var-
Cards2 and (IV) the tutorial, which provided a further descrip-
tion of VarCards2 and how to use it.

Case studies

To assess the precision and utility of VarCards2 in de-
tecting a broad range of potential causative variations,
we examined several well established and emerging loci
based on published literature. (I) For pathogenic SNVs in
non-coding regions, we queried chr1:11845727 T > G
(GRCh38), located in the 3’ UTR (untranslated regions)
of the NPPA gene, which is associated with cardiovas-
cular disorders (105). As we excepted, more than half
of the non-coding prediction software categorised this
variant as deleterious with a Phred-scaled score (—10 x
logyo(rank of raw scores/total number of raw scores)) >135.
According to the ACMG guidelines, this variant has a support-
ing pathogenic weight in genetic counselling (PP3). Moreover,
the variant was not detected in several large-scale public pop-

ulation databases, such as gnomAD, 1000genomes, ExAC and
HRC. Therefore, according to the ACMG guidelines, this can
be considered a moderate piece of evidence for the pathogenic-
ity (PM2) of the variant. Simultaneously, our gene-level an-
notation data indicated that NPPA is associated with cardio-
vascular diseases and is highly expressed in the heart. (II) We
examined BBS1:¢.G1339A for non-canonical splicing sites.
This mutation, a missense variant at a non-canonical splic-
ing site, impairs the splicing process (106). In VarCards2, all
16 splicing-site prediction software tools with available data
supported that this site is an alternative splicing site. However,
only approximately 20% of the missense mutation prediction
tools deem this site detrimental. This underscores the benefits
of using diverse prediction software in databases.

Discussion

It is becoming increasingly evident that variants in the non-
coding regions of the human genome significantly impact
hereditary diseases (6,7). However, providing clinical interpre-
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tations of variants in non-coding areas remains challenging for
clinicians and genetic counsellors (4). For general clinicians
and genetic counsellors, the optimal approach for interpret-
ing non-coding sequences is to adhere to the ACMG guide-
lines (8). To facilitate the interpretation of whole-genome se-
quencing, we incorporated over 150 annotation sources essen-
tial for genetic counselling by building VarCards2 within the
framework of VarCards. For users seeking additional details,
we provide a link that redirects them to the corresponding
website for more comprehensive information.

Although many existing tools and databases can anno-
tate non-coding sequences, VarCards2 presents distinct dif-
ferences (Supplemental Table 2). Compared with seven exist-
ing databases, including FAVOR (107), VannoPortal (35), Var-
Some (108), CADD (10), wAnnovar (109), VEP (110), and
SnpEff (111), only VarCards2 could identify co-segregated
variants, de novo mutations, homozygous variants, com-
pound heterozygous variants, and X-linked hemizygous vari-
ants from user-provided VCF files for batch annotation. This
feature efficiently assists clinicians and genetic counsellors,
who may lack bioinformatics skills, in filtering potential
pathogenic variants from extensive data, but also provides ev-
idential support for the interpretation of variant pathogenic-
ity in genetic counselling based on the ACMG guidelines.
Furthermore, most existing tools and databases need to en-
compass comprehensive gene-level annotation. Although Var-
Some (108) and VEP (110) are exceptions, VarSome (108)

operates as a commercial database, whereas VEP (110) only
provides linkage information between genes and diseases or
phenotypes at the gene level. However, VarCards2 provides
users with more than 40 gene-level functional annotations,
including *Gene function’, ‘Gene expression’, ’Gene—drug in-
teraction’, and *Phenotype and disease information’, through
an intuitive web interface for user convenience. Additionally,
VarCards2 not only provides the most in silico functional or
pathogenic predictions compared to existing databases but
is also the only database that offers distinct prediction tools
for various types of variants, including SNVs, short INDELs,
CNVs, splicing variants and mitochondrial variants. Further-
more, VarCards2 is a unique, non-commercial, one-stop on-
line database capable of providing genetic counselling for
SNVs, CNVs, short INDELs and mitochondrial variants. Var-
Cards2 focuses primarily on the clinical interpretation of ge-
netic mutations. It integrates commonly used essential tools
and data while discarding less useful and redundant datasets,
making it convenient for genetic counselling.

As a comprehensive one-stop online database designed to
facilitate genetic counselling, VarCards2 exhibits distinct ad-
vantages over the traditional resources used in genetic coun-
selling. For instance, ClinVar (38), an online database, is a
valuable and widely used resource for genetic counselling.
However, it is important to note that it does not represent
all genetic variants owing to its dependency on voluntary
submissions. To include as many genetic variants as possi-
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ble, VarCards2 has not only manually generated close to nine
billion SNVs, representing all conceivable SNVs throughout
the genome, but has also aggregated reported short INDELs
and SVs from a multitude of databases, including dbVAR
(42), dbSNP (41), ICGC (37), COSMIC (39), gnomAD (36),
Gene4Denovo (40) and ClinVar (38). Additionally, despite
ClinVar guidelines, inconsistencies in how different laborato-
ries interpret and classify genetic variants may still arise. This
may have led to conflicting classifications of a single variant
within the database, and certain submissions may lack com-
prehensive evidence or interpretations. Consequently, Var-
Cards2 not only aggregates various variant- and gene-level
databases for disease information but also provides multiple
in silico pathogenic prediction scores and allele frequencies
across diverse populations based on the ACMG-AMP guide-
lines, thereby providing comprehensive evidence to assist users
in genetic counselling.

Although VarCards2 offers extensive data to support ge-
netic counselling in line with the ACMG standards and guide-
lines, users should be aware of the following precautions:
First, although we have incorporated over 150 annotation
sources into VarCards2, we can only present the datasets
used for rating to users, rather than automatically determin-
ing them, as this could lead to a high number of false pos-
itives. Secondly, because we cannot automate the interpreta-
tion and extraction of key information from a large volume
of open-access (OA) literature, the vast majority of annota-
tion resources in VarCards2 originate from public databases.
Consequently, some crucial information concealed within the
most recent publications might be overlooked. Additionally,
we encourage users to contribute their in-house annotation
datasets because sharing them can benefit a wider user com-
munity. Third, disease- and phenotype-related data were col-
lated from several databases, including ClinVar (38), OMIM
(75), COSMIC (39) and HPO (86). Consequently, evidence
of variations’ clinical significance was obtained from diverse
teams that employed various criteria and potential method-
ological biases. Users must remain vigilant of potential false
positives in disease- and phenotype-related data (50,112). Fur-
thermore, VarCards2 offers over 100 computational predic-
tion scores for determining the pathogenicity or function of
variations, including SN'Vs, INDELs, and CNVs; users should
recognise that these methods vary in their specificity and sen-
sitivity (62,63,113).

Transitioning from VarCards to VarCards2, we refreshed
our integrated data sources and incorporated additional
datasets vital for the clinical interpretation of non-coding re-
gion variants. Although VarCards2 has a vast array of anno-
tation resources, it refrains from directly pinpointing disease-
causing variations owing to its intricate genetic testing cri-
teria. However, we are setting sights on enhancing the Var-
Cards2 database during the subsequent phase of automated
genetic testing. We also invited the users to share their feed-
back, suggestions, or valuable data sources. VarCards2 offers
a user-friendly gateway for genetic, genomic, and clinical in-
sights into the human genome, expediting the identification
and prioritisation of critical variants and genes.

Data availability

The data underlying this article are available at http:/www.
genemed.tech/varcards2/.
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