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Abstract 

VarCards, an online database, combines comprehensiv e v ariant- and gene-le v el annot ation dat a to streamline genetic counselling for coding 
v ariants. R ecognising the increasing clinical rele v ance of non-coding variations, there has been an accelerated de v elopment of bioinformatics tools 
dedicated to interpreting non-coding variations, including single-nucleotide variants and copy number v ariations. R egrettably, most tools remain as 
either locally installed databases or command-line tools dispersed across diverse online platforms. Such a landscape poses incon v eniences and 
challenges for genetic counsellors seeking to utilise these resources without advanced bioinformatics expertise. Consequently, we developed 
VarCards2, which incorporates nearly nine billion artificially generated single-nucleotide variants (including those from mitochondrial DNA) and 
compiles vit al annot ation inf ormation f or genetic counselling based on ACMG-AMP variant-interpretation guidelines. These annotations include (I) 
functional effects; (II) minor allele frequencies; (III) comprehensive function and pathogenicity predictions covering all potential variants, such as 
non-synonymous substitutions, non-canonical splicing variants, and non-coding variations and (IV) gene-level information. F urthermore, V arCards2 
incorporates 368 820 266 documented short insertions and deletions and 2 773 555 documented copy number variations, complemented by 
their corresponding annotation and prediction tools. In conclusion, VarCards2, by integrating o v er 150 variant- and gene-le v el annotation sources, 
significantly enhances the efficiency of genetic counselling and can be freely accessed at ht tp://www.genemed.tec h/varcards2/. 
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ntroduction 

apid advances in sequencing technology over the last few
ears have provided unprecedented opportunities and chal-
enges for genetic counselling ( 1 ). To help clinicians and clini-
al laboratory geneticists address new challenges in sequence
nterpretation, standards and guidelines for interpreting se-
uence variants were developed by the American College of
edical Genetics and Genomics (ACMG) ( 2 ). It is well estab-

ished that these standards and guidelines from ACMG are the
est practices for genetic counselling. However, most datasets
nd in silico algorithms recommended by the ACMG for se-
uence variant interpretation are dispersed across various on-
ine platforms and databases. In response, we introduced Var-
ards ( http:// www.genemed.tech/ varcards/ ), a comprehensive
nline database, to equip users with essential genetic and clin-
cal knowledge for genetic counselling on specific coding vari-
nts ( 3 ). Because VarCards streamlines genetic counselling by
ffering gene- and variant-level annotation information rec-
mmended by the ACMG, VarCards has accessed more than
72 000 visits since its launch. 
With the clinical significance of non-coding single-

ucleotide variants (SNVs) and copy number variants (CNVs)
f the human genome in genetic counselling raised more em-
hasis ( 4–8 ), a growing number of genomic tools or databases
ere developed to facilitate the interpretation of these non-

oding variations ( 9–32 ). Still, they were either locally in-
talled databases (such as GREEN-DB ( 9 ) and regBase ( 28 ))
r command-line tools (such as ClassifyCNV ( 33 ) and DIVAN
 14 )). In addition, many important annotation sources, such
s allele frequencies, expression quantitative trait loci (eQTL),
nd regulatory information, have been dispersed across vari-
us online platforms. This widespread dispersion complicates
he process for general clinicians, genetic counsellors and clin-
cal laboratory geneticists trying to quickly access up-to-date
ata to interpret the function and pathogenicity of variations
n the whole human genome in line with the standards and
uidelines of the ACMG. 

Although comprehensive human variation annotation
atabases, such as VARAdb ( 34 ) and VannoPortal ( 35 ) ex-

st, their primary emphasis is on providing detailed data on
egulatory profiles and evolutionary signatures. This is conve-
ient for biologists to explore the underlying molecular mech-
anisms but does not specifically address the need for clinical
genetic counselling. In addition, some of these databases, such
as VARAdb ( 34 ), compiled a total of 577 283 813 variations,
of which the majority were single-nucleotide polymorphisms
(SNPs) with a low likelihood of pathogenicity; however, there
should theoretically be nearly nine billion SNVs in the human
genome. Moreover, these databases did not include CNVs or
detailed gene-level annotations. 

To support clinicians, genetic counsellors, and clinical labo-
ratory geneticists in providing effective genetic counselling, we
developed VarCards2, an intuitive online database. It houses
nearly nine billion SNVs, over 360 million documented short
insertions and deletions (INDELs), and more than two million
CNVs. VarCards2 provides in-depth annotations at both the
variant and gene levels, including in silico predictions of func-
tion and pathogenicity, minor allele frequencies (MAFs) across
diverse populations, splicing predictions for both canonical
and non-canonical splicing regions, and gene functionality, all
in alignment with standards and guidelines from ACMG. 

Materials and methods 

Variant-level data source 

To optimise the support for genetic counselling, VarCards2 en-
compassed nearly nine billion SNVs, representing any base in
the human reference genome GRCh38 (including mitochon-
drial DNA) that had mutated into one of the three possi-
ble bases. Additionally, VarCards2 houses all reported short
INDELs (length ≤ 50 bp) and CNVs (length > 50 bp) ex-
tracted from the subsequent seven databases: (I) the Genome
Aggregation Database (gnomAD) ( 36 ); (II) the International
Cancer Genome Consortium (ICGC) ( 37 ); (III) the clinical
variations database (ClinVar) ( 38 ); (IV) the Catalogue of So-
matic Mutations In Cancer (COSMIC) ( 39 ); (V) de novo mu-
tations database called Gene4Denovo ( 40 ); (VI) the NCBI
database of genetic variation named dbSNP ( 41 ) and (VII) the
NCBI database of human genomic structural variation named
dbVar ( 42 ). 

We sourced allele frequency (AF) data for various eth-
nic backgrounds from several publicly accessible population
databases, such as (I) gnomAD v2.1.1 (125748 exomes and
15 708 genomes) ( 43 ), (II) gnomAD v3.1.2 (76 156 genomes)
 aphical abstr act 
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( 36 ), (III) the Exome Aggregation Consortium (ExAC) (60 706 

exomes) ( 44 ), (IV) 1000 Genomes Project (2504 individu- 
als genomic data) ( 45 ), (V) Exome Sequencing Project (ESP) 
(6503 exomes) ( 46 ), (VI) Kaviar genomic variant database 
(13200 genomes and 64600 exomes) ( 47 ), (VII) the Haplotype 
Reference Consortium (HRC) (64976 haplotypes) ( 48 ) and 

(VIII) a database for the human mitochondrial genome named 

MITOMAP (51836 full-length mitochondrial sequences) ( 49 ). 
Additionally, we retrieved information on variants and their 
associated diseases or phenotypes from ClinVar ( 38 ), ICGC 

( 37 ), COSMIC ( 39 ), InterVar ( 50 ) and the NHGRI-EBI cat- 
alogue of human genome-wide association studies (GWAS) 
( 51 ). Moreover, we extracted functional and pathogenicity 
prediction scores from more than 100 in silico algorithms 
and tools. These tools encompass 50 coding region SNVs, 24 

non-coding region SNVs, 19 splice variants, 4 INDELs ( 52–
55 ), 4 CNVs ( 33 ,56–58 ) and 25 mitochondrial DNA variants. 
In particular, the prediction scores of non-synonymous vari- 
ants for coding regions were sourced from the dbNSFP v4.4 

database ( 59 ,60 ), in addition to two recently introduced pre- 
diction tools: CAPICE and AlphaMissense ( 53 ,61 ); prediction 

scores for non-coding regions and splice variants were sourced 

from our previous studies ( 62 ,63 ); prediction score for mito- 
chondrial DNA variants was sourced from a collection of ge- 
nomic, clinical, and functional annotations for human mito- 
chondrial DNA variants named MitImpact ( 64 ,65 ). Further- 
more, some variant information, such as reported de novo mu- 
tations ( 40 ) and splice variants ( 63 ), and some regulatory in- 
formation, including expression quantitative trait loci (eQTL) 
( 66 ), splicing quantitative trait loci (sQTL) ( 66 ), summary 
data from VARAdb ( 34 ), GREEN-DB(9), and EPimap EPige- 
nomics ( 67 ), were also catalogued (Table 1 ). Additionally, to 

offer a more intuitive and straightforward interface, we have 
visualized EpiMap Epigenomics data using heatmaps and fur- 
nished an additional panel named ‘Variant Summary’ employ- 
ing the following measures: (I) The corresponding rsID for the 
variant and the link redirecting to the dbSNP database. (II) 
The corresponding positions in GRCh37 and GRCh38 for the 
variant, along with the link redirecting to the UCSC Genome 
Browser. (III) The corresponding amino acid change associ- 
ated with the variant. (IV) A variant is designated as a ’rare 
variant’ if its AF is below 0.1% in the gnomAD database, ver- 
sion 3.12. (V) Summarised information from ClinVar, includ- 
ing ’Clinical Significance’, ‘Review Status’ and ’Condition’, is 
displayed. (VI) If a variant is predicted to be deleterious by 
more than 60% of the prediction tools, it is considered puta- 
tively harmful. 

Gene-level data source 

The basic information, such as gene symbol, gene synonyms, 
and the location, was sourced from NCBI Gene ( 68 ). The 
functional information was sourced from the Gene Ontology 
(GO) ( 69 ,70 ), the Universal Protein Knowledgebase (UniPro- 
tKB) ( 71 ), the InterPro (an integrated database for protein 

families, domains and functional sites) ( 72 ), the NCBI BioSys- 
tems database ( 73 ) and InBio Map, a scored human protein–
protein interaction network ( 74 ). Moreover, the quick links 
of a gene symbol to online databases, including NCBI Gene 
( 68 ), Online Mendelian Inheritance in Man (OMIM) ( 75 ), 
HUGO Gene Nomenclature Committee (HGNC) ( 76 ), En- 
sembl project ( 77 ), and GeneCards ( 78 ) were also integrated. 
Furthermore, we collected the following genic intolerance 

score of each gene: (I) the residual variation intolerance score 
(RVIS) ( 79 ); (II) the loss-of-function (LoF) intolerance ( 80 ); 
(III) the heptanucleotide context intolerance score ( 81 ); (IV) 
the gene damage index (GDI) ( 82 ); (V) the epigenetic cell 
type deconvolution using single-cell omic references (EPIS- 
CORE) ( 83 ); (VI) probability of loss-of-function intolerance 
(pLI) and (VII) the upper bound of 90% confidence inter- 
val for observed / expected ratio for LoF variants (LOEUF) 
( 43 ). Additionally, information related diseases or phenotypes 
with each gene was curated from various databases: OMIM 

( 75 ), ClinVar ( 38 ), GeneReviews ( 84 ), the Clinical Genome 
Resource (ClinGen) ( 85 ), the Human Phenotype Ontology 
(HPO) ( 86 ), the Gene Curation Coalition (GenCC) ( 87 ), DE- 
CIPHER (a database of genomic variation and phenotype in 

humans using ensembl resources) ( 88 ), the Orphanet database 
(Orphadata) ( 89 ,90 ), a database of gene-disease associations 
named DisGeNET ( 91 ), the Genetic Testing Registry (GTR) 
( 92 ), an integrated knowledge database for non-coding RNAs 
named NONCODE ( 93 ), the Mouse Genome Informatics 
(MGI) ( 94 ), and Gene4Denovo ( 40 ). Furthermore, we gath- 
ered data on gene expression across various tissues from 

databases such as the Brainspan ( 95 ), the Genotype-Tissue 
Expression (GTEx) project ( 66 ), and the Allen Brain Atlases 
( 96 ) and the protein subcellular location from the Human 

Protein Atlas ( 97 ). Finally, the Drug–Gene Interaction data 
were sourced from the following databases: the Drug–Gene 
Interaction database (DGIdb) ( 98 ), an online drug informa- 
tion resource named DrugCentral ( 99 ), Drug Target Com- 
mons (DTC) ( 100 ), Pharmacogenomics Knowledgebase (Phar- 
mGKB) ( 101 ) and Comparative Toxicogenomics Database 
(CTD) ( 102 ) (Table 1 ). 

Annotation and the conversion of genomic 

coordinate 

Following the approach of VarCards ( 3 ), we utilised AN- 
NOVAR ( 103 ), an efficient annotation tool, to annotate all 
SNVs and INDELs (including mitochondrial DNA) using our 
variant- and gene-level data sources. Additionally, we anno- 
tated all curated CNVs using AnnotSV (an integrated tool for 
CNV annotation) ( 56 ). VarCards2 incorporates the genomic 
coordinates for GRCh37 / hg19 and GRCh38 / hg38 to facili- 
tate queries. Therefore, for this reason, we employed LiftOver 
( https:// genome.ucsc.edu/ cgi-bin/ hgLiftOver ) to convert one 
genomic coordinate of some raw data which only provided 

GRCh37 / hg19 or GRCh38 / hg38 to the other in this study. 

Database construction and interface 

To ensure that users quickly adapt to the functionality of Var- 
Cards2, we maintained the simple and popular user interface 
style characteristic of VarCards. The VarCards2 database was 
written in Java, JavaScript, Python, and Perl by applying front- 
and back-end separation models. The back-end was based 

on Java Spring Boot( https:// spring.io/ projects/ spring-boot ), a 
server-side Java framework that provides services through Ap- 
plication Programming Interface (API) endpoints. The front 
end, namely the interactive web interface, was powered by 
the JavaScript libraries Vue ( https://vuejs.org ) and Element 
Plus ( https:// element-plus.org/ ), which is a Vue 3-based com- 
ponent library for designers and developers that supports all 
modern browsers across platforms, including Google Chrome, 
FireFox, Safari, and Microsoft Edge. Annotation of the ge- 
nomic variants and calculation of all precomputed scores of 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://spring.io/projects/spring-boot
https://vuejs.org
https://element-plus.org/
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Table 1. Summary of integrated data sources in VarCards2 

Category Data source 

Part one: v ariation-lev el implication 
Allele frequency gnomAD, ExAC, 1000 Genomes, ESP, Kaviar, HRC, Mitomap 
In silico function and 
pathogenicity prediction 

ReVe, CADD, DANN, Eigen, Fathmm-MKL, FATHMM, FitCons, GenoCanyon, REVEL, 
SIFT, PolyPhen2-HDIV, PolyPhen2-HVAR, LRT, MutationTaster, MutationAssessor, 
PROVEAN, VEST4, MetaSVM, MetaLR, M-CAP, GERP++, phyloP100way-vertebrate, 
phastCons100way-vertebrate, SiPhy, Eigen-PC, Fathmm-XF, SIFT4G, LINSIGHT, 
MutPred2, MVP, MPC, PrimateAI, DEOGEN2, BayesDel-addAF, BayesDel-noAF, 
ClinPred, LIST-S2, ALoFT, bStatistic, phyloP470way-mammal, phyloP17way-primate, 
phastCons470way-mammal, phastCons17way-primate, gMVP, VARITY-R, VARITY-ER, 
V ARITY-R-LOO, V ARITY-ER-LOO, AlphaMissense, FitCons2, Funseq2, ReMM, CScape, 
Orion, FIRE, P AF A, CD TS, DVAR, ncER, regBase-REG, regBase-CAN, regBase-P AT, 
Divan-TSS, Divan-Region, CADD-splice, SCAP, spliceAI, dpsi-max-tissue, dpsi-zscore, 
dbscSNV -ADA-SCORE, dbscSNV -RF-SCORE, MaxEntScan, GeneSplicer, ESRseq, 
Spliceogen, Squirl, RegSNPs-intron, MMSplice, KipoiSplice, Synvep, SPiCE-MES, 
SPiCE-SSF, SPiCE, CADD-SV, AnnotSV, ClassifyCNV, StrVCTVRE, FatHmmW, EFIN-SP, 
EFIN-HD , P ANTHER, PhD-SNP , SNAP , Mitoclass1, SNPDryad, Meta-SNP , CAROL, 
Condel, COVEC-WMV, MtoolBox, APOGEE, MitoTIP, PON-Classification, CAPICE, 
FA THMM-indel, PRO VEAN-indel 

Disease-related ClinV ar, InterV ar, ICGC, COSMIC, GWAS Catalog 
Variant information Gene4Denovo, SPCards 
Regulatory information GTEx, VARAdb, GREEN-DB, EPimap EPigenomics 
Part two: gene-level implication 
Basic information NCBI Gene, Entrez, OMIM, HGNC, Ensembl, GeneCards, UniProtKB 

Genic intolerance RVIS, LoFtool, GDI, Episcore, heptanucleotide context intolerance score, pLI score 
Gene function Gene Ontology, UniProtKB, InterPro, NCBI BioSystems, InBio Map™
Disease-related OMIM, ClinVar, GeneReviews, ClinGen, Human Phenotype Ontology, GenCC, 

DECIPHER, Orpha data, DisGeNET, GTR, Noncode, MGI, Gene4Denovo 
Gene expression BrainSpan, GTEx, Allen Brain Atlases, The Human Protein Atlas 
Target drug DGIdb, PharmGKB, CTD, Drug Central, Drug Target Commons 

Note: gnomAD, Genome Aggregation Database; ExAC, Exome Aggregation Consortium; 1000 Genomes, The 1000 Genomes Project; ESP, Exome Sequencing 
Project; Kaviar, Known VARiants; HRC, Haplotype Reference Consortium; Mitomap, A Human Mitochondrial Genome Database; CADD, Combined Annota- 
tion Dependent Depletion; DANN, Deep Neural Network-based Annotation; Fathmm-MKL, Functional Analysis Through Hidden Markov Models-Multitask 
Learning; FATHMM, Functional Analysis Through Hidden Markov Models; FitCons, Fitness Consequences; REVEL, Rare Exome Variant Ensemble Learner; 
SIFT, Sorting Intolerant From Tolerant; PolyPhen2-HDIV, Polymorphism Phenotyping v2 - HumDiv model; PolyPhen2-HVAR, Polymorphism Phenotyping 
v2 - HumVar model; LRT, Likelihood Ratio Test; PROVEAN, Protein Variation Effect Analyzer; ClinVar, Clinical Variation Database; ICGC, International 
Cancer Genome Consortium; COSMIC, Catalogue of Somatic Mutations in Cancer; GWAS Catalog, Genome-Wide Association Studies Catalog; GTEx, 
Genotype-Tissue Expression project; NCBI, National Center for Biotechnology Information; OMIM, Online Mendelian Inheritance in Man; HGNC, HUGO 

Gene Nomenclature Committee; UniProtKB, Universal Protein Knowledgebase; RVIS, Residual Variation Intolerance Score; LoFtool, Loss-of-Function tool; 
GDI, Gene Damage Index; pLI score, probability of Loss-of-Function Intolerance; ClinGen, The Clinical Genome Resource; GenCC; Gene Curation Coalition; 
DECIPHER, Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources; GTR, Genetic Testing Registry; MGI, Mouse Genome 
Informatics; DGIdb, The Drug Gene Interaction Database; PharmGKB, The Pharmacogenomics Knowledgebase; CTD; The Comparative Toxicogenomics 
Database. 

the genomic variants were performed using Python. The in- 
tegrated data were stored in a MySQL database, and tab- 
delimited files were indexed using Tabix ( 104 ). The website, 
database, and search index were deployed on Alibaba Cloud 

( https:// www.alibabacloud.com/ ). 

Results and web interface 

The best practices for offering high-quality services in clinical 
variant interpretation have been established by the ACMG ( 2 ). 
To streamline genetic counselling in line with the best prac- 
tices established by the ACMG, VarCards2 integrates a wealth 

of variant-level and gene-level data sources (Figure 1 ). In the 
variant-level section, we include in silico predictions, allele fre- 
quencies across various populations, information on variants 
associated with diseases or phenotypes, reported de novo mu- 
tations and splice variants, and regulatory information such 

as eQTL, sQTL and epigenomics. In the gene-level section, 
we offer basic gene information, gene function, associations 
between genes and diseases or phenotypes, gene expression 

data, the number of variants in specific genes across diverse 
populations, and drug-gene interactions. All these features are 
presented via an intuitive web interface for user convenience. 

Variant-level implications 

Overall, 8812917339 SNVs, 368820266 INDELs, and 

2773555 CNVs in the nuclear genome, and 49704 SNVs and 

785 INDELs in the mitochondrial genome were included in 

VarCards2. When users query rsIDs, genomic positions and 

regions, gene symbols, genetic variants, or transcript acces- 
sions via a quick or advanced search, the search results are 
displayed in four distinct tables: (I) VarCards2 SNV, (II) Var- 
Cards2 MT, (III) VarCards2 INDEL and (IV) VarCards2 CNV. 
This structured presentation ensures clarity and ease of nav- 
igation for users. Each table presents essential details regard- 
ing the various types of variants, including chromosomes, ref- 
erence alleles, alternative alleles, and their impact on amino 

acids, among other attributes. Upon clicking the "annota- 
tion" button in the first column of each table, users are di- 
rected to a dedicated page that provides comprehensive func- 
tional annotations for the respective variant. The new page 
displays all variant-level implications, including (I) summary 
for genetic counselling, (II) in silico prediction of function and 

pathogenicity, (III) AF data sourced from several public pop- 
ulation databases, (IV) disease-related information, (V) addi- 
tional variant insights, such as whether a particular variant is 
reported as a de novo mutation or splicing variant and (VI) 
regulatory information (Figure 2 ). 

https://www.alibabacloud.com/
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Figure 1. A general w orkflo w of VarCards2. VarCards2 enables the identification of candidate variants from user-uploaded VCF files or through a quick 
search. For effective prioritization of these variants and the genes associated with genetic diseases, a comprehensive assessment of genomic, genetic, 
and clinical data sources is imperative. Accordingly, VarCards2 has integrated a range of variant-level and gene-level implications. Note: BA1, Benign 
Stand-alone; BS1 / BS2 / BS3 / BS4, Benign Strong; BP1 / BP3 / BP4 / BP7, Benign Supporting; PP1 / PP2 / PP3, Pathogenic Supporting; 
PM1 / PM2 / PM4 / PM5 / PM6, Pathogenic Moderate; PS1 / PS2 / PS3 / PS4, Pathogenic Strong; PVS1, Pathogenic Very Strong. 

According to the ACMG guidelines, in silico prediction 

of function and pathogenicity is crucial for determining the 
potential pathogenicity of a variant. Several criteria, both 

pathogenic and benign, rely on these predictions, including 
(I) PVS1, which has a very strong pathogenic weight; (II) PS1, 
which carries a strong pathogenic weight; (III) PM4 and PM5, 
with a moderate pathogenic weight; (IV) PP3, with support- 
ing pathogenic weight and (V) BP1, BP3, BP4 and BP7, each 

with supporting benign weight. To meet the requirements of 
the above criteria, the number of in silico prediction algo- 
rithms or tools has been expanded from 23 to 105 compared 

with its predecessor, VarCards (Supplemental Table 1). These 
tools cater to various variations, including non-synonymous 
substitutions, non-coding SNVs, canonical and non-canonical 
splicing variants, short INDELs, and CNVs. Additionally, AF 

is a crucial metric according to the ACMG guidelines. If a 
variant is not detected in several large-scale public popula- 
tion databases, such as gnomAD, 1000genomes, and HRC, 
this can be considered moderate evidence (PM2) supporting 
the pathogenicity of the variant. Furthermore, several assess- 
ment criteria set by the ACMG guidelines require informa- 
tion regarding other pathogenic variants at identical posi- 
tions, reported de novo mutations, identified splicing sites, and 

whether the variant is situated on or proximate to a recognised 

pathogenic or risk gene. 

Gene-level implications 

In addition to variant-level annotations, VarCards2 offers the 
corresponding gene-level information to assist with genetic 
counselling. Gene-level information provided six distinct pan- 
els showing annotation details for genes containing or close 
to the given variant (Figure 3 ). The ’Basic Information’ panel 
includes details such as: (I) gene names, encompassing the of- 
ficial symbol, full official name, and synonyms sourced from 

NCBI Gene ( 68 ); (II) a summary of the molecular functions 
of proteins encoded by the specified gene, as sourced from 

UniProtKB ( 71 ); (III) the genetic intolerance score from six 

studies ( 43 ,79–83 ). The ’Gene Function’ panel aggregates in- 
formation, including GO terms, protein length, mass, subunit 
structure, domains, biological pathways, gene constraint met- 
rics from gnomAD, and protein-protein interactions corre- 
sponding to the protein encoded by the specified gene. The 

‘Phenotype and disease’ panel retrieved the reported disease- 
associated variants or genes from OMIM ( 75 ), ClinVar ( 38 ), 
GeneReviews ( 84 ), ClinGen ( 85 ), HPO ( 86 ), GenCC ( 87 ), DE- 
CIPHER ( 88 ), Orphadata ( 89 ,90 ), GTR ( 92 ), NONCODE 

( 93 ), MGI ( 94 ) and Gene4Denovo ( 40 ). For the ‘Gene expres- 
sion’ panel, the expression data sourced from Brainspan ( 95 ), 
the GTEx project ( 66 ) and the Allen Brain Atlases ( 96 ) were 
illustrated using heatmaps or bar plots separately. Users can 

view variant counts based on functional effects and observe 
the overall mutation rates across various populations in the’ 
Variants in Different Populations’ panel. For the drug-gene in- 
teraction panel, the drugs which affected the given gene were 
DGIdb ( 98 ), DrugCentral ( 99 ), DTC ( 100 ), PharmGKB ( 101 ) 
and CTD ( 102 ). In contrast to their predecessors, VarCards 
and VarCards2 have enriched their gene-level annotation re- 
sources by integrating additional sources such as gene func- 
tion, gene expression, gene–drug interactions, and phenotype 
and disease information (Supplemental Table 1). 

Customised annotations 

VarCards2 incorporates a feature that allows users to upload 

genetic data files in the VCF4 format for customised anno- 
tations, akin to its predecessor, VarCards. In addition to se- 
lecting specific annotations and setting threshold values for in 

silico prediction scores, VarCards2 not only can pinpoint co- 
segregated mutations in non-trio-based samples but also can 

identify de novo , homozygous, compound heterozygous, and 

X-linked hemizygous mutations in trio-based samples. This 
functionality can be achieved using a straightforward four- 
step process: (I) users provide an email address to receive an- 
notation results; (II) they choose between the Trio or Non- 
trio options for the VCF4 data; (III) VCF4 genetic data files 
are uploaded and (IV) for the Trio option, users must input 
the sample IDs for the father , mother , and proband, includ- 
ing the proband’s gender. If the Non-trio option is selected, 
users specify the genotype information for each sample, such 

as heterozygous, homozygous, and wild type. 

Other sections in VarCards2 

VarCards2 also provided additional sections, including (I) the 
upload, which permitted users to upload additional annota- 
tion datasets for customised annotations; (II) the data source, 
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Figure 2. Snapshot of v ariant-le v el implications in VarCards2. There are three approaches to access variant-level implications, including ‘Quick 
search’, ‘ A dv anced search’ and ‘Annotate’. As an example, the results of a quick search for the variant ‘chr1:11845727 T > G (GRCh38)’, including predicted 
the damaging se v erity of the variants, allele frequencies in different populations and information in disease related database. VarCards2 offers three 
methods for accessing variant-level implications: ’Quick search’, ’A dv anced search’ and ’Annotate’. For instance, a quick search for the variant 
’chr1:11845727 T > G (GRCh38)’ yields results that include the damaging severity of the variant, allele frequencies across various populations, and 
rele v ant inf ormation from disease-associated databases. 

which provided a summary of the integrated data sources; 
(III) the updates, which provided the latest news about Var- 
Cards2 and (IV) the tutorial, which provided a further descrip- 
tion of VarCards2 and how to use it. 

Case studies 

To assess the precision and utility of VarCards2 in de- 
tecting a broad range of potential causative variations, 
we examined several well established and emerging loci 
based on published literature. (I) For pathogenic SNVs in 

non-coding regions, we queried chr1:11845727 T > G 

(GRCh38), located in the 3 

′ UTR (untranslated regions) 
of the NPPA gene, which is associated with cardiovas- 
cular disorders ( 105 ). As we excepted, more than half 
of the non-coding prediction software categorised this 
variant as deleterious with a Phred-scaled score ( −10 ×
lo g 10 ( r ank of r aw sco res/to tal number o f raw sco res ) ) > 15. 
According to the ACMG guidelines, this variant has a support- 
ing pathogenic weight in genetic counselling (PP3). Moreover, 
the variant was not detected in several large-scale public pop- 

ulation databases, such as gnomAD, 1000genomes, ExAC and 

HRC. Therefore, according to the ACMG guidelines, this can 

be considered a moderate piece of evidence for the pathogenic- 
ity (PM2) of the variant. Simultaneously, our gene-level an- 
notation data indicated that NPPA is associated with cardio- 
vascular diseases and is highly expressed in the heart. (II) We 
examined BBS1:c.G1339A for non-canonical splicing sites. 
This mutation, a missense variant at a non-canonical splic- 
ing site, impairs the splicing process ( 106 ). In VarCards2, all 
16 splicing-site prediction software tools with available data 
supported that this site is an alternative splicing site. However, 
only approximately 20% of the missense mutation prediction 

tools deem this site detrimental. This underscores the benefits 
of using diverse prediction software in databases. 

Discussion 

It is becoming increasingly evident that variants in the non- 
coding regions of the human genome significantly impact 
hereditary diseases ( 6 ,7 ). However, providing clinical interpre- 
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Figure 3. Snapshot of gene-le v el implications in VarCards2. For instance, details provided for the NPPA gene include basic information, gene functions, 
associated phenotypes and diseases, gene expression patterns, variant distributions across populations, and drug–gene interactions. 

tations of variants in non-coding areas remains challenging for 
clinicians and genetic counsellors ( 4 ). For general clinicians 
and genetic counsellors, the optimal approach for interpret- 
ing non-coding sequences is to adhere to the ACMG guide- 
lines ( 8 ). To facilitate the interpretation of whole-genome se- 
quencing, we incorporated over 150 annotation sources essen- 
tial for genetic counselling by building VarCards2 within the 
framework of VarCards. For users seeking additional details, 
we provide a link that redirects them to the corresponding 
website for more comprehensive information. 

Although many existing tools and databases can anno- 
tate non-coding sequences, VarCards2 presents distinct dif- 
ferences (Supplemental Table 2). Compared with seven exist- 
ing databases, including FAVOR ( 107 ), VannoPortal ( 35 ), Var- 
Some ( 108 ), CADD ( 10 ), wAnnovar ( 109 ), VEP ( 110 ), and 

SnpEff ( 111 ), only VarCards2 could identify co-segregated 

variants, de novo mutations, homozygous variants, com- 
pound heterozygous variants, and X-linked hemizygous vari- 
ants from user-provided VCF files for batch annotation. This 
feature efficiently assists clinicians and genetic counsellors, 
who may lack bioinformatics skills, in filtering potential 
pathogenic variants from extensive data, but also provides ev- 
idential support for the interpretation of variant pathogenic- 
ity in genetic counselling based on the ACMG guidelines. 
Furthermore, most existing tools and databases need to en- 
compass comprehensive gene-level annotation. Although Var- 
Some ( 108 ) and VEP ( 110 ) are exceptions, VarSome ( 108 ) 

operates as a commercial database, whereas VEP ( 110 ) only 
provides linkage information between genes and diseases or 
phenotypes at the gene level. However, VarCards2 provides 
users with more than 40 gene-level functional annotations, 
including ’Gene function’, ‘Gene expression’, ’Gene–drug in- 
teraction’, and ’Phenotype and disease information’, through 

an intuitive web interface for user convenience. Additionally, 
VarCards2 not only provides the most in silico functional or 
pathogenic predictions compared to existing databases but 
is also the only database that offers distinct prediction tools 
for various types of variants, including SNVs, short INDELs, 
CNVs, splicing variants and mitochondrial variants. Further- 
more, VarCards2 is a unique, non-commercial, one-stop on- 
line database capable of providing genetic counselling for 
SNVs, CNVs, short INDELs and mitochondrial variants. Var- 
Cards2 focuses primarily on the clinical interpretation of ge- 
netic mutations. It integrates commonly used essential tools 
and data while discarding less useful and redundant datasets, 
making it convenient for genetic counselling. 

As a comprehensive one-stop online database designed to 

facilitate genetic counselling, VarCards2 exhibits distinct ad- 
vantages over the traditional resources used in genetic coun- 
selling. For instance, ClinVar ( 38 ), an online database, is a 
valuable and widely used resource for genetic counselling. 
However, it is important to note that it does not represent 
all genetic variants owing to its dependency on voluntary 
submissions. To include as many genetic variants as possi- 



Nucleic Acids Research , 2024, Vol. 52, Database issue D 1485 

ble, VarCards2 has not only manually generated close to nine 
billion SNVs, representing all conceivable SNVs throughout 
the genome, but has also aggregated reported short INDELs 
and SVs from a multitude of databases, including dbVAR 

( 42 ), dbSNP ( 41 ), ICGC ( 37 ), COSMIC ( 39 ), gnomAD ( 36 ), 
Gene4Denovo ( 40 ) and ClinVar ( 38 ). Additionally, despite 
ClinVar guidelines, inconsistencies in how different laborato- 
ries interpret and classify genetic variants may still arise. This 
may have led to conflicting classifications of a single variant 
within the database, and certain submissions may lack com- 
prehensive evidence or interpretations. Consequently, Var- 
Cards2 not only aggregates various variant- and gene-level 
databases for disease information but also provides multiple 
in silico pathogenic prediction scores and allele frequencies 
across diverse populations based on the ACMG-AMP guide- 
lines, thereby providing comprehensive evidence to assist users 
in genetic counselling. 

Although VarCards2 offers extensive data to support ge- 
netic counselling in line with the ACMG standards and guide- 
lines, users should be aware of the following precautions: 
First, although we have incorporated over 150 annotation 

sources into VarCards2, we can only present the datasets 
used for rating to users, rather than automatically determin- 
ing them, as this could lead to a high number of false pos- 
itives. Secondly, because we cannot automate the interpreta- 
tion and extraction of key information from a large volume 
of open-access (OA) literature, the vast majority of annota- 
tion resources in VarCards2 originate from public databases. 
Consequently, some crucial information concealed within the 
most recent publications might be overlooked. Additionally, 
we encourage users to contribute their in-house annotation 

datasets because sharing them can benefit a wider user com- 
munity. Third, disease- and phenotype-related data were col- 
lated from several databases, including ClinVar ( 38 ), OMIM 

( 75 ), COSMIC ( 39 ) and HPO ( 86 ). Consequently, evidence 
of variations’ clinical significance was obtained from diverse 
teams that employed various criteria and potential method- 
ological biases. Users must remain vigilant of potential false 
positives in disease- and phenotype-related data ( 50 ,112 ). Fur- 
thermore, VarCards2 offers over 100 computational predic- 
tion scores for determining the pathogenicity or function of 
variations, including SNVs, INDELs, and CNVs; users should 

recognise that these methods vary in their specificity and sen- 
sitivity ( 62 , 63 , 113 ). 

Transitioning from VarCards to VarCards2, we refreshed 

our integrated data sources and incorporated additional 
datasets vital for the clinical interpretation of non-coding re- 
gion variants. Although VarCards2 has a vast array of anno- 
tation resources, it refrains from directly pinpointing disease- 
causing variations owing to its intricate genetic testing cri- 
teria. However, we are setting sights on enhancing the Var- 
Cards2 database during the subsequent phase of automated 

genetic testing. We also invited the users to share their feed- 
back, suggestions, or valuable data sources. VarCards2 offers 
a user-friendly gateway for genetic, genomic, and clinical in- 
sights into the human genome, expediting the identification 

and prioritisation of critical variants and genes. 
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