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Abstract 

Distinct from the traditional diagnostic / prognostic biomarker (adopted as the indicator of disease state / process), the therapeutic biomarker 
(ThMAR) has emerged to be very crucial in the clinical development and clinical practice of all therapies. There are five types of ThMAR that have 
been found to play indispensable roles in various stages of drug disco v ery, such as: Pharmacodynamic Biomark er essential f or guaranteeing 
the pharmacological effects of a therap y, Safety Biomark er critical f or assessing the extent or likelihood of therapy-induced toxicity, Monitoring 
Biomarker indispensable for guiding clinical management by serially measuring patients’ status, Predictive Biomarker crucial for maximizing the 
clinical outcome of a therapy for specific individuals, and Surrogate Endpoint fundamental for accelerating the appro v al of a therap y. Ho w e v er, 
these data of ThMARs has not been comprehensively described by any of the existing dat abases. Herein, a dat abase, named ‘T heMark er’, w as 
therefore constructed to (a) systematically offer all five types of ThMAR used at different stages of drug de v elopment, (b) comprehensiv ely 
describe T hMAR inf ormation f or the largest number of drugs among a v ailable databases, (c) e xtensiv ely co v er the widest disease classes b y not 
just focusing on anticancer therapies. These data in TheMarker are expected to have great implication and significant impact on drug disco v ery 
and clinical practice, and it is freely accessible without any login requirement at: https:// idrblab.org/ themarker . 
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istinct from the traditional diagnostic / prognostic biomarker
adopted as the indicator of disease state / process), the thera-
eutic biomar k er (ThMAR) has emerged to be very crucial
n the clinical development and clinical practice of all ther-
pies ( 1 ,2 ). There are five types of ThMAR that are deeply
nvolved in various stages of drug discovery (as illustrated in
igure 1 ), which are defined by the BEST category of U.S. Food
 Drug Administration ( 3 ) as: pharmacodynamic biomar k er

PDY), safety biomar k er (SAF), monitoring biomar k er (MOI),
redictiv e biomar k er (PRD), and surrog ate endpoint (SUR).
or every therapy (shown in Table 1 ), the PDYs, SAFs, MOIs,
RDs, and SURs are reported to be crucial for guarantee-

ng pharmacological effect using its targets ( 4 ), fundamen-
al for assessing the extent or likelihood of therapy-induced
oxicity ( 5 ), indispensable for guiding clinical management
y serially measuring patient status ( 6 ), critical for maximiz-
ng the clinical outcome of a therapy for particular group
f patients ( 7 ), and valuable for accelerating the approval
f a therapy using smaller patient number and shorter trial
eriod ( 8 ). With the rapid accumulation of ThMAR data
n recent years, it is highly demanded to have a database
roviding the information of five types of ThMAR, which
hould be collectively assessed considering the extremely high-
evel of interplay among different stages of drug development
 9 ,10 ). 

So far, a variety of biomarker-relevant databases
ave been constructed, most of which focus on giving
iagnostic / prognostic biomar k er s , such as MarkerDB ( 11 ),
nc2Cancer ( 12 ), Exposome-Explorer ( 13 ), BioMuta &
ioXpress ( 14 ) and several other databases ( 15–33 ). These
atabases have accumulated great research interests from
orldwide audience, but they do not provide any ThMAR
ata. Two databases have been available for providing
hMAR information: CTR-DB ( 34 ) and ResMarkerDB ( 35 ).
owever, these databases mainly focus on providing the pre-

ictiv e biomar k er (PRD, one of the five ThMAR types shown
n Figure 1 ) for anticancer therapy, which make them unable
o assess the interplay among different discovery stages ( 10 ).

oreover, most ( > 60%) of ThMARs are not for anticancer
herapy, which limits the use of the available databases
 9 ). Therefore, it is urgently needed to construct a database
or all five ThMAR types. 
In this study, a comprehensive database of therapeutic
biomarkers entitled ‘TheMarker’ was thus constructed. It
was the first knowledge base covering all five types of
ThMAR, which allowed a collective consideration among
different stages of drug development. TheMarker contained:
(a) 218 pharmacodynamic biomar k er s indicating the clini-
cal efficacies of 115 drug classes (such as: AChE inhibitors,
MetAP2 inhibitors and LPA1 antagonists) for the treatments
of 112 classes of disease defined by the WHO ICD-11
(such as Alzheimer disease, obesity and systemic sclerosis);
(b) 624 safety biomar k er s that monitored the clinical toxic-
ity (such as gastrointestinal, hepatic, and hematological) of
263 drugs treating 106 disease classes (such as thrombocy-
topenia, seizure and Parkinson ); (c) 104 monitoring biomark-
ers that helped to guide the clinical management of a therapy
through serially measuring patient status for 60 drugs treat-
ing 33 disease classes (such as hemophilia and melanoma);
(d) 15 893 predictive biomarkers that facilitated the identi-
fication of individuals who are more likely to experience fa-
vorable or unfavorable effect from 352 drugs for treating 95
diseases (such as hepatitis and hypercholesterolemia); (e) 103
surrogate endpoints that provided the clinical outcomes of
435 approved drugs (including 193 accelerated approvals) for
treating 102 diseases (such as tuberculosis, muscular dystro-
phy and Fabry disease). 

In sum, TheMarker systematically provided five types of
ThMAR, which described ThMAR data for the largest num-
ber of drugs among all those available databases, and covered
the widest range of disease classes, which provided the most
diverse pathological data among available databases by not
just focusing on anticancer therapies. Due to the rapid ap-
plication of Artificial Intelligence in biomedical studies ( 36–
39 ), the comprehensive data provided in this database may be
valuable for both drug development and clinical practice. The-
Marker is now freely accessible without any login requirement
at: https:// idrblab.org/ themarker . 

Factual content and data retrieval 

Systematic collection of the information of 
therapeutic biomark er s 

The therapeutic biomar k er s (ThMARs) and their appli-
cations in the drug development & clinical practice were
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Figure 1. Five distinct types of therapeutic biomarker (ThMAR) and their key role in the clinical development and clinical practice of all therapies, which 
included: pharmacodynamic biomarker (PDY), safety biomarker (SAF), monitoring biomarker (MOI), predictive biomarker (PRD), and surrogate endpoint 
(SUR). The ThMARs were deeply involved in every stages of drug discovery and known to be essential for guaranteeing the pharmacological effect, 
fundamental for assessing the extent / likelihood of therapy-induced toxicity, indispensable for guiding clinical management, critical for maximizing the 
clinical outcome, and valuable for accelerating therapy approval. 

collected based on the following procedure. First , com- 
prehensive literature review was conducted using such 

keywords / combinations as ‘therapeutic biomarker + drug’, 
‘treatment response + biomarker’, ‘pharmacodynamic 
biomarker’, ‘target engagement biomarker’, ‘drug safety 
biomarker’, and ‘surrogate endpoint’. Retrieved literatures 
were then carefully reviewed, and those reported ThMARs 
together with their corresponding therapies were recorded. 
Second , the valuable data of pharmacogenomic biomarker 
officially provided by the U.S. FDA-approved drug labels 
were extracted, which were scattered throughout the differ- 
ent sections of these labels such as indications and usage, 
adv er se reactions, and use in specific populations . According 
to the roles of these biomarkers played, the types of these 
biomarkers were manually labelled. Third , the surrogate 

endpoints that have been applied to facilitate drug approval 
were comprehensively collected from the official website of 
U.S. FDA, and the drugs approved based on these surrogate 
endpoints were also identified. In addition, detailed descrip- 
tions on the applications of ThMARs in clinical development 
and clinical practice were also identified, which included 

biomarker class (such as protein, DNA, and miRNA), 
biomarker mode (such as expression level, mutation, urine 
concentration, and polymorphisms), biomarker source (such 

as tumor tissue, plasma, and urine), experimental testing 
method (such as ELISA and RT-PCR), reported biomarker 
variation, and so on. Moreover, one of the most widely 
applied strategies for categorizing biomarkers, also known 

as the ‘BEST’ category officially provided by U.S. Food 

& Drug Administration ( 3 ), was adopted by the study for 
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classifying all collected ThMARs into five types: pharmacody- 
namic biomar k er (PDY), safety biomar k er (SAF), monitoring 
biomar k er (MOI), predictiv e biomar k er (PRD) and surrog ate 
endpoint (SUR). The definition and importance of these 
ThMAR types were explicitly described in Table 1 , and 

a detailed discussion on five ThMAR types was provided 

below. 

Pharmacodynamic biomarker guaranteeing the 

clinical efficacy of a therapy 

Measuring the binding of drug to its targets and determin- 
ing the association of drug efficacy with target engagement 
are essential steps in target validation and drug discovery, 
which heavily relies on the utilization of pharmacodynamic 
biomar k er (PDY), especially in human trials ( 40 ). PDYs are 
considered as critical tool for initially assessing the beneficial 
therapeutic activity, supporting clinical translation from an- 
imal to human, and providing valuable data on mechanisms 
of action, dose response, and drug efficacy ( 4 ). A retrospective 
study revealed that ∼20% of the failures in Phase 2 clinical 
trial was due to inadequate target exposure, emphasizing the 
importance of PDY ( 40 ), and it was also reported that the clin- 
ical proof of the target binding mechanism using PDYs could 

substantially increase the probability of a project advancing 
to Phase 2 by 25% ( 10 ). 

Herein, the PDYs were systematically collected based on 

literature review, and an exemplar PDY for Alzheimer dis- 
ease were described in Figure 2 . General information of a 
studied disease was provided in the upper section, which in- 
cluded disease name, disease class and ICD-11. All PDYs that 
have potential application in the disease was categorized by 
biomarker class (such as protein and chemical). For each PDY, 
the corresponding drug and its therapeutic class, analyzed 

species, marker source, and testing method were provided. As 
a result, a total of 218 PDYs indicating the efficacy of 115 

therapeutic classes for treating 112 diseases were provided in 

TheMarker. 

Safety biomarker evaluating the likelihood / extent 
of therapy-induced toxicity 

Drug safety was widely and persistently considered during the 
process of drug development and clinical practice ( 41–44 ). In 

the preclinical and clinical phases of drug development, safety 
issue remained one of the critical reasons of drug attrition, 
accounting for over 30% of all drug failures ( 45 ,46 ). One of 
the effective ways to prevent / mitigate the drug-induced tox- 
icity was to use safety biomar k er (SAF) in the early drug de- 
velopment, which offered drug developer with guidance to 

optimize drug candidate and then increase the likelihood of 
success ( 5 ,46 ). Moreover, it is known that numerous adverse 
drug reactions were not directly observed in clinical trial but 
identified in post-marketing surveillance ( 47 ,48 ). Thus, the 
discovery of SAF can shed light on the underlying molecu- 
lar mechanism of drug toxicity, differentiate compounds with 

less toxicity to advance into clinical trial, and lead to safer 
treatment with much lower morbidity and mortality ( 49–54 ). 

Herein, an exemplar SAF and its applications for report- 
ing therapy-induced toxicity were shown in Figure 3 . Gen- 
eral information of the SAF was offered, which included 

SAF name, synonyms, and so on, and the drugs whose 
safety could be assessed using the SAF were grouped using 
their clinical status. For a drug, reported biomarker varia- 

tion, therapy-induced toxicity, studied disease, experimental 
species, biomarker source and testing method were explic- 
itly described. The SAFs collected here covered the very di- 
verse types of toxicity, such as gastrointestinal, cardiovascu- 
lar, hepatic, and hematological toxicity. Moreover, it was re- 
ported that transcriptomic analysis would reflect a particular 
pattern of genes that could be associated with drug-induced 

toxicity, providing a more sensitive and specific panel of SAFs 
as well as insight in the mechanistic aspect of toxicity ( 55 ). 
Thus, various transcriptomic datasets were collected and sta- 
tistically analyzed in this study. First , a comprehensive search 

in GEO was conducted based on such keywords as ‘drug tox- 
icity’, ‘adverse drug reaction’, and ‘side effect’, which resulted 

in ∼150 datasets by limiting the dataset ‘Organism’ to Homo 

sapiens and the dataset ‘Type’ to expression profiling by array 
& expression profiling by high throughput sequencing . Sec- 
ond , these retrieved datasets were manually checked to guar- 
antee that all those analyzed samples were from patients (such 

as disease tissue, peripheral blood, blood plasma, and urine) 
and all patients had been exposed to a therapy (both con- 
trol and case sample groups), which resulted in three datasets: 
GSE186143 (60 melanoma patients treated with checkpoint 
inhibitor), GSE171468 (57 colorectal cancer patients treated 

with capecitabine), and GSE178708 (20 breast cancer patients 
treated with a radiation therapy). Third , original CEL files for 
microarray data and raw read counts for RNA-seq data were 
processed using oligo ( 56 ) and DESeq2 ( 57 ), respectively. All 
those genes with fold change > 1.5 and adjusted P -value < 0.05 

between control and case groups were collected. As described 

in Supplementary Table S1, these three datasets were provided 

at the bottom, which described two groups of patients admin- 
istrated with the same therapy (one with observed toxic event, 
while the other with non-toxic event). As a result, 624 SAFs 
indicating the extent / likelihood of therapy-induced toxicity 
were collected. 

Monitoring biomarker for optimizing the clinical 
management of a therapy 

The monitoring biomar k er (MOI) was a group of indicators 
serially measured for assessing status of disease or medical 
condition or for evidence of exposure to (or effect of) a ther- 
apy ( 58 ), which was very essential for guiding the clinical man- 
agements of the corresponding therapy ( 6 ). It was measured 

during one or more periods of patient’s clinical course, such 

as following the diagnosis of disease and prior to the interven- 
tion, during the period in which the therapy is being delivered, 
and after the delivery of a therapy has been completed ( 3 ). 
Taking the mRNA level of BCR-ABL as an example, it was 
serially monitored to identify the patients of chronic myel- 
ogenous leukemia being treated with nilotinib who may be 
the candidates for clinical treatment discontinuation ( 59 ). The 
monitor of a studied MOI included the evaluations of its mag- 
nitude, its magnitude of change, its rate of change over time, 
its relation of changes to the patients, and so on ( 10 ). 

Herein, MOI data were systematically collected (as il- 
lustrated in Figure 4 ). General information of a MOI was 
provided, such as MOI name, MOI class, gene name, syn- 
onyms, function, external links, and so on. The drugs to which 

the MOI was applied were grouped by drugs’ clinical sta- 
tus (such as approved and in clinical trial). For each drug, 
the studied disease, tested species, testing method, biomarker 
source, and disease ICD-11 were extensively provided. As a 
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Table 1. Five types of therapeutic biomarker (ThMAR) defined by the official ‘BEST’ category of the U .S . Food & Drug Administration ( 3 ), which deeply 
in v olv ed in various stages of drug discovery 

ThMAR type Definition and importance of the corresponding ThMAR type Typical example 

Pharmacodynamic biomar k er 
(PDY) 

A group of indicators of drug effect on its target in a studied 
organism ( 90 ), which is essential for guaranteeing pharmacological 
effects, establishing proof-of-concept, assisting dose selection, and 
measuring the response to specific therapy ( 4 ). 

DKK3 is a PDY indicating the 
inhibition of HTRA1 in 
patients using anti-HTRA1 
antibody ( 91 ) 

Safety biomar k er 
(SAF) 

A group of indicators denoting the likelihood, presence, or extent of 
therapy-induced toxicity as adverse drug reaction ( 92 ), which 
identifies patients for whom particular therapies should not be 
initiated or continued due to significant safety risk ( 5 ). 

Urinary KIM1 and NGAL are 
two typical SAFs for detecting 
acute drug-induced 
nephrotoxicity ( 93 ) 

Monitoring biomar k er 
(MOI) 

A group of indicators serially measured for assessing status of a 
disease or medical condition or for evidence of exposure to (or 
effect of) a studied therapy ( 58 ), which is indispensable for guiding 
the clinical management of this medication ( 6 ). 

HCV-RNA is used as a MOI 
for measuring & guiding the 
usage of antiretroviral therapies 
( 94 ) 

Predictiv e biomar k er 
(PRD) 

A group of indicators identifying the individuals who are more 
likely to experience a favorable / unfavorable effect from the 
exposure to a therapy ( 60 ), which is essential for maximizing the 
clinical outcome for particular group of individuals ( 7 ). 

PD-L1 is an extensively studied 
PDY predicting the response to 
immune checkpoint inhibitor 
( 95 ) 

Surrogate endpoint 
(SUR) 

A group of indicators used in clinical trials as a substitute for a 
direct measure of how a patient feels, functions, or survives ( 96 ), 
which predicts the clinical benefit or harm based on epidemiologic, 
therapeutic, and pathophysiologic evidences ( 8 ). 

The reduction of hemoglobin 
A1C is a SUR facilitating the 
drug approval for diabetes 
mellitus ( 97 ) 

There were five ThMAR types: pharmacodynamic biomarker (PDY), safety biomarker (SAF), monitoring biomarker (MOI), predictive biomarker (PRD) and 
surrogate endpoint (SUR). The definition and importance of each ThMAR type were explicitly described, and the typical example was also provided for each 
ThMAR type. DKK3: Dickkopf-related protein 3; HTRA1: high-temperature requirement A serine peptidase 1; KIM1: kidney injury molecule 1; NGAL: 
neutrophil gelatinase associated lipocalin; HCV: hepatitis C virus. 

result, a total of 104 MOIs guiding the clinical management 
of 60 drugs for the treatment of 33 classes of disease (such as 
obesity, hemophilia and melanoma) were collected and pro- 
vided in TheMarker. 

Predicti ve biomark er for maximizing the clinical 
outcomes of studied patients 

The predictive biomarker (PRD) promoted the identifica- 
tion of individuals who were more likely to experience 
favorable / unfavorable effect from the exposure to studied 

therapy ( 60 ), which was essential for maximizing the clinical 
outcome for particular group of individuals ( 7 ). Particularly, 
treatment responses of a drug varied considerably among in- 
dividuals, resulting in only a fraction of patients benefiting 
from the studied therapy ( 61–65 ). As reported, > 60% of de- 
pression patients failed to recover after drug treatment, and 

20% of them even did not respond to any intervention ( 66 ). 
One of the effective ways to address this issue was the dis- 
covery of the reliable and sensitive PRDs that could optimize 
the clinical outcome for a particular group of individuals ( 67–
70 ). Such PRDs could eventually facilitate a precision medica- 
tion ( 71–74 ). In addition, PRDs would greatly contribute to 

drug / target discovery ( 66 ). In other words, the collected PRDs 
were highly expected to revolutionize the ways of both drug 
administration and drug development ( 75–79 ). 

Herein, the experimentally / clinically identified PRDs for 
a great number of drugs were collected. An exemplar PRD 

for a therapy was shown in Figure 5 . General drug infor- 
mation was provided, which included synonyms, indication, 
structure, drug properties, external links, and so on. Those 
literature-reported PRDs were categorized based on their 
molecular classes (such as microRNA and protein biomarker), 
and the application of each PRD in the corresponding drug 
was explicitly demonstrated, including reported biomarker 
variations, disease, experimental species, biomarker source, 
experimental testing approach, and so on. Moreover, the 

accumulation of transcriptomic data investigating the dif- 
ferences in treatment responses also provided a valuable 
opportunity to discover PRD and unravel the molecular 
mechanism underlying drug response / resistance ( 80 ,81 ). 
Therefore, such valuable transcriptomic data were also incor- 
porated to the database. Particularly, comprehensive search in 

GEO ( 82 ) and Expression Atlas ( 83 ) was first conducted based 

on such keywords / combinations as ‘drug response’, ‘drug re- 
sistance’, and ‘treatment response’; second , all eligible datasets 
were statistically analyzed in the same way as that for safety 
biomar k er (SAF). As illustrated in Supplementary Table S1, a 
total of 93 transcriptomics datasets were collected, analyzed 

and provided, which were fully covered and described by cur- 
rent version of TheMarker. As illustrated in Figure 5 c, detailed 

information of each dataset (such as the studied drug, disease, 
and sample) was given and the gene expression between con- 
trol and case was presented in scatter plots. Up- and down- 
regulated PRDs were colored in red and blue respectively, and 

fold changes and adjusted P -values were also provided. As a 
result, a total of 15 893 PRDs that facilitated the identification 

of individuals who were more likely to experience a favorable 
or unfavorable effect from 352 drugs for treating 95 diseases 
were systematically provided in TheMarker. 

Surrogate endpoint for substantially accelerating 

the approval of a therapy 

In an effort to expedite approval of drug for treating the dis- 
ease of unmet medical need, FDA has long been positive to 

the proper applications of surrogate endpoint (SUR) in drug 
discovery ( 8 ). SUR referred to the biomarker that was used in 

clinical trials for predicting clinical benefit / harm, rather than 

to directly measure clinical outcome (whether the patient feels 
or functions better, or lives longer) ( 84 ). As assessing clini- 
cal outcome (such as all-cause mortality) often required large 
sample size and long follow-up time, the use of SUR was an 

ideal way to elevate the efficacy of clinical trials with smaller 
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Figure 2. A typical disease page showing the application of pharmacodynamic biomarker (PDY) for diseases and the representative engagement targets 
of the PDY provided in TheMarker. In the upper section, the typical page of PDYs applied to a disease in TheMarker was described. ( a ) the general 
disease information such as disease name, disease class, and ICD-11. ( b ) the PDYs used in the disease categorized by the biomarker class (such as 
protein & compound). For a PDY, drug class, biomarker mode / level, experimental species, and testing method were provided. 

patient number and shorter trial duration ( 85 ). Depending on 

the level of clinical validation and whether there was enough 

evidence to support the prediction of specific clinical bene- 
fit, SURs were grouped to ‘ validated SUR ’, ‘ reasonably likely 
SUR ’ and ‘ candidate SUR ’ ( 86 ). Particularly, validated SUR 

indicated the biomarker that had clear causal / mechanistic ra- 
tionale of the disease processes and had obtained clinical data 
relevant to clinical benefit, while reasonabl y likel y SUR was 
supported by strong mechanistic data and / or epidemiologic 

rationale, but existing clinical data were still insufficient to 

demonstrate their capacity in predicting clinical benefit. Such 

systematical collection of SURs would be able to promote the 
identification of new SURs for drug developers when design- 
ing their drug development programs ( 84 ). 

In this study, reported SURs were extensively collected and 

systematically presented. As shown in Figure 6 , the general in- 
formation of SURs was provided in the upper section, which 

included name, biomarker class, biomarker status (such as 
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Figure 3. A typical biomarker page describing safety biomarker (SAF) and representative types of toxicity offered by TheMarker. In the upper section, 
SAF’s applications to predict / monitor the drug safety were shown. ( a ) general information . The basic data of the SAF included: biomarker name, class, 
synonyms, and so on. ( b ) SAF identified from clinical / experimental data . The drugs whose safety could be predicted / monitored by this SAF were 
categorized using drug status. For any drug, biomarker mode & level, induced toxicity, disease indication, tested species, biomarker source, and testing 
method were explicitly described. User can find detailed data of the drug and disease by clicking ‘ Drug Info ’ and ‘ Disease Info ’. In the bottom section, 
the representative types of toxicity indicated by SAF were listed, such as cardiovascular toxicity and neurotoxicity. 
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Figure 4. A typical ThMAR page showing monitoring biomarker (MOI). ( a ) general information of ThMAR . Such general information included MOI name, 
MOI class & MOI function. ( b ) MOI identified from clinical / experimental data . The drugs were categorized using drug status. For any drug, disease 
indication, tested species, biomarker source, and experimental testing method were explicitly described. Users can find detailed data of the drug and 
disease by clicking ‘ Drug Info ’ and ‘ Disease Info ’, respectively. 

validated and reasonably likely SUR ), approval types ( acceler- 
ated and traditional ), disease indications, and the correspond- 
ing patient population. In the lower section of Figure 6 , the 
drugs approved based on SURs were shown and categorized 

using disease class. For each drug, the status of approval pro- 
gram (such as verified, ongoing and withdrawn) and the ap- 
propriate patient age were also described. All in all, a total of 
103 surrogate endpoints that indicated the clinical outcomes 
of 435 approved drugs (including 193 accelerated approvals) 
for the treatment of 102 disease classes were finally provided 

in TheMarker. 

Tissue- and disease-specific expression of the 

therapeutic biomark er s 

Tissue-specific expressions of the biomarkers in TheMarker 
were collected as follows. First , the expression data for 182 

transcriptomic and 201 proteomic samples across 32 major 
human tissues were collected ( 87 ). Second , RNA expression 

data were processed with logarithm transformation at base 2 

and the protein abundances were normalized using Z -scores. 
Third , for each therapeutic biomarker, both RNA expression 

and protein abundance (if available) were given in the form 

of boxplot (shown in Figure 7 a). Detailed procedure for col- 
lecting the disease-specific expressions of the biomarkers was 
described as follows: Affymetrix HG-U133 plus 2.0 microar- 
rays datasets were first retrieved from GEO ( 82 ), and stud- 
ied disease and tissue of each dataset were manually anno- 
tated, which led to a total of 612 datasets covering 97 disease 
classes and 59 tissues; second , the samples of the same disease 
from the same tissue were combined and the raw expression 

data were processed using RMA function of affy package ( 88 ); 
third , the median expression intensity array was selected as 
the baseline and all arrays were normalized ( 89 ); finally , fold 

changes and t -test were used to identify the differential expres- 
sion of each biomarker among different groups, such as dis- 
ease cases, healthy controls, and adjacent tissue (if available). 
As shown in Figure 7 , the gene expression for each biomarker 
in a disease was provided in the format of violin plot. In ad- 
dition, detailed information such as disease indication, tissue, 
significance test ( P -value & fold change) was also provided in 

the website of TheMarker. As a result, a total of 18 890 ther- 
apeutic biomarkers in TheMarker were provided with tissue- 
and disease-specific expression data. 
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Figure 5. A typical drug page describing the predictive biomarker (PRD) of a drug in TheMarker. ( a ) general information of drug . Such information 
included: drug name, disease indication, drug structure, and drug-like property. ( b ) PRD identified from clinical / experimental data . Literature-reported 
PRDs for studied drugs were categorized based on biomarker class (such as microRNA and protein), and the applications of each PRD were explicitly 
provided (such as biomarker mode, disease, tested species, biomarker source, and experimental testing approach). User can click the button of 
‘ Biomark er Inf o ’ & ‘ Disease Inf o ’ to retrie v e detailed inf ormation on the corresponding biomark er & disease. ( c ) PRD disco v ered from transcriptomic 
dat a . Det ailed information of each transcriptomic dat aset (such as experiment al drug , disease and sample) w as giv en and the genes with f old 
change > 1.5 & adjusted P -value < 0.05 between controls and cases were considered as potential PRDs. The up- and down-regulated PRDs were colored 
in red and blue, respectively. 
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Figure 6. A typical ThMAR page describing surrogate endpoint (SUR). ( a ) general information of ThMAR . Such general information included the SUR 

status (such as validated and reasonably likely surrogate endpoint), approval type (such as accelerated approval and traditional approval), disease 
indication and the corresponding patient population. ( b ) SUR accelerating drug appro v al . Drugs appro v ed based on this SUR were also provided, which 
w ere categoriz ed based on disease classes. For each drug , the st atus of appro v al programs (such as v erified, ongoing and withdra wn) and the patient 
age range were described. The detailed information of the drug and disease could be retrieved by clicking the buttons of ‘ Drug Info ’ and ‘ Disease Info ’, 
respectively. 

Data standardization, access, retrieval and 

visualization 

To make the access of TheMarker data convenient for users, 
the collected raw data were cleaned up and then standard- 
ized, which included the standardizations of disease indi- 
cation, external IDs, 2D & 3D structures, drug-like prop- 
erties, and so on. Moreover, two additional functions en- 
abling data visualization were provided, which included the 

filter function for searching results and the browse func- 
tion for entire ThMARs. As shown in Supplementary Fig- 
ure S1, filter function for searching results were described, 
and the readers could try out this new function by access- 
ing an exemplar weblink ( http:// themarker.idrblab.cn/ search- 
drug?api=fullText&keyword=EGFR ). As illustrated in Sup- 
plementary Figure S2, the browse functions for entire ThMAR 

http://themarker.idrblab.cn/search-drug?api=fullText&keyword=EGFR
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Figure 7. Tissue- and disease-specific expression information of therapeutic biomarkers covered in TheMarker. ( a ) Tissue-specific expression of the 
biomark er . B oth RNA e xpression and protein abundance across 32 human tissues / organs w ere sho wn in the f ormat of ‘bo xplot’, which co v ered those 
major organs of human body such as brain, heart, lung, liver and so on. ( b ) Disease-specific expression of the biomarker . A total of 97 disease classes 
(defined by ICD-11) were covered by TheMarker, and the expression patterns of a biomarker among disease cases, healthy individuals, and adjacent 
tissues were described using ‘violin plot’ for each disease (fold change and P -value were explicitly provided). BLOOD: disease of blood / blood-forming 
organs; CACER: neoplasm; CIRCU: disease of circulatory sy stems; DIGES T: disease of digestiv e sy stems; IMMUN: disease of immune sy stems; INFEC: 
infectious / parasitic disease; METAB: endocrine / metabolic disease; MUSCU: musculosk eletal / connectiv e-tissue disease; NEURO: nervous system 

disease; SKINS: skin disease; VISAL: visual system disease. 

were provided, and the readers could try out this function by 
visiting: http:// themarker.idrblab.cn/ browse . 

The layouts of TheMarker were organized by presenting 
ThMAR data in a tabular format, and a filter function was 
also provided on both the main page ( biomar k er , drug and dis- 
ease pages) and the searching results page. Taking the ThMAR 

page (Supplementary Figure S3) as an example, the readers 
can view the data by table , and a try out page was also pro- 
vided for the user to access ( http:// themarker.idrblab.cn/ data/ 
marker?id=B3HTD6 ). Furthermore, systematical review on 

the databases offering diagnostic / prognostic biomarkers was 

conducted, which led to > 10 databases, such as MarkerDB 

( 11 ), Lnc2Cancer ( 12 ) and CRMarker ( 18 ). The correspon- 
dence between the ThMARs and diagnostic / prognostic ones 
were then established, which were finally provided at the bot- 
tom of the ThMAR page (Supplementary Figure S4). 

Conclusion and perspectives 

Therapeutic biomarker (ThMAR), distinct from traditional 
diagnostic and prognostic biomarker, has emerged to 

be critical in drug development and clinical practice of 

http://themarker.idrblab.cn/browse
http://themarker.idrblab.cn/data/marker?id=B3HTD6
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therapies. In this study, a database titled ‘TheMarker’ was 
constructed to provide the comprehensive data on ThMARs. 
It is unique in systematically providing five types of ThMAR 

to realize the collective consideration among various stages 
of drug discovery, comprehensively describing ThMAR data 
for the largest number of drugs among existing databases, 
and extensively covering the widest range of diseases. How- 
ever, due to the complexity of the ThMAR data in newly 
published papers, it was unrealistic to automatically update 
our database. Therefore, we would like to update it in an 

annual / biennial manner. All in all, the data provided in The- 
Marker are highly expected to have great implications and 

significant impacts on both drug development and clinical 
practice. 
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