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ABSTRACT
Background. Sepsis and sepsis-associated acute kidney injury (SA-AKI) pose signifi-
cant global health challenges, necessitating the development of innovative therapeutic
strategies. Dysregulated protein expression has been implicated in the initiation and
progression of sepsis and SA-AKI. Identifying potential protein targets and modulating
their expression is crucial for exploring alternative therapies.
Method. We established an SA-AKI rat model using cecum ligation perforation
(CLP) and employed differential proteomic techniques to identify protein expression
variations in kidney tissues. Aldose reductase (AKR1B1) emerged as a promising target.
The SA-AKI rat model received treatment with the aldose reductase inhibitor (ARI),
epalrestat. Blood urea nitrogen (BUN) and creatinine (CRE) levels, as well as IL-1β, IL-6
and TNF-α levels in the serum and kidney tissues, were monitored. Hematoxylin-eosin
(H-E) staining and a pathological damage scoring scale assessed renal tissue damage,
while protein blotting determined PKC (protein kinase C)/NF-κB pathway protein
expression.
Result. Differential proteomics revealed significant downregulation of seven proteins
and upregulation of 17 proteins in the SA-AKI rat model renal tissues. AKR1B1
protein expression was notably elevated, confirmed by Western blot. ARI prophylactic
administration and ARI treatment groups exhibited reduced renal injury, low BUN and
CRE levels and decreased IL-1β, IL-6 and TNF-α levels compared to the CLP group.
These changes were statistically significant (P < 0.05). AKR1B1, PKC-α, and NF-κB
protein expression levels were also lowered in the ARI prophylactic administration and
ARI treatment groups compared to the CLP group (P < 0.05).
Conclusions. Epalrestat appeared to inhibit the PKC/NF-κB inflammatory pathway by
inhibiting AKR1B1, resulting in reduced inflammatory cytokine levels in renal tissues
and blood. Thismitigated renal tissue injuries and improved the systemic inflammatory
response in the severe sepsis ratmodel. Consequently, AKR1B1holds promise as a target
for treating sepsis-associated acute kidney injuries.
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INTRODUCTION
Sepsis, characterised by potentially devastating organ failure, stems from an aberrant
host response to infections (Singer et al., 2016), impacting millions globally each year.
Sepsis-associated acute kidney injury (SA-AKI) represents a potentially fatal consequence
of septic shock or sepsis specifically affecting the kidneys. It results in a gradual loss of
renal function, meeting the criteria established by the Global Kidney Disease Prognosis
Organization (KDIGO) for AKI while excluding other potential causes of kidney damage
(Bellomo et al., 2017). Studies indicate that SA-AKI constitutes 45%–70% of all AKI
cases (Uchino et al., 2005). Furthermore, SA-AKI tends to be more severe and exhibits a
higher fatality rate compared to other AKI types (Bagshaw, George & Bellomo, 2008). The
complete understanding of the pathophysiological mechanisms of SA-AKI remains elusive,
with existing theories largely reliant on autopsy data and animal models. Microcirculatory
abnormalities, inflammation and metabolic reprogramming are widely presumed as
the three primary mechanisms contributing to SA-AKI development (Peerapornratana
et al., 2019). Several studies have demonstrated that antibiotics, vasopressors, fluid
resuscitation, pharmacological inhibitors of signalling pathways, renal replacement therapy
and phytochemicals have shown potential in treating sepsis and SA-AKI. However, there
are currently no established, effective or specific techniques for preventing or treating SA-
AKI. Dexamethasone, for instance, demonstrated a reduced need for kidney replacement
therapy in patients with sepsis (Jacob et al., 2015). A phase II trial indicated long-term
kidney benefits and lower mortality with the anti-inflammatory recombinant alkaline
phosphatase (Pickkers et al., 2018). Regarding haemodynamic and oxygen delivery, studies
using angiotensin 2 (Tumlin et al., 2018) and levosimendan (Tholén, Ricksten & Lannemyr,
2021) suggest potential renal protection, yet effective and specific strategies for preventing
or treating SA-AKI remain elusive. Thus, there is a critical need to explore novelmedications
and therapeutic targets for SA-AKI.

Differential proteomics, a pivotal aspect of proteomics research, focuses on identifying
factors leading to proteomic variances between samples, thereby elucidating and validating
proteomic changes in physiological and pathological processes. This technique aids in
identifying differentially expressed proteins pivotal to pathogenesis, serving as a tool to
determine disease biomarkers and potential therapeutic targets (Song et al., 2021; Su et al.,
2014).

The application of proteomics to human and animal AKImodels has unveiled numerous
genes and proteins emerging as biomarkers and therapeutic targets (Devarajan, 2008;
Thongboonkerd, 2004; Thongboonkerd, 2005).

In this study, a label-free LC-MS/MS proteomics technique was employed to scrutinise
differential proteins in renal tissues of the rat SA-AKI model and the sham-operated
group. Subsequently, raw letter analysis and a literature review identified aldose reductase
(AKR1B1) as a potential therapeutic target for subsequent animal experiments.
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Aldose reductase (AKR1B1), the first rate-limiting enzyme involved in the polyol
pathway, is linked to the pathogenesis of diabetes-related issues like cataracts, neuropathy,
retinopathy and nephropathy (Kato et al., 2009). Given its involvement in inflammatory
diseases, such as sepsis, AKR1B1 has garnered significant research interest in recent years
(Rakowitz et al., 2007). A prior study demonstrated that AKR1B1 inhibition reduced
inflammatory responses induced by cecum ligation puncture in mice (Reddy, Srivastava &
Ramana, 2009). Additionally, Takahashi et al. (2012) observed that the AKR1B1 inhibitor,
fidarestat, improved LPS-induced acute renal damage and reduced mortality. These
findings underscore AKR1B1 as a potential therapeutic target for SA-AKI.

In this study, AKR1B1 inhibition effectively mitigated SA-AKI symptoms, providing
valuable insights into potential therapeutic targets for SA-AKI.

MATERIAL AND METHODS
EXPERIMENTAL PROCEDURES
Experimental animals
Specific pathogen-free (SPF)-grade male Sprague-Dawley (SD) rats (220–260 g, 6 weeks
old), obtained from Speifu Biotechnology Co., Ltd (Beijing, China) with Animal Certificate
of Conformity No. SCXK (Beijing, China) 2019-0010, were acclimated for 1 week at the
Central Hospital Affiliated to Shandong First Medical University SPF-level experimental
animal centre. The conditions included an ambient humidity of 50 ± 5%, ambient
temperature of 23± 1 ◦C and 12 h light/dark cycle. Rats were provided irradiated feed and
sterilewater. After the experiment, SD ratswere euthanised via intraperitoneal pentobarbital
sodium (30 mg/kg) injection. All animal handling methods adhered to ethical standards
and received approval from the Laboratory Animal Welfare and Ethics Committee at the
Central Hospital Affiliated with Shandong First Medical University (JNCH 2022-8).

Modelling
Moderate and severe sepsis rat models were constructed using the cecum ligation
perforation (CLP) method (Rittirsch et al., 2009). Rats were anaesthetised with 1% sodium
pentobarbital (40 mg/kg). The lower and middle abdomen were longitudinally incised
along the median axis to easily access the abdominal cavity. The cecum was divided and
excised before being ligated with 4-0 sutures from the end of the cecum to one-half
(moderate sepsis) or three-quarters (severe sepsis) of the ileocecal valve, respectively. Two
punctures were made in the ligated distal cecum with an 18G needle. The treated appendix
was retracted into the abdominal cavity. Subsequently, sutures were placed and the surgical
region was disinfected again using iodophor. Subcutaneous injections of pre-warmed saline
(3 ml/100 g, 37 ◦C) were used for resuscitation. The sham-operated group (sham group)
did not undergo cecum ligation and perforation, and their cecum was bluntly removed
and retracted into the abdominal cavity.
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Grouping
Differential proteomics and validation experiments
A total of 18 rats were randomly divided into three groups, each containing six rats: group
S (sham-operated group, Sham), group A (moderate sepsis group, CLP1/2) and group B
(severe sepsis group, CLP3/4). Rat models were developed for 24 h, and kidney tissues were
collected for proteomics and validation experiments.

AKR1B1 therapeutic target study
A total of 32 rats were randomly categorised into four groups, each containing eight animals:
Sham, CLP, CLP+pre-ARI (administered medicine before modelling) and CLP+post-ARI
(administered medicine after modelling) groups. Serum and renal tissue samples were
collected 24 h post modelling. The CLP+pre-ARI group received epalrestat (Yangtze
River Pharmaceutical Group, China), dissolved in 0.5% sodium carboxymethyl cellulose
(v/v; Na-CMC), at a concentration of 100 mg/kg/d, for one week before CLP, while the
CLP+post-ARI group received epalrestat 2 h after CLP via gavage. The Sham and CLP
groups received equivalent volumes of 0.5% Na-CMC solution via gavage, once a day for
a week before CLP. The epalrestat dose was determined based on previous studies (Gao et
al., 2019; Li et al., 2016; Yang et al., 2019).

DIFFERENTIAL PROTEOMICS
Protein treatment
Kidney tissue samples were homogenised, and proteins were extracted. Total protein
concentration was determined using the BCA technique. Equal protein amounts were
enzymatically digested, and peptides were desalted and eluted with 80% acetonitrile
(ACN). Peptide quantification utilised the BCA kit (Beyotime Biotech Inc, Shanghai,
China).

Liquid chromatography-mass spectrometry (LC-MS)
Liquid chromatography utilised mobile phase A (0.1% formic acid + 2% ACN dissolved
in water) to dissolve the peptides, which were then separated using a NanoElute ultra-high
performance liquid phase device (Bruker timsTOF Pro; Bruker, Bremen, Germany).
Mobile phase B constituted 0.1% formic acid + 100% ACN. Gradient parameters for
liquid chromatography were 0–70 mins: 6%–24% B; 70–84 mins: 24%–32% B; 84–87
mins: 32%–80% B; and 87–90 mins: 80% B. The UHPLC technology was used to isolate
the peptides, and the samples were injected into the capillary ion source for ionisation
and assessed using timsTOF Pro mass spectrometry technique. An ion source voltage of
1.6 kV and high-resolution TOF identified and characterised peptides. The secondary
mass spectrometry scanning range was fixed at 100-1700. For data acquisition, the parallel
accumulated serial fragmentation (PASEF) mode was employed. Following the collection
of primary mass spectrum data, ten PASEF mode secondary spectral acquisitions with
parent ion charge values, ranging from zero to 5, were performed. To minimise repetitive
scanning of the parent ions, dynamic exclusion time was fixed at 30 s.
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Database search
Maxquant was used for database searches (v1.6.15.0). The theoretical and mass
spectroscopy-obtained secondary spectrum maps were compared. The identified protein-
specific peptides were used to retrieve the protein-related information using the following
search parameters: Rattus norvegicus 10116 PR 20201214.fasta (29,940 sequences) served
as the database, while a different inverse library was included for computing the false
positive rate (FPR) owing to random matches. A second common contamination library
was also included in the database to decrease the potential effects of the contaminating
proteins on the results of the identification process. Trypsin/P digestion was employed,
where the number of missed cut sites was fixed at two, while the minimal peptide length
was fixed at seven amino acid residues and the maximal number of peptide modifications
was fixed at five. Moreover, the primary parent ion’s mass error tolerance was set at 20
ppm, while the mass error tolerance of the secondary fragment ion was fixed to 20 ppm.
A fixed modification was established as the carbamidomethyl (C) alkylation of cysteine,
while the variable modifications, such as methionine oxidation and acetylation of protein
N-terminals, were included. False discovery rates (FDR) for PSMand protein identifications
were set at 1%.

Differential protein screening
The t -test assessed, relative quantitative values, with a P value≤0.05 indicating significance.
Differential expression >1.5 indicated significant upregulation, while values <1/1.5
indicated significant downregulation (Chen et al., 2022; Melenovsky et al., 2018). The
screened proteins were further validated using Western blotting.

AKR1B1 THERAPEUTIC TARGET STUDY
Histopathological examination
Standard procedures were employed for kidney tissue processing. Paraffinised kidney
sections were collected, dehydrated, de-paraffinised and stained using HE staining. The
light microscopic images were analysed and collected for data analysis.

The renal tubular injury was scored by two pathologists in a double-blind manner using
criteria from a previous study (Pieters et al., 2019). Scoring included 0 for no injury; 1 for
≤25%; 2 for 26%–50%; 3 for 51%–75%; and 4 for >75%. Five differing viewing fields were
selected for scoring each pathological section, and data were statistically analysed.

Blood serum urea nitrogen (BUN) and creatinine (CRE) assay
Blood serum urea nitrogen levels and creatinine levels were determined using the Urea
Nitrogen (BUN) test kit (urease method) (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) and creatinine (CRE) assay kit (sarcosine oxidase method) (Creatinine
(Cr)), respectively. Absorbance values were measured at OD values of A640 and A546 using
the enzyme standardisation instrument, following the manufacturer’s instructions. Finally,
the serum BUN and CRE levels were calculated using the recommended formulae.
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Enzyme-linked Immunosorbent Assay (ELISA)
Inflammatory cytokine levels, such as TNF-α (EK382; Shanghai Lianke Biological Co.,
LTD), IL-1β (EK301B; Shanghai Lianke Biological Co., Ltd., Shanghai, China) and IL-6
(EK306, Shanghai Lianke Biological Co., Ltd., Shanghai, China), in rat serum and kidney
tissues were determined using commercial ELISA kits (Boster Bioengineering Co., Ltd.,
Wuhan, China). An enzyme standardisation device was employed to determine the
absorbance (OD) values of the samples at 450 nm, and the ELISA Calc software was used
for standard curve plotting and concentration calculation.

Western blot
Protein samples from homogenised kidney tissue samples were subjected to the BCA
technique to determine total protein concentrations. Then, these protein samples were
electrophoresed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) before transferring onto PVDF membranes. Subsequently, the membranes were
placed in a container with a 5% BSA blocking solution and shaken for 2 h at room
temperature. The PVDF membrane was then buffer rinsed and treated with primary
antibodies (AKR1B1 1:500; β-actin 1:1000; PKC-α 1:200; NF-κB p65 1:200; SANTA
CRUZ) and incubated overnight at 4 ◦C. Following this, the PVDF membrane was buffer
rinsed and incubated in the presence of secondary antibodies (m-IgGκ BP-HRP 1:5000;
SANTA CRUZ) for 60 mins at room temperature in the shaker. The ECL developer was
then used to develop themembranes, and Image J software evaluated protein sample bands.

Real-time quantitative PCR (RT-qPCR)
AKR1B1 gene expression in rat renal tissues fromSham,CLP,CLP+pre-ARI andCLP+post-
ARI was determined using RT-qPCR. Total RNA was extracted from 50 mg of each tissue
sample stored at −80 ◦C, following the RNAex Pro RNA Extraction Reagent (#AG21102;
Accurate Biotechnology, Shenzhen, China) protocol. The quality of the RNAwas confirmed
using aNanoDropOne spectrophotometer (Thermo Fisher Scientific,Waltham,MA,USA)
with an A260/280 ratio within the range of 1.8−2.0. Genomic DNA digestion and reverse
transcription were performed using the Evo M-MLV RT Mix Kit and the gDNA Clean for
qPCR kit (#AG77128; Accurate Biotechnology, Shenzhen, China). Subsequently, 1.0 µg
of RNA was converted into cDNA using oligo(dT) primers in a 20 µL reaction mixture.
Reverse transcription was performed at 37 ◦C for 15 mins and 85 ◦C for 5 s. cDNA was
stored at −80 ◦C. Then, qPCR was conducted using a LightCycler 96 Real-Time PCR
Detection System with a 20 µL reaction mixture constituting 2 µL of cDNA, 10 µL of 2X
SYBR Green Pro Taq HS Premix (#AG11701; Accurate Biotechnology, Shenzhen, China)
and gene-specific primers (AXYGEN, PCR-0208-C). The PCR programme included an
initial denaturation step at 95 ◦C for 30 s, followed by 40 cycles at 95 ◦C for 5 s and 60 ◦C
for 30 s. Melting curve analysis was performed at 95 ◦C for 15 s, 60 ◦C for 1 min and 95 ◦C
for 5 s. The dissolution curve was unimodal. There was no Cq value for the amplification
of the No Template Control (NTC). Gene-specific primers (Table 1) were designed with
amplicon lengths of approximately 100 bp, confirmed throughNCBI blasting. Fold changes
in RNA abundance were calculated using the 2̂(−11CT) method, with β-actin serving
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Table 1 Gene-specific primers for real-time RT-PCR.

Gene Forward primer Reverse primer

AKR1B1 5′-CTCAACAACGGCACCAAGATG-3′ 5′-CCATGTCGATAGCAACCTTCAC-3′

β-Actin 5′-CACCCGCGAGTACAACCTTC-3′ 5′-CCCATACCCACCATCACACC-3′

as the internal reference and slope fluctuate between −3.59 and 3.1, R2
≥0.9. A limit of

detection was performed, with LOD = 2.5 targeting molecules with a 95% confidence
interval. Data analysis excluded any technical replicates with significant deviations from
the other two values in three technical replicates. Each group had eight biological replicates,
and each sample underwent three technical replicates to ensure robust results.

STATISTICAL ANALYSIS
Data analysis and visualisation were conducted using SPSS 25.0 (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism 9.0 (GraphPad, La Jolla, CA, USA) software. Non-normally
distributed data were analysed using the Kruskal–Wallis test, while normally distributed
quantitative data were presented as mean± SD. Additionally, one-way analysis of variance
(ANOVA) was used for comparing data from different samples with normal distributions,
and statistical significance was considered at P < 0.05.

RESULTS
Proteomics differential protein screening
A total of 5,367 proteins were detected through proteomics, with 4448 proteins quantified.
Differential expression analysis (>1.5-fold or <1/1.5-fold) was conducted on kidney
samples from septic and sham-operated group(s). Comparative analysis revealed distinctive
protein expression patterns in moderate sepsis (A) and severe sepsis (B) rat AKI models,
as illustrated in Fig. 1.

The results indicated an upregulation of 17 proteins and a significant downregulation of
seven proteins in both moderate and severe sepsis groups compared to the sham group. An
extensive literature review was performed for each identified protein, considering unique
peptide numbers and differential protein multiples. Proteins relevant to the research focus
were selected for further study (Table 2).

AKR1B1 is highly expressed in the renal tissue of the SA-AKI rat model
To identify potential therapeutic targets for SA-AKI, 24 proteins were further screened.
AKR1B1 emerged as a promising candidate due to its statistically significant expression
difference between the B/S groups (P = 6.56272939732895E−06) and its documented
association with inflammation (Chen et al., 2018a; Miláčková et al., 2017; Wang et al.,
2023). As studies reporting on AKR1B1 and its involvement in sepsis are scarce, AKR1B1
was selected as the candidate molecule. Western blot analysis confirmed an elevated
AKR1B1 protein level in CLP1/2 and CLP3/4 compared to the sham group, aligning with
proteomic findings (Fig. 2).
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Figure 1 Differential protein screening. (A) Differential protein expression (B) Differential protein vol-
cano maps (C) Differential protein heat maps. S, sham group, A: moderate sepsis; B: severe sepsis.

Full-size DOI: 10.7717/peerj.16709/fig-1
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Table 2 In both the moderate sepsis (A) and severe sepsis (B) rat S-AKI models, 17 proteins were up-
regulated and seven were downregulated.

Protein description Gene name Regulated Type

Parvalbumin alpha Pvalb Down
Apolipoprotein A-IV Apoa4 Down
Metallothionein-1 Mt1 Down
Apolipoprotein A-II Apoa2 Down
Heme oxygenase 1 Hmox1 Down
Polypeptide N-acetylgalactosaminyltransferase Galnt3 Down
Dimethylglycine dehydrogenase, mitochondrial Dmgdh Down
Endothelial cell-selective adhesion molecule Esam Up
Adipocyte-type fatty acid-binding protein Fabp4 Up
Serine protease inhibitor A3N Serpina3n Up
Carboxylic ester hydrolase LOC501233 Up
Alpha-1-acid glycoprotein Orm1 Up
Mitochondrial ribonuclease P catalytic subunit Prorp Up
Periplakin OS=Rattus norvegicus Ppl Up
L-serine ammonia-lyase Sds Up
Serine protease inhibitor A3M Serpina3m Up
Aldo-keto reductase family 1, member B8 Akr1b8 Up
Protein S100-A4 S100a4 Up
Alpha-2-macroglobulin A2m Up
Aldo-keto reductase family 1 member B1 Akr1b1 Up
Neutrophil gelatinase-associated lipocalin Lcn2 Up
Chloride channel protein Clcnka Up
Lipopolysaccharide-binding protein Lbp Up
Macrophage-capping protein Capg Up

Epalrestat reduces renal function impairment in rats
In evaluating the protective effect of epalrestat, a CLP-induced SA-AKI rat model was
established. The results showed a significant increase in serum BUN and CRE levels in the
CLP group compared to the sham group at 24 h post-operation (P < 0.05) (Figs. 3A and
3B). Both CLP+pre-ARI and CLP+post-ARI groups exhibited a decrease in BUN and CRE
levels, with statistically significant differences compared to the CLP group (P < 0.05) (Figs.
3A and 3B).

Epalrestat decreases inflammatory cytokine levels in the serum and
renal tissues in the severe sepsis rat model
Examination of inflammatory cytokine levels revealed a significant elevation of TNF-α,
IL-1β and IL-6 in renal tissues and serum homogenates of the CLP group compared to
the sham group (P < 0.05). Epalrestat administration, both before and after CLP, partially
reversed IL-6, IL-1β and TNF-α expressions, with statistically significant differences
(P < 0.05, Figs. 4A and 4B).
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Figure 3 Changes in renal function parameters in the serum from the sham, CLP, CLP+pre-ARI and
CLP+post-ARI groups. Serum BUN (A) and creatinine (B) levels were measured to evaluate renal func-
tion. # P < 0.05 vs Sham, * P < 0.05 vs CLP, ** P < 0.01 vs CLP. mean± SD, one-way ANOVA, double-
tailed unpaired t -test, n= 8/group.
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Epalrestat may protect against SA-AKI
Histopathological examination at 24 h post-operation demonstrated significant renal tissue
injuries in the CLP group, including oedema, vacuolar degeneration, tubular epithelial
swelling, tubular necrosis and brush border loss, compared to the sham group. CLP+pre-
ARI and CLP+post-ARI groups exhibited varying degrees of reduction in renal tissue
injury, with a statistically significant decrease in renal histopathology scores compared to
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the CLP group (P < 0.05) (Figs. 5A and 5B). These findings suggested that epalrestat could
contribute to protecting against AKI in severe sepsis.

Epalrestat inhibits the activation of the AKR1B1/PKC/NF-κB pathway
Analysis of AKR1B1 mRNA levels revealed a significant increase in the CLP group
(P < 0.05), while the ARI prophylactic administration and ARI treatment groups showed
a significant decrease compared to the CLP group (P < 0.05) (Fig. 6A). Western blot
analysis further indicated elevated levels of AKR1B1, PKC-α and NF-κB p65 proteins in
the CLP group compared to the sham group (P < 0.05). In contrast, the CLP+pre-ARI
and CLP+post-ARI groups exhibited reduced levels of these proteins (P < 0.05), with
statistically significant differences compared to the CLP group (P < 0.05) (Figs. 6B and
6C).

DISCUSSION
Proteomics, exploring the diverse proteomes, post-translational modifications, protein-
protein interactions and biological functions, is integral in unravelling the intricate
mechanism underlying diseases. Comparative proteomic analyses between healthy and
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pathological states serve as valuable tools in identifying unique protein molecules,
potentially acting asmolecular markers for early disease detection and as future drug targets
(Ho, Dart & Rigatto, 2014). The application of proteomics, particularly mass spectrometry
techniques, to human and animal models of AKI has illuminated the pathophysiology
of AKI and revealed novel genes and proteins as biomarkers and therapeutic targets,
including the Bcl-2 family proteins and kidney injury molecule 1 (Kim-1) (Hoffmann et al.,
2002; Ichimura et al., 1998). Current advances in multi-omics technologies have enabled a
comprehensive analysis of SA-AKI, contributing to the prevention, diagnosis, staging and
treatment of SA-AKI (Qiao & Cui, 2022).

In this study, proteomic analysis identified 24 differential proteins associated with SA-
AKI. Notably, proteins like serine protease inhibitor (Serine protease inhibitor) and heme
oxygenase-1 (Hmox1), previously explored in sepsis, were among the identified targets
(Chen et al., 2018b; Li et al., 2018; Ryter, 2021; Shutong et al., 2022; Yang et al., 2020). On
the other hand, aldose reductase (AR, AKR1B1) emerged as a novel candidate for SA-AKI
treatment, showcasing the potential of proteomics in uncovering unexplored therapeutic
targets.

AKR1B1, an NADPH-dependent oxidoreductase from the aldo-keto reductase
superfamily (AKR), holds significance in the polyol pathways of gluconeogenesis (Sonowal
& Ramana, 2021). In the gluconeogenesis pathways, it uses NADPH as a cofactor to
convert glucose to sorbitol, inducing chronic diabetic complications in hyperglycemic
states (Quattrini & La Motta, 2019). Traditionally, studies in the context of the aetiology of
diabetic complications, AKR1B1 have been less explored in SA-AKI (Thakur et al., 2021).
Additionally, studies have reported that aldose reductase inhibitors (ARI) could be used
to prevent and treat diabetic retinopathy, neuropathy and nephropathy (Chang, Shieh &
Petrash, 2019; He et al., 2019; Schemmel, Padiyara & D’Souza, 2010; Sekiguchi et al., 2019).

Li et al. (2024), PeerJ, DOI 10.7717/peerj.16709 12/21

https://peerj.com
https://doi.org/10.7717/peerj.16709/fig-5
http://dx.doi.org/10.7717/peerj.16709


PKC-α 80 kDa

65kDa

37 kDa

43 kDa

AKR1B1

NFκB p65

β-actin

Sham CLP

CLP+pre-
ARI

CLP+post-
ARI

0.0

0.5

1.0

1.5

2.0

A
K

R
1B

1/
-a

ct
in

####

**** ****

Sham CLP

CLP+pre-
ARI

CLP+post-
ARI

0.0

0.5

1.0

1.5

2.0

PK
C

-
/

-a
ct

in

####

****
****

Sham CLP

CLP+pre-
ARI

CLP+post-
ARI

0.0

0.5

1.0

1.5

N
F

B
p6

5/
-a

ct
in

####

****
****

A B

C

Sham CLP

CLP+pre-
ARI

CLP+post-
ARI

0.0

0.5

1.0

1.5

2.0

2.5

A
K

R
1B

1
m

R
N

A
(r

el
at

iv
e) ####

**** ****

Figure 6 Epalrestat inhibits the activation of the AKR1B1/PKC/NFκB pathway. (A) qRT-PCR anal-
ysis showing the relative mRNA level of AKR1B1 in renal tissue from the Sham, CLP, CLP+pre-ARI and
CLP+post-ARI groups. (B) Western blot analysis showing the relative protein expression level of AKR1B1,
PKC-α and NFκB p65. # P < 0.05 vs Sham, * P < 0.05 vs CLP, ** P < 0.01 vs CLP, **** P < 0.0001 vs
CLP. mean± SD, one-way ANOVA, double-tailed unpaired t -test, n= 8/group.
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Recently, some studies explored the role of AKR1B1 in mediating various inflammatory
complications. As a result, there is an increase in the number of studies investigating the
development and application of ARI in the treatment of inflammatory complications,
diabetes and cancers. ARI has also been shown to prevent asthma, sepsis, uveitis and
colon and breast cancer (Pandey, 2015; Shukla et al., 2017; Wu et al., 2017; Yadav et al.,
2011). Notably, several studies have utilised ARI for the treatment of COVID-19 infection
(Gaztanaga et al., 2021).

It has been shown that AKR1B1 effectively mediates inflammatory signalling by
decreasing the levels of reactive oxygen species (ROS)-induced lipid peroxidation-derived
lipid aldehydes like 4-hydroxy-trans-2-nonenal (HNE) and its glutathione coupling
(e.g., GS-HNE) to the respective alcohols (Srivastava et al., 1998; Srivastava et al., 2000).
AKR1B1 inhibition has been reported to effectively inhibit the inflammatory signalling
reactions induced by various stimuli, such as endotoxins, cytokines, growth factors,
allergens, high glucose and autoimmune responses. Moreover, AKR1B1 inhibition
also prevents the oxidative stress-induced activation of NF-κB and activator protein-
1 (AP-1) (Ramana, Bhatnagar & Srivastava, 2004a; Ramana et al., 2004b), which play
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important roles in the expression of chemokines, inflammatory factors and other
inflammatory markers (Bhattacharyya, Biswas & Datta, 2004). Ramana & Srivastava
(2006) demonstrated that ARI inhibited the LPS-induced activation of TNF-α, IL-1β,
IL-6, monocyte chemoattractant-1 (MCP-1) in mouse peritoneal macrophages protein-1
and other inflammatory cytokines, suggesting a significant activation of PKC in peripheral
macrophages by LPS but ARI prevented this LPS-induced PKC activation.Garg et al. (2012)
noted that PKC was involved in activating the NF-κB inflammatory pathway and the
secretion of many pro-inflammatory cytokines. ARI inhibits PKC activity by reducing the
PLC and PKC phosphorylation levels, which, in turn, leads to the downstream inactivation
of the IKK/IκB/NF-κB inflammatory pathway (Zeng et al., 2013).

Acute kidney injury (AKI), a severe complication of sepsis, is characterised by high
mortality and poor prognosis. Despite significant advances in treatment, monitoring and
medical support technologies, the pathophysiological mechanisms of SA-AKI remain
unclear. For decades, SA-AKI was speculated to be driven by intrarenal hypoxia and
ischaemic injury, owing to inadequate renal perfusion; however, this hypothesis is yet to
be experimentally validated. On the other hand, experimental evidence suggested that
renal blood flow was preserved or even increased. In the past few years, the immune and
inflammatory mechanisms have garnered increasing scientific attention (Langenberg et
al., 2014; Maiden et al., 2016). Animal experimental findings were conducted to identify
different drugs that can inhibit oxidative stress, inflammation and apoptosis, and which
can be used for treating SA-AKI (Hu et al., 2022; Salari et al., 2022; Xie et al., 2022).

Here, AKR1B1 was recognised as a therapeutic target for SA-AKI using a differential
proteomics approach. Epalrestat, a commercial ARI, was employed as an intervention in
a rat sepsis model, demonstrating significant reductions in inflammatory factors TNF-α,
IL-1β and IL-6. Furthermore, compared to the CLP group, AKI was significantly decreased
to varying degrees in both the ARI intervention groups. However, Takahashi et al. (2012)
reported that ARI did not affect the AKR1B1 expression levels despite its ameliorative
effect on LPS-induced systemic inflammatory response syndrome in AKI. In this study,
epalrestat was observed to inhibit the mRNA and protein expression levels of AKR1B1,
which is an upstream regulator of PKC activation. PKC inhibition also inhibits the NF-κB
pathway, which suppresses inflammation and improves SA-AKI. However, as previously
stated, many complex signalling pathway interactions exist between AKR1B1 and PKC, and
between PKC and NF-κB, which could not be confirmed in this study. Hence, in-depth
studies exploring the detailed mechanisms of AKR1B1 as a therapeutic target for SA-AKI
need to be performed.

CONCLUSIONS
This study employed a proteomic approach to unveil the significant upregulation of
AKR1B1 expression in SA-AKI. Subsequent animal experiments confirmed that inhibiting
AKR1B1 effectively suppressed the activation of the PKC/NF-κB inflammatory pathway,
resulting in decreased expression levels of inflammatory cytokines in both renal tissue
and serum samples. Thus, the damage to the kidney tissue in severe sepsis model rats
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was alleviated. The primary objective of this research was to attenuate inflammatory
cytokine expression levels in the serum and kidney tissues in the severe sepsis rat model.
The identification of AKR1B1 as a different therapeutic target not only sheds light on
the pathogenesis of SA-AKI but also introduces a novel avenue for clinical prevention in
sepsis-associated complications. Epalrestat, a commercial ARI, emerged as a promising
candidate for treating SA-AKI. However, its effectiveness needs to be further investigated
owing to the complexity of the pathogenesis and pathophysiology of sepsis and SA-AKI.
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