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Abstract

Complex biological processes in cells are embedded in the interactome, representing the complete set of protein–protein interactions.
Mapping and analyzing the protein structures are essential to fully comprehending these processes’ molecular details. Therefore,
knowing the structural coverage of the interactome is important to show the current limitations. Structural modeling of protein–
protein interactions requires accurate protein structures. In this study, we mapped all experimental structures to the reference human
proteome. Later, we found the enrichment in structural coverage when complementary methods such as homology modeling and deep
learning (AlphaFold) were included. We then collected the interactions from the literature and databases to form the reference human
interactome, resulting in 117 897 non-redundant interactions. When we analyzed the structural coverage of the interactome, we found
that the number of experimentally determined protein complex structures is scarce, corresponding to 3.95% of all binary interactions.
We also analyzed known and modeled structures to potentially construct the structural interactome with a docking method. Our
analysis showed that 12.97% of the interactions from HuRI and 73.62% and 32.94% from the filtered versions of STRING and HIPPIE
could potentially be modeled with high structural coverage or accuracy, respectively. Overall, this paper provides an overview of the
current state of structural coverage of the human proteome and interactome.
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INTRODUCTION
Protein interactions (PPIs) are key players in many cellular pro-
cesses [1, 2]. Constructing a complete and accurate interactome
(i.e. the network of protein–protein interactions) is crucial to
understand better the fundamental working principles of cells,
functions and disease mechanisms and eventually to identify
key proteins or pathways for developing new treatment strate-
gies. Several experimental and computational studies aimed to
determine interactomes and were released either as resources
or software [3–19]. These resources are curated and integrated
to eliminate experimental artifacts and false-positive interac-
tions, yielding up to millions of PPIs. Still, the number of studies
incorporating the ever-increasing three-dimensional (3D) protein
structures to the interactome has been limited, posing an ongoing
challenge. Structurally characterized interactomes are essential
to find detailed proteome-level functional annotations [20]. Uti-
lizing these interactomes may assist in elucidating interactions
that happen simultaneously and that are mutually exclusive [21].

The presence of mutations in protein–protein interfaces [22] and
their impact as gain- or loss-of-function can also be revealed with
structural information [23]. Drug design and repurposing simi-
larly require structural characterization [24]. Overall, structural
annotation of the PPI networks is necessary for molecular-level
comprehension of the human interactome.

Understanding the atomic-level interactions between two
proteins and the specific amino acids involved is essential for
comprehending PPIs at the molecular level. In our previous
studies, we developed the PRISM algorithm that uses known
protein interfaces to accurately predict structural complexes of
protein interactions [25, 26] and a prediction model for hotspots at
protein interfaces, which are potential drug targets [27–29]. Other
computational methods that are present, but not limited to, are
Interactome3D [4] and Interactome INSIDER [3]. Predictions from
these studies were further used to elaborate on the impact of
mutations [30], structural modeling of signaling pathways [31–35]
and analysis of post-translational modifications. The predictive
performance of these computational methods highly depends on

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-4202-4049

 22401 11382 a 22401 11382
a
 
mailto:okeskin@ku.edu.tr
mailto:okeskin@ku.edu.tr
mailto:okeskin@ku.edu.tr


2 | Kosoglu et al.

Figure 1. Concept figure. Each database is represented with the same coloring code in both sections. (A) for reference human proteome. PDB: Protein Data
Bank, HM: homology modeling, AF: AlphaFold. Human reference proteome is shown by a long continuous line. Homology models and PDB structures
might have overlapping regions that are represented by discrete lines. While AF provides a model for all of the proteome, we focus on regions that
are modeled with high accuracy. (B) Sample network representation of the reference interactome. Protein structures are represented by nodes and
interactions by edges. Question marks within the nodes show monomers that do not have any known 3D structure in any of the databases. Question
marks on the edges show unknown 3D structures of the interactions (complex) between structurally known monomers.

the completeness of the proteome and the availability of protein
structures.

Human proteome is now 93.2% complete [36], and structural
data are dramatically boosted with the accumulated experimen-
tal data (Protein Data Bank (PDB) [37]), homology modeling (Mod-
Base [38], SWISS-MODEL [39]) and models from deep-learning
methods such as AlphaFold (AF) [40]. AF is also adapted for
modeling protein complex structures (i.e. AF2Complex) [41]. Other
methods, such as AF2 followed by FoldDock, report promising
results. However, these methods may have varying prediction
performances on different organisms and be affected by the size
of the protein complexes and post-translational modifications
[42, 43]. Despite these advances, AF’s contribution to modeling the
human structural interactome is still relatively limited, estimated
to be less than 5% [44]. Intrinsically disordered proteins (IDPs)
or regions (IDRs) are conformationally heterogeneous and do not
have a fold under physiological conditions [45]. Their contribution
to several biological processes and pathologies [46] makes them
important targets that require rigorous structural elaboration.
Approximately 22% of the human proteome is likely disordered
[47]. These regions often pose challenges in structural modeling,
making it difficult to obtain high-quality models [48, 49]. A signifi-
cant portion of AF predicted very low– and low-confidence regions
are found to have overlap with predicted IDRs [50].

In this study, we assess the structural coverage of human
proteome and interactome by considering available known and
predicted protein structures. We first estimated the experimental
structural coverage of the reference human proteome. Next,
we showed the improvement of structural proteome coverage
when complementary methods like homology modeling (SWISS-
MODEL, ModBase) and deep learning (AF; v2.0) were utilized
(Figure 1A). We further assessed the structural coverage of the
reconstructed interactomes (obtained by combining STRING,
HuRI and HIPPIE and filtered to produce a comprehensive list
of protein–protein interactions). Proteome analysis followed by
interactome analysis allowed us to identify the portion of the
human interactome that can be predicted using structure-based
techniques. This assessment involves determining the proportion
of the interactome for which there are complete structural
models for both interactors (Figure 1B). This work assesses all
existing 3D structural data mapped to human interactome with
stringent filtering. These statistics reflect how close we are to
reconstructing the complete structural interactome through
experimental and computational methods.

RESULTS

Predictive methods improve structural coverage
of human proteome
The human reference proteome has 18 401 proteins, of which
7085 are fully or partially covered in PDB (see Methods for
coverage calculations). Our results are based on PDB structures
containing at least 30 consecutive residues in the corresponding
proteins with missing coordinates discarded for each PDB file, and
sequence identity with a PDB chain is 100%. At residue resolution,
the human reference proteome has 10 789 741 residues, of which
2 125 738 residues have coordinates in PDB that correspond to
19.70% of the proteome (Table 1) consistent with previous studies
[47]. Sequence coverage categories at different coverage intervals
and corresponding percentages of available structures in human
reference proteome are given in Table 2. Calculations showed that
1663 proteins, which correspond to ∼9.93% of the reference pro-
teome, are almost fully (at least 90%) structurally covered by PDB.
This result indicates that only a small subset of the experimental
structures is available for applications that require detailed
information, such as molecular simulations, structure-based
drug design and structural interactome construction. Additional
computational methods, including homology-based and AI-based
structural modeling, are required to expand the set of structurally
known proteins.

For the proteins in the human reference proteome, we obtained
high-quality models with 30 or more residues from the SWISS-
MODEL and ModBase databases, resulting in 7886 proteins
via SWISS-MODEL and 8618 proteins via ModBase. A total of
11 140 unique proteins were modeled, with 5364 proteins having
predicted models in both SWISS-MODEL and ModBase. SWISS-
MODEL and ModBase provided 24.99% and 22.18% residue-based
coverage of the human proteome, respectively, both higher than
the reported 19.70% coverage of PDB. The residue-based proteome
coverage of the combination of these databases corresponds to
33.02% of the human reference proteome. These results show
that homology modeling can cover approximately one-third of the
human proteome without any contribution from PDB. To assess
the contribution of homology models to reference proteome
coverage, we excluded residues already covered by existing
PDB structures and only used residues covered by homology
modeling databases. We found 4904 proteins for SWISS-MODEL
and 7300 proteins for ModBase. A total of 9096 unique proteins
were modeled, with 3108 proteins having predicted models in
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Table 1: Residue-based coverage percentages of whole reference proteome by structure databases

PDB SWISS-MODEL
(NA in PDB)

SWISS-MODEL ModBase
(NA in PDB)

ModBase AFa

% coverageb 19.70 10.09 24.99 11.95 22.18 58.26

NA in PDB: not available in PDB. aFor AF, structural data are considered available when a residue is predicted with ≥70% pLDDT score. bThe number of amino
acids where structural data are available is divided by the total number of residues in the reference proteome. Overlapping regions are counted only once, and
missing residues are not included in the calculation.

Table 2: Protein-based coverage/accuracy percentages of reviewed proteins in reference proteome by structure databases

Protein residue coveragea (%) PDB (%) SWISS-MODEL (%) ModBase (%) AFb (%)

≥90 9.93 13.59 17.12 17.04
≥70 19.25 25.99 26.07 52.52
≥50 24.85 32.53 31.10 74.66
<50 13.66 10.33 15.73 23.61

aFor each protein, available structural data are combined. Coverage percentage is calculated by dividing the number of proteins that are modeled above an
arbitrary threshold to the total number of proteins in the reference proteome, which is 18 401. Overlapping regions are counted only once, and missing
residues are not included in the calculation. bFor AF, accuracy was calculated instead of coverage.

both SWISS-MODEL and ModBase. Residue-based coverage of the
proteome unavailable in PDB is 10.09% by SWISS-MODEL and
11.95% by ModBase. Residue-based coverage of their combination
shows that homology models contribute to PDB structures by
increasing human reference proteome coverage by 16.47%.

Next, we utilized the AF database produced by an AI-based
method (AF v2.0). The accuracy of the predicted models is pro-
vided for each residue with a pLDDT score representing the per-
residue estimate of its confidence. Residue positions with pLDDT
≥70% were considered high quality [40]. Residue-based proteome
coverage by AF showed that 58.26% of residues have pLDDT
≥70%. For structural coverage, we labeled a protein as ‘accurately
predicted’ if 85% of its residues were predicted with ≥70% pLDDT
score. This constraint resulted in the loss of ∼75% of the predicted
structures in reference human proteome. Only 4930 (26.79%)
of the AF predictions satisfy this condition. Among these, 2425
proteins already have at least a PDB structure, and the remaining
2505 predictions do not have any known structures deposited in
any database before. As previously stated, 7085 proteins are fully
or partially covered in PDB. All PDB data and accurately predicted
AF models combined represent 9590 proteins (52.11%) for the
human proteome.

We further assessed if AF’s prediction accuracy varies depend-
ing on the IDRs and the predicted protein class. Out of 1066
proteins that have IDRs according to the DisProt database [51],
we found that AF predicts 797 proteins with low accuracy (LA;
disorder percentage: 16.83%) and 256 proteins with high accu-
racy (HA; disorder percentage: 6.95%). Then, we selected three
structural protein classes: mainly alpha, mainly beta and mixed
alpha-beta proteins. We found that mainly alpha proteins have
the lowest PDB coverage, considering the total protein count
within the classes (Table 3). Next, we selected five functional
protein classes: enzymes, immunoglobulins, membrane proteins,
transcription factors (TFs) and transporter proteins. We discov-
ered that TFs have the lowest count in terms of having a PDB
structure and the lowest coverage. Likewise, AF predicts almost
all the proteins, 1451 out of 1459, within the TF class, yet only 19
passed our HA thresholds. It is observed that 649 of the proteins
from the TF class are zinc finger proteins. We searched for 20
consecutive residues with pLDDT<50 for TFs in order to mimic
a disordered region scenario for an AF prediction. Of the 1279
proteins that meet these criteria that we have identified, 628
are zinc finger proteins. Similarly, AF predicts all 74 proteins
belonging to immunoglobulins. However, it only predicts 17 of

them with HA, showing that the prediction accuracy is positively
correlated with structures deposited in the PDB and significantly
varies between the classes (Table 4). In summary, despite the high
number of predicted proteins by AF, the HA predictions are one-
quarter of the total protein counts within the class for almost all
protein classes.

Our results prove that combining PDB structures with
homology and AF models increases the structural coverage
(Table 2). In Figure 2A, we show the number of proteins in the
human reference proteome shared by the structure databases
when all accurate structures are considered. ModBase contributes
the most by providing structures exclusively for 1599 proteins.
Also, in Figure 2B, we show how the partial and complete
coverage changes. PDB covers 1828 proteins (9.93%) when only
highly covered (90%) structures are considered. The addition of
high-coverage (≥90%) homology models and accurately predicted
(85% of its residues were predicted with ≥70% pLDDT score) AF
models raise this percentage to 33.16%.

A reference human interactome can be
constructed by integrating multiple resources
Estimating the exact size of the human interactome still remains
challenging [15]. Available interactions in databases, obtained via
multiple techniques, are the best resource for reconstructing a
complete human interactome. Here, we analyzed eight major
human interaction databases, HuRI, STRING, BioPlex, BioGRID,
HIPPIE, IID, APID and PICKLE, to evaluate the current status of the
interactome coverage with available structural data and decided
on which database to use toward the construction of a com-
prehensive structural human reference interactome. We inves-
tigated the number of proteins and interactions available after
mapping the interactions to the human reference proteome and
removing redundant interactions with the same UniProt identi-
fier. Then, we quantified the number of proteins and interactions
in each database with a structure and/or a model available in
our structural data sources. These statistics are summarized in
Table 5. HuRI is one of the most comprehensive experimental
data providing direct physical interactions for 48 763 PPIs. The
filtered STRING database, hereinafter referred to as STRINGF,
resulted in 57 192 physical interactions with high confidence
scores (>0.7), considering only experimental and database chan-
nels. In addition, there are 53 136 interactions in the BioPlex
database. However, these are not restricted to binary physical
interactions because the affinity purification–mass spectrometry
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Table 3: Coverage of structural protein classes according to PDB and AF

Structural class Total
protein
count

Proteins [have
PDB] (average
PDB coverage, %)

Protein count [all
predictions w/ AF]
(average pLDDT score)

Protein count [high acc.
predictions w/ AF]
(average pLDDT score)

Mainly alpha 6406 2830 (58.5) 6294 (76.5) 1735 (89.3)
Mainly beta 4711 2395 (56.1) 4577 (77.9) 1220 (89.7)
Mixed alpha–beta 6696 3268 (65.3) 6585 (78.7) 2367 (91.0)

Proteins in reference proteome are classified according to the data provided by CATH-Gene3D. Proteins [have PDB] (average PDB coverage, %): The number of
UniProt entries that belong to each class and have at least a PDB structure and average PDB coverage of the class calculated by taking the averages of UniProt
entry’s corresponding PDB coverages (see Methods for coverage calculations). Protein count [all predictions w/ AF] (average pLDDT score, 0–100): The number
of UniProt entries that belong to each class and have a predicted 3D structure produced by AF. In an AF prediction file, pLDDT scores of each residue were
averaged and referred to as prediction accuracy of this corresponding UniProt entry. Protein count [high acc. predictions w/ AF] (average pLDDT score, 0–100):
the number of UniProt entries that belong to each class and have a predicted 3D structure that 85% of the residues predicted with ≥70% pLDDT score. Only the
UniProt entries within a class predicted with HA are considered and calculated by taking the averages of the UniProt entry’s corresponding AF prediction
accuracies.

Table 4: Coverage of functional protein classes according to PDB and AF

Functional class Total
protein
count

Proteins [have
PDB] (average
PDB coverage, %)

Protein count [all
predictions w/ AF]
(average pLDDT score)

Protein count [high acc.
predictions w/ AF]
(average pLDDT score)

Enzymes 3618 2114 (72.2) 3574 (83.5) 1831 (91.6)
Immunoglobulins 74 25 (85.6) 74 (89.6) 17 (90.5)
Membrane proteins 5013 1500 (60.5) 4939 (78.1) 1391(88.8)
Transcription factors 1459 372 (30.7) 1451 (63.2) 19 (86.9)
Transporter proteins 1843 721 (67.8) 1823 (78.6) 517 (88.3)
Others 8416 7085 (62.4) 8304 (74.3) 1929 (89.9)

Proteins in reference proteome are classified according to the data provided by the HPA. Proteins [have PDB] (average PDB coverage, %): the number of UniProt
entries that belong to each class and have at least a PDB structure and average PDB coverage of the class calculated by taking the averages of UniProt entry’s
corresponding PDB coverages (see Methods for coverage calculations). Protein count [all predictions w/ AF] (average pLDDT score, 0–100): the number of UniProt
entries that belong to each class and have a predicted 3D structure produced by AF. In an AF prediction file, pLDDT scores of each residue were averaged and
referred to as prediction accuracy of this corresponding UniProt entry. Protein count [high acc. predictions w/ AF] (average pLDDT score, 0–100): the number of
UniProt entries that belong to each class and have a predicted 3D structure that 85% of the residues predicted with ≥70% pLDDT score. Only the UniProt
entries within a class predicted with HA are considered and calculated by taking the averages of the UniProt entry’s corresponding AF prediction accuracies.

Figure 2. Structural coverage of proteins in the human reference proteome by databases. (A) The number of proteins modeled by PDB, SWISS-MODEL,
ModBase, AF and their intersections are visualized. AF models with 85% of their residues predicted with ≥70% pLDDT score are used. (B) The number
of proteins with no structure, partial structure, and complete structure. AF models with 85% (AF-85), 70% (AF-70) and 50% (AF-50) of their residues
predicted with ≥70% pLDDT score are used for this demonstration. Partial structure denotes structure coverage <80% for PDB and homology models.
For AF, it denotes an average accuracy of <80%. Similarly, complete structure means ≥80% coverage or average accuracy. Although it’s not visible, AF-85
has 13 models with partial structures.

(AP-MS) technique finds all physical/non-physical interactions
in a complex [52]. Lastly, filtering the HIPPIE dataset, hereafter
referred to as HIPPIEF, to binary high-confidence interactions
resulted in 22 280 PPIs.

Assessment of human interactomes from HuRI,
HIPPIEF and STRINGF: mapping experimental
and predicted 3D structures
Figure 3 shows the total number of interactions and the
interactions with structures/models listed in Table 5. We chose

two databases, HuRI and BioPlex, which output the results of
major experimental studies, as well as the well-known databases
STRING, which enables filtering the physical interactions by a
confidence score, and the HIPPIE, which can be filtered with
respect to experiment type and confidence score. We demonstrate
that there is little overlap in terms of interactions among these
four major databases (Figure 3A). Table 5 shows that the HuRI,
HIPPIEF and STRINGF interaction networks contain 7889, 7640
and 7327 proteins, respectively. While most of the proteins are
present in all three databases, a considerable number of proteins
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Table 5: Statistics of the number of proteins and protein–protein interactions in interactome databases that are mapped to human
reference proteome

Database Total number of Number of proteins with available structures Number of interactions with structures available
for both interacting proteins

Interactions Proteins PDB SWISS-MODEL ModBase AFa PDB SWISS-MODEL ModBase AFa

HuRI 48 763 7889 3317 3414 3729 2026 7046 7014 8938 2737
BioPlex v3.0 53 136 8806 3888 4242 4615 2819 14 036 13 945 15 162 5802
STRING v11.5 57 192 7327 4518 4214 4095 2085 38 005 24 829 21 442 9941
HIPPIE v2.3 22 280 7640 4164 3971 4231 1910 10 193 7795 8412 1586
APID v2021_03 125 722 14 854 6508 6774 7236 3897 39 922 32 453 36 390 8394
PICKLE v3.3 211 943 15 922 6852 4349 7719 4191 88 408 68 328 71 761 14 794
BioGRID v4.4.216 719 566 17 100 6914 7499 8174 4587 292 081 233 361 239 226 70 455
IID v2021_05 542 157 17 331 7015 7636 8250 4600 235 632 181 337 185 030 53 251

Additional filtering was applied to STRING and HIPPIE datasets. aAF, 85% of the residues predicted with ≥70% pLDDT score.

Table 6: Classification and observance percentages of domain types of the interacting protein pairs found in reference interactomes

Single–single Multi–multi Single–multi

Reference
interactomes

HuRI
(41 705)

19 210 5403 17 092

STRING
(54 631)

19 754 12 541 22 336

HIPPIE
(20 601)

5445 6248 8908

Additional filtering was applied to STRING and HIPPIE datasets.

are exclusively present in one (Figure 4). We also found the
number of interactions where both partners had PDB structures.
The results show that STRINGF has the highest PDB coverage
among interactome databases, while HuRI and HIPPIEF have
poor PDB coverage (Figure 3B). The striking disparity might be
due to ribosomal and mitochondrial proteins being significantly
less represented in HuRI (protein count: 125; interaction count:
1348) and HIPPIEF (protein count: 186; interaction count: 2175)
compared to STRINGF (protein count: 1801; interaction count:
16 453), taking part in so many interactions. Given that the
Y2H technique detects the bulk of HIPPIEF interactions and all
HuRI data, the missing proteins may be due to Y2H’s technical
limitations.

Figure 3C and D show the number of interactions with homol-
ogy and AF models for both interacting proteins, respectively.
Homology models have better interaction coverage compared
to AF. STRINGF has the most coverage in both scenarios, while
HIPPIEF has the least. In general, the overlap between databases is
minimal, reinforcing the notion that integrating these databases
is critical since relying on a single database may result in incom-
plete interactomes.

Since many human proteins are multi-domain, and interac-
tions may occur between single-domain and multi-domain pro-
teins, we analyzed the differences across various interactome
databases. The domain count distribution of interacting proteins,
as depicted in Table 6, reveals an interesting trend. Most interac-
tions occur between single-domain proteins, as evidenced by the
significantly high number of interactions in the HuRI interactome,
where 19 210 out of 41 705 interactions fall into this category. This
observation suggests that single-domain–single-domain protein
pairs predominantly mediating interactions in the HuRI dataset
may be attributed to potential limitations in correctly expressing
lengthy multi-domain proteins in yeast [53], which could result in
an underrepresentation of interactions involving these proteins in
the dataset.

These results have led us to select the HuRI, STRINGF and
HIPPIEF databases as our reference interactome sources. When
these three interactomes are combined, 12 748 non-redundant
proteins participate in 117 897 interactions. Mapping these
interactions to experimental 596 919 binary protein–protein
complexes (https://github.com/ku-cosbi/interactome-structural-
coverage/blob/main/data/PDB_interface_data.tsv) from PDB (as
of December 2022) showed that very few experimentally resolved
protein interactions are available and they account for only 3.95%
of all non-redundant binary interactions. Next, we concentrated
on the interactions and displayed the structural coverage of
protein–protein interactions in interactome databases (Figure 5).
As can be seen from the percentages, the STRINGF database
outnumbers the rest (exp-exp, exp-model and model-model
in the inset plot). Experimental and modeled structures of
both interactors in HuRI are available for only ∼40% of the
whole interactome. In comparison, this figure rises to ∼85% in
STRINGF. Here, we did not distinguish between high- or low-
coverage/accuracy structures.

Accurate 3D modeling of the interactions in HuRI, STRINGF and
HIPPIEF interactomes requires structurally complete monomer
protein structures. In other words, given that two proteins inter-
act, structural knowledge for this protein–protein interaction can
be obtained on the availability of the structures of both proteins.
To assess the completeness of each interacting pair, proteins in
HuRI, STRINGF and HIPPIEF interactomes were labeled as high
coverage (HC) or low coverage (LC) along with the name of the
data sources: PDB, SWISS-MODEL or ModBase. On the other hand,
AF usually predicts the whole protein structure, yet the prediction
quality of each structure, even each residue in a structure, is
different. Therefore, rather than using HC and LC metrics, we
preferred HA and LA metrics for the AF structures. Figure 6 shows
a snapshot of the available structures in different databases. As
stated in previous sections, we denoted 50% or higher coverage
as HC; the rest as LC; 85% of the structure covered with 70% or

https://github.com/ku-cosbi/
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Figure 3. Overview of PPIs found in HuRI, BioPlex, HIPPIEF, and STRINGF databases. (A) Interactions are filtered according to the reference proteome. (B)
Interactions with a PDB structure for both interacting proteins filtered to the reference proteome. (C) Interactions with a high-quality homology model
for both interacting proteins filtered to the reference proteome. (D) Interactions with an AF model that have 85% of their residues predicted with ≥70%
pLDDT score for both interacting proteins filtered to the reference proteome. HM: homology modeling, AF: AlphaFold.

Figure 4. Total number of proteins found in STRINGF, HIPPIEF and HuRI
databases.

higher accuracy for AF, is designated as HA, with the remaining
predictions falling into the LA group. Numerous combinations of
databases and coverages are available for an interaction because
the 3D structures of each protein can be found across multiple
databases with various coverages or accuracies. This is why the
sum of the numbers in Figure 6 is greater than the total number
of interactions in the reference interactome. AF’s LA 3D structures
dominate the HuRI, STRINGF, and HIPPIEF interactomes. PDB and
homology modeling databases each add roughly equal numbers
of structures to model a small number of interactions in HuRI
and HIPPIEF. On the other hand, the PDB and homology modeling
databases contain many 3D structures with HC that can be used
to model the interactions in STRING. Only 12.97% of the HuRI and
32.94% of the HIPPIEF interactomes contained protein partners
with HA or HC structures, while this percentage increased to
73.62% for the STRINGF interactome. Out of 117 897 interactions

Figure 5. Structural coverage of protein–protein interactions in interac-
tome databases. Exp-exp indicates interactions where both interacting
partners have experimental structures from PDB . Exp-model represents
interactions where only one interacting partner has an experimental struc-
ture from PDB, and the other partner has a model from ModBase, SWISS-
MODEL or AF. Model-model indicates that both interacting partners do
not have experimental structures but have a model. Lastly, rest is for
the remaining interactions that have no structural data available. The
inset plot shows the same concept in terms of percentages. AF models
that have 85% of their residues predicted with ≥70% pLDDT score are
considered.

in total, 47 431 (40.23%) interactions have both protein partners
with HA or HC structures.

Some of the proteins are highly studied; these usually cor-
respond to disease-related proteins. Investigation of important
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Figure 6. 3D Structure modeling assessment of ‘Protein 1-Protein 2’ pairs in reference interactomes in (A) HuRI, (B) STRINGF and (C) HIPPIEF. x–y axes
labels show the 3D coverage or accuracy label of the databases. LC: low coverage, HC: high coverage, HA: high accuracy, LA: low accuracy, MB: ModBase,
SM: SWISS-MODEL, AF: AlphaFold. The number in each cell indicates how many ‘Protein 1–Protein 2’ pairs of the reference interactome can be potentially
constructed by using mentioned sources with given labeled coverage or accuracy.

Figure 7. Investigation of important genes in interactome databases. Fraction of disease-related, COSMIC CGC and drug-targeting genes are investigated
for all interactome databases. The term ‘combined’ represents merged interactomes of HIPPIEF, STRINGF and HuRI.

proteins such as disease-related, COSMIC CGC [54], and drug
targets in interactome databases shows that except for HuRI,
interactomes contain ≥50% of COSMIC CGC and disease-related
genes (Figure 7). Even though the number of interactions in the
HIPPIEF dataset is less than HuRI, it is enriched in important genes.
The coverage of drug targets, however, is often less extensive
across most interactomes. When our selected reference interac-
tomes are combined, drug target coverage increases by up to 69%
while others surpass 75%.

DISCUSSION
We comprehensively analyzed the current structural knowledge
of the human proteome and interactomes (HuRI, STRINGF and
HIPPIEF) by integrating experimental protein structures from PDB
and predicted structures from ModBase, SWISS-MODEL, and AF.
Our results showed that combining several resources improved
the structural coverage of the human proteome and interactomes.
Predicted protein structures bring an orthogonal layer of informa-
tion toward having a more comprehensive structural proteome

with varying degrees of accuracy. The availability of an experi-
mental model significantly impacts the computational accuracy
of the structure prediction. Moreover, we implicitly touched on the
IDPs/IDRs in our analysis where we diligently separated out low-
quality models. This quality control process has helped ensure the
reliability of the structural data we have used for our analyses.
Besides having a low number of available experimental structures
from PDB, the functional class coverage for TFs was also impacted
by the presence of IDRs [55] (Table 4). It is also mentioned that
TFs with zinc finger domains are not accurately predicted by AF.
Given that experimental structure determination is more difficult
for the immunoglobulin class of proteins due to their long loop
regions [56], our data demonstrate that the prediction ability
is indeed restricted for these proteins. Proteome-level analysis
shows we are still halfway to a structurally complete human
proteome.

Integrating the structural data mapped to reference interac-
tome databases at the interactome level reveals that STRINGF

has the highest PDB coverage while HuRI has the lowest. This
suggests that STRING may be a valuable resource for researchers
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seeking information about interactions involving experimental
structures. While the number of proteins with PDB structures is
similar between interactome databases, the number of interac-
tions differs significantly, which might be attributed to the limited
sensitivity of Y2H. Therefore, additional computational prediction
methods, such as template-based or template-free docking and
deep-learning-based methods, complement experimental meth-
ods as they capture interactions that Y2H or other experimental
techniques may miss.

We also highlight that homology models show better interac-
tion coverage than AF’s accurately predicted models. This implies
that homology models may continue to be a useful tool for
predicting PPIs when experimental data are lacking and may
complement the capabilities of AF. Furthermore, we emphasize
that there is minimal overlap between interactome databases.
Consequently, depending solely on a single database may result
in incomplete or biased results, as each database may have its
strengths and limitations regarding coverage. Thus, integrating
data from multiple databases can provide a more comprehensive
and reliable picture of PPIs.

It has also been shown that protein pairs with HA or HC struc-
tures constitute a small portion of interactions in HuRI, a larger
portion in HIPPIEF and the majority of interactions in STRINGF.
HuRI is reported as a less-biased interactome containing genes
that belonged to uncharted regions previously [15]. Such a char-
acteristic might be the reason behind its lower coverage of inter-
acting proteins than other interactomes. Considering this, bias
toward well-studied proteins may impact the structural coverage
of the interactome because less-studied proteins may have fewer
interactions reported in the interactome. Despite the increased
coverage provided by computational methods, the number of
HA/HC interactions remains low compared to all existing inter-
actions. We should note that there are valuable thermodynamic
and kinetic data accessible for the stability of human proteins and
binding affinity of protein–protein interactions in databases such
as ProThermDB, SKEMPI and PROXiMATE [57–59]; however, these
data are not exhaustive to cover the entire proteome or interac-
tome. This altogether highlights the need for continued efforts in
both experimental and computational methods to improve our
understanding of protein–protein interactions and the structural
coverage of the human interactome.

METHODS
Reference proteome analysis
A recent version of the UP000005640 was obtained from the
UniProtKB proteome database (UniProt release 2022_04). This
text-based data contain information for 20 360 reviewed human
proteins. First, protein names, including keywords such as
‘putative’ or ‘uncharacterized’, are eliminated from the initial
proteome dataset. Second, only the proteins with proven
existence belonging to experimental evidence at the protein level
and experimental evidence at transcript level classes is kept in the
dataset. Last, proteins with less than 30 amino acids are removed
from the dataset. After the three-step filtering, the final reference
proteome dataset contained 18 401 proteins. Domain information
was incorporated into this dataset from the PFAM database cross-
referenced in UniProt. We considered a protein ‘multi-domain’ if
multiple PFAM IDs are assigned to its UniProt ID.

PDB coverage
We retrieved all PDB structures cross-referenced in UniProt to
obtain the structural proteome and its coverage (as of 1 June 2022).

We parsed all mm/CIF files by using Biopython’s Bio.PDB package
[60] to find the protein chains that match UniProt identifiers
in the reference proteome. In total, we parsed 128 696 protein
chains for 7376 unique human proteins. Calculations run on Koc
University High-Performance Computing (KUACC HPC) cluster.
In the end, we have an exact begin–end residue range for each
PDB chain corresponding to the original UniProt sequence and
missing residues that fall into that region. The corresponding
PDB file is not considered for further analysis if the resulting
region does not contain at least 30 consecutive amino acids. To
eliminate redundancies, we removed duplications representing
identical residues and excluded missing coordinates only once
if there were any repeats in another coordinate file. For all PDB
coverage calculations, Equation 1 is used.

Coverage
(
%

) =

UniProtres.end − UniProtres.begin − Missingres.#withintheinterval
Totallengthoftheprotein

× 100 (1)

AF coverage
The DeepMind team released structures predicted by AF v2.0 [61]
in October 2022. Predictions for UP000005640 proteome down-
loaded from the AF Protein Structure Database (https://ftp.ebi.
ac.uk/pub/databases/alphafold). There were 23 391 predictions
deposited for the reference proteome. After eliminating the pre-
dictions previously labeled as unreviewed by UniProt, we ended up
with 20 315 reviewed/canonical protein predictions. AF predicts
the proteins as fractions whose amino acid count exceeds 2700.
Those predictions for 207 unique protein entries are also elimi-
nated. Confidence in the AF predictions is measured by pLDDT,
a per-residue accuracy estimate on a scale from 0 to 100. A
pLDDT score ≥70% is declared as an indicator of a good backbone
prediction [40]. Therefore, in our analysis, we applied a structural
constraint. We only assume ‘accurately predicted’ if a protein’s
85% of the residues predicted with ≥70% pLDDT score.

Homology modeling coverage
We have utilized two widely known homology modeling databases:
SWISS-MODEL and ModBase. We downloaded homology models
for reference proteome based on the UniProtKB release 2022_04
from the SWISS-MODEL Repository. Then, we filtered the models
based on their QMeanDisCo Global score, a composite scoring
function that estimates model quality [62]. We selected models
with a QMeanDisCo Global score greater than 0.7 as they are
considered confident models by the providers. For ModBase, we
downloaded the file named modbase_models_all-latest.xz with a last
modified date of 28 February 2014 from the downloads section.
We eliminated models that are not present in the filtered human
reference proteome and have less than 30 amino acids for both
databases. We selected models with a ModPipe Quality Score
(MPQS) ≥1.1 if available, or if MPQS is not available, sequence
identity ≥30% and a model score (GA341) ≥0.7 were selected
as good-quality models. MPQS is a composite quality score
that includes e-value, z-Dope, GA341, coverage and sequence
identity to the template [63]. Also, we selected the model with
a higher-quality score for both databases if there were models
with precisely the same amino acid start and end positions.
We have reported residue-based and protein-based coverage
results for these models. For residue-based coverage calculations,
a simplified version of Equation (1) is used where the missing
residues are not considered because of the nature of homology
models. To understand the contribution of homology modeling

https://ftp.ebi.ac.uk/pub/databases/alphafold
https://ftp.ebi.ac.uk/pub/databases/alphafold
https://ftp.ebi.ac.uk/pub/databases/alphafold
https://ftp.ebi.ac.uk/pub/databases/alphafold
https://ftp.ebi.ac.uk/pub/databases/alphafold
https://ftp.ebi.ac.uk/pub/databases/alphafold
https://ftp.ebi.ac.uk/pub/databases/alphafold
https://ftp.ebi.ac.uk/pub/databases/alphafold
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to experimentally determined protein structures, we further
eliminated the models that cover the identical residues with
available PDB structures. We have utilized the former case where
we do not eliminate models concerning PDB data for the analysis
of interactome coverage.

Coverage of IDRs, structural and functional
protein classes
In this study, we used IDR data from DisProt [51], structural
protein classes from CATH-Gene3D [64, 65] and functional classi-
fication data of the proteins from the Human Protein Atlas (HPA)
[66]. We examined the accuracy of IDRs predicted with AF and
computed the disorder percentage of predicted proteins by sub-
tracting the end and start positions of the residues and dividing
by the total length of the protein. Three main structural protein
classes: mainly alpha, mainly beta and mixed alpha–beta together
with five main functional protein classes: membrane proteins,
TFs, immunoglobulins and transporter proteins, are investigated
in terms of their structural coverage either experimentally (PDB)
or computationally (AF). From these datasets, we only include the
proteins that are part of our reference proteome. As AF produces
whole-protein predictions, its coverage is evaluated in terms of
prediction accuracy rather than the count of the protein residues
predicted. In this manner, average counts of the proteins in any
class are calculated by dividing the number of proteins with a 3D
structure by the protein count within the class.

Analysis of interactome databases
We reviewed interactome databases currently available online,
including HuRI [15], STRING [9], BioPlex [5], BioGRID [14],
HIPPIE [10], Interactome INSIDER [3], Interactome3D [4] hu.MAP
[16], IID [7], APID [6] and PICKLE [12]. An overview of these
databases can be found in Supplementary Table 1 available
online at http://bib.oxfordjournals.org/.. We downloaded the
protein–protein interactions from HuRI, STRING, BioPlex, BioGRID,
HIPPIE, IID, APID, and PICKLE databases to investigate the
number of PPIs available (as of 5 December 2022). Three
interactomes were investigated in detail. We downloaded
the HuRI.tsv file of the 2020 publication from http://www.
interactome-atlas.org/download. ASTRING physical interaction
dataset named ‘9606.protein.physical.links.detailed.v11.5.txt’
was downloaded from the Downloads tab at https://string-db.
org, and rescoring has been performed using the Python script
from https://stringdb-static.org/download/combine_subscores.
py, which STRING creators provide. We selected models with a
combined score of experimental and database channels greater
than 0.7. For HIPPIE, we downloaded the current release (v2.3)
from http://cbdm-01.zdv.uni-mainz.de/&#x007E;mschaefer/
hippie/download.php. We filtered this dataset and have only
the binary PPI detection methods that are two-hybrid, atomic
force microscopy and fluorescent resonance energy transfer
[1]. Then, we set the quality threshold at 0.73 (high quality)
and removed interactions smaller than this cutoff value. We
converted any different protein identifiers to UniProt identifiers
for standardization and removed redundant protein–protein
interactions. We filtered the datasets for the proteins present
in our reference proteome. Then, we found the number of unique
proteins and unique interactions in each interactome database;
the number of unique proteins with at least one available
structure in PDB; and the number of unique proteins with at
least one model in SWISS-MODEL, ModBase and AF databases.
Furthermore, we found a number of unique interactions in which
both interacting pairs had a structure and/or a model.

Gene Ontology: cellular component analysis and
investigation of important genes in interactome
databases
For cellular component analysis, we focused only on the proteins
available in STRING to reveal the reason behind the difference
in the interaction counts between interactome databases. We
collected the PFAM IDs of these proteins and found UniProt entries
in the reference proteome containing at least one PFAM domain.
A common pattern in terms of frequent GO cellular compo-
nent annotations [67], ribosome (GO:0005739) and/or mitochon-
drion (GO:0005840) is detected for this protein subset. Then, we
checked the existence of such proteins with these annotations
in STRINGF, HuRI and HIPPIEF. Later, we investigated the cover-
age of disease-related, COSMIC CGC and drug-targeting genes in
interactome databases. For disease-related genes, we downloaded
variant summary data from ClinVar [68] (last modified date:
21 January 2023) and filtered them to take genes in assembly
GRCh38 and have ‘pathogenic’ clinical significance. For COS-
MIC CGC genes, we downloaded cancer gene census data from
COSMIC (version 97) and restricted them to Tier 1 genes [54].
Lastly, for drug targets, we utilized the complete target data
from IUPHAR/BPS Guide to Pharmacology (2022.4 version) [69].We
filtered all datasets for the proteins present in our reference
proteome. Then, we calculated the fraction of these important
genes in interactome databases to find their coverage.

Key Points

• We employed a large scale computational analysis of
protein structures (known or predicted) in human pro-
teome and interactomes to understand how close we are
to potentially construct the complete structural interac-
tome with experimental or computational methods.

• We showed that 33.16% of the human proteome can
be represented with high accuracy and high coverage
protein structures obtained with experimental (PDB) or
predicted (homology modeling and AlphaFold) struc-
tures.

• In turn, although AlphaFold significantly enriches the
structural human proteome (up to 52.11%), we are still
halfway in obtaining the high accuracy complete struc-
tures.

• The structural representation of interactomes is even
more limited than the proteome. However, there is a
huge opportunity for 3D modeling techniques to predict
the rest where we showed that 40.23% of the interactome
is predictable.
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DATA AND SOFTWARE AVAILABILITY
All source code and datasets are freely available at https://github.
com/ku-cosbi/interactome-structural-coverage.
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