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Abstract

Forecasting the interaction between compounds and proteins is crucial for discovering new drugs. However, previous sequence-based
studies have not utilized three-dimensional (3D) information on compounds and proteins, such as atom coordinates and distance
matrices, to predict binding affinity. Furthermore, numerous widely adopted computational techniques have relied on sequences of
amino acid characters for protein representations. This approach may constrain the model’s ability to capture meaningful biochemical
features, impeding a more comprehensive understanding of the underlying proteins. Here, we propose a two-step deep learning strategy
named MulinforCPI that incorporates transfer learning techniques with multi-level resolution features to overcome these limitations.
Our approach leverages 3D information from both proteins and compounds and acquires a profound understanding of the atomic-level
features of proteins. Besides, our research highlights the divide between first-principle and data-driven methods, offering new research
prospects for compound–protein interaction tasks. We applied the proposed method to six datasets: Davis, Metz, KIBA, CASF-2016, DUD-
E and BindingDB, to evaluate the effectiveness of our approach.
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INTRODUCTION

Compound–protein interactions (CPIs) play a critical role in drug
discovery. To understand and quantify CPI, researchers tradition-
ally employ biomedical measurement methods that focus on
determining the inhibition constant (Ki), dissociation constant
(Kd), half-maximal inhibitory concentration (IC50) or half-maximal
effective concentration (EC50) values between drug candidates
and target proteins, which rely on in vitro and in vivo experiments,
and are trustworthy; however, they are associated with high costs
and require significant time investment for development [1, 2].

Conventional virtual screening methods, such as docking-
based methods, have been widely used because of their satis-
factory performances. However, their prediction speed decreases
significantly when the number of testing candidates is large, hin-
dering their efficiency in handling massive datasets. Furthermore,
as a prerequisite for accurate 3D information pertaining to both
ligands and receptors, the efficacy of these methods significantly
diminishes in instances where target-specific information is
inadequately provided.

In contrast, the power of data-driven techniques on in silico
dataset has revolutionized drug discovery for pharmaceutical
companies. In recent decades, artificial intelligence (AI)-based
methods, such as deep learning (DL) and machine learning, have
gained considerable attention in various fields. Recognizing the
strength of AI, many CPI prediction models have been constructed
to use bio-cheminformatics datasets, then make predictions on
the test pairs as binary decisions or continuum values following
the primary task [3].

Two categories of models have demonstrated an outstanding
ability to extract information from chemical compounds [4]. The
first category includes deep neural networks, such as a multi-
layer perceptron (MLP) neural network (DeepconvDTI [5]), and
one-dimensional convolutional neural networks (1DCNN) (Deep-
DTA [6], HyperattentionDTI [7]) that work on descriptors or fin-
gerprints. The second category comprises graph neural networks
(GNNs) and their variants, which are used to gather insights from
datasets with a graph-like structure (GraphDTA [8], Transformer-
CPI [9], PerceiverCPI [10]). Many previous studies have regarded
the protein sequence as straightforward text and have employed
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a 1DCNN along with various techniques for protein sequence
numbering. The compound and protein information is combined
using concatenation or cross-attention techniques and then fed
to the MLP layers to make predictions.

When considering the utilization of 3D information for CPI
predictions such as Lim’s work [11], MINN-DTI [12] and Drug3D-
DTI [13], it becomes evident that these endeavors are significantly
reliant on pre-existing interaction pair structures. Notably, Lim’s
work exclusively relies on the utilization of 3D datasets of existing
molecular structures, while MINN-DTI is limited to extracting
3D information exclusively from proteins. Furthermore, Drug3D-
DTI employs the use of RDKit to address the integration of 3D
information derived from compounds. In regard to structure-
based DL models like PIGNet [14], PLANET[15] and RTMScore
[16], although these models have demonstrated commendable
efficacy in predicting compound–protein interactions, their util-
ity is contingent upon the ready availability of experimentally
determined 3D protein structures. However, the experimental
determination of protein structures can be time-consuming and
expensive. This limitation restricts the number of proteins for
which accurate structural information is available.

Limitations. The drawbacks of current methods are as follows:

1) Previous sequence-based studies represented protein
sequences with plain text, limiting their ability to convey
3D conformation and extract atomic features.

2) Prior approaches have typically relied on pre-existing
datasets to tackle the task at hand. Consequently, the
voluminous dataset consisting of 3D information on
compound conformers has not been incorporated.

3) The scarcity of comprehensive and well-structured datasets
hampers the development, thereby impeding advancements
in the accurate prediction and comprehensive understand-
ing of CPI based on 3D information.

4) The prevalent practice of using the K-folds splitting method
impedes the model’s capacity when confronted with sub-
stantially disparate test sets.

In this study, we address these challenges by proposing a
DL-based approach called MulinforCPI (utilizing multi-level
information for compound–protein interaction prediction). In the
pre-training phase, we adopted a suggestion from 3DInfoMax to
enable the GNN to generate 3D features from compounds [17].
During the fine-tuning phase, we generated the protein’s 3D fold
representation from a single sequence using Evolutionary Scale
Modeling Fold (ESMFold) [18], which was carried through multiple
neural networks.

METHODOLOGY
Due to the scarcity of datasets of sufficient size, particularly in
the bioinformatics field, where reliable data are obtained from
wet laboratories, we propose a novel approach using a transfer
learning technique that takes advantage of knowledge from a pre-
trained model.

In summary, the main objective of the proposed methodology
is to gather information to address two inquiries: ‘where’ and
‘what’ to learn (as shown in Figure 1). The former relates to high-
level information such as location information, which includes
the presence of substructures of the molecule, or a distance map.
In contrast, the latter concerns local information, focusing on
capturing information from specific regions or localized areas,
namely atomic features.

Pre-training phase
Contrastive learning for 3D information compound
encoding
Although 3D molecular knowledge is indispensable in represent-
ing compound properties, it is unachievable to procure 3D con-
figurations at the magnitude necessary. To overcome this issue,
we follow the suggestion of the training strategy proposed by
[17] named 3Dinfomax, where the Quantum-Mechanical Prop-
erties of Drug-like Molecules (QMugs) dataset [19] is used for
pre-training purposes, resulting in a GNN that is aware of 3D
geometry information. The final goal of 3Dinfomax is to minimize
the normalized temperature-scaled cross-entropy loss function 1
to maximize the similarity of positive pairs z2D

i and z3D
i,j when

they come from the same molecule (same index i) and enforce
dissimilarity between negative pairs (z2D

i and z3D
k,j where different

index i �= k):

LNT−Xent = − 1
N

N∑
i=1

⎡
⎢⎣log

∑c
j=1 esim(z2D

i ,z3D
i,j )/τ

∑N
k=1
k �=i

∑c
j=1 esim(z2D

i ,z3D
k,j )/τ

⎤
⎥⎦ , (1)

where z2D and z3D represent the outputs of the principal neigh-
borhood aggregation (PNA) GNN [20] and message passing neural
network with iteratively encoding the 3D coordinate information
into the node features, respectively. τ denotes the temperature
parameter, c denotes the conformers and N is the molecular
graph.

We employed PNA for molecular geometry analysis with pre-
training to overcome aggregation layer limitations and capture
information from nearby nodes effectively. To combat over-
smoothing, we used multiple aggregators, including mean, max,
min and standard deviation. Our study also incorporated various
techniques to enhance molecular representation, involving three
scalers (identity, amplification and attenuation) and four readout
aggregators (min, max, mean and sum).

Fine-tuning phase
Compound encoding
After obtaining a 3D-aware PNA model, we have access to the
GNN that can effectively tackle the question of ‘what’ to learn
from the molecular graphical structure G(V,E). V stands for atomic-
level features, such as the chemical properties of each atom (e.g.
electronegativity and hybridization), and bond-level features E,
such as the bond type, which enables the model to capture the
local features of the molecule. Subsequently, the output of PNA is
represented by Owhat.

In addition, to augment the capacity of the model to incor-
porate high-level information on the molecular structure, we
employed Morgan fingerprints (MFs), commonly called circular
fingerprints [21]. Using a binary vector, these fingerprints signify
the presence of substructures within a particular radius. Through
learning the concise representation of the molecular structure of
a compound, our DL model can address the question of ‘where’ to
learn.

In contrast to our previous work [10], in which we employed
an MLP layer to extract patterns from the MFs, we adopted a
learnable lookup table from the PyTorch library, specifically the
nn.Embedding module, which was designed to learn embed-
dings of categorical variables. Our experiments revealed that
nn.Embedding is more efficient and versatile for datasets with
high sparsity, and the output of MFs networks can be shown as
Owhere.
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Figure 1. The schematic workflow of MulinforCPI encompasses a pipeline that primarily consists of three distinct components: (A) pre-training phase,
which enables the PNA graph network to generate 3D features proficiently, (B) protein encoding, the protein sequence is encoded into a 3D structure
and (C) fine-tuning phase, aimed at predicting CPIs.

Figure 2. Cross-attention block where the attention mechanism enables
the model to effectively capture information from multiple sources.

We employed a cross-attention technique to effectively incor-
porate local and high-level information from a compound, as
shown in Figure 2. Here, the ‘what’ features are assigned the
roles of Key and Value (K, V), while the ‘where’ features serve as
the Query (Q). This arrangement is realized using three distinct
projection functions (f = wTx + b). Our approach draws signifi-
cant inspiration from the capabilities of Perceiver IO proposed by
[22] for efficiently handling diverse input modalities. The cross-
attention mechanism is expressed as follows:

Q = fQ(Owhere); K = fK(Owhat); V = fV(Owhat); (2)

xcomp = CrossAttention(Q, K, V) = Softmax

(
QKT√
C/h

)
∗ V, (3)

where C and h are the embedding dimensions and the number
of heads, respectively. Due to the inherent reliance of the real-
world CPI prediction task on intricate chemical interactions, our
intention is to enhance the representations of atomic features,
denoted as ‘what’, by incorporating supplementary contextual
information, denoted as ‘where’. Our objective is to improve the
model’s comprehension of the intricate interplay between chem-
ical information and the structural aspects of compounds.

Protein encoding
Protein preparation

Unlike previous sequence-based studies that treated pro-
tein sequences as plain text, we exploited the advanced DL
model ESMFold, a fully end-to-end single-sequence structure
predictor, to construct a 3D form of a protein from each
protein sequence that is suitable for CPI prediction tasks.
ESMFold uses unsupervised learning technique to train a
family of transformer protein language model, ESM-2, on input
sequences across diverse protein families. This architecture
simplifies current state-of-the-art (SOTA) structure prediction
models, avoiding the complex integration of multiple sequence
alignment through attention mechanisms across rows and
columns [23, 24].

The binding process relies solely on the complicated chem-
ical attributes of atoms observed in proteins and ligands.
Therefore, we can obtain atomic-level protein structures from
primary sequences rather than just amino acid characteristics
by implementing the predictions from ESMFold, which contains
valuable information for DL.

Protein representation

After generating a 3D fold representation from the protein
sequence, we could extract information from atomic features
at the one-dimensional (1D) sequence level and 3D information
encoded at the two-dimensional (2D) distance map level [25].

We first utilized the information that disclosed the atomic
properties, including the specific type of atom in a given residue,
the corresponding amino acid and the chemical element of the
atom in the atomic-resolution structure of the protein. A one-
hot encoding method was applied to handle categorical data
representing an atom, and the results were concatenated. Con-
sequently, a matrix A=(ai,j)1≤i≤M,1≤j≤N is generated, where M is the
total number of atoms observed in the protein and N is the con-
catenation of one-hot features. This information provides ‘what’ to
focus on. To accomplish this, we employed 1DCNNs because they
efficiently identify patterns from lengthy sequential datasets.
1DCNNs can learn to detect local patterns at various scales and
over prolonged time windows by applying convolutional filters to
input sequences.
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Second, we extracted the residue-residue Euclidean distance
information from the interatomic alpha carbon (α-carbon or Cα)
coordinates. The distance maps can reveal potential binding sites
and interactions between different parts of the protein, which are
useful for CPI predictions. Given two Cα positions i(x1, x2, x3) and
j(y1, y2, y3). We measured the distance by applying Equation: di,j =
2

√∑3
c=1(xc − yc)2, resulting in a pairwise distance feature matrix,

D=(di,j)1≤i,j≤L, where L is the length of the protein sequence. We
chose to represent each amino acid residue using the α-carbon
because of its importance in protein folding.

When working with the matrix D, it is essential to consider the
spatial relationships between the distance elements di,j. To effec-
tively capture meaningful patterns, we perform one more step to
map the distance matrix to a higher dimensional space using sine
and cosine functions with high frequencies by a simple yet effec-
tive Fourier feature mapping function 4, which is theoretically
motivated by [26] and empirically motivated by [17, 27]. Using
sine and cosine functions, which introduce nonlinearity, more
complex relationships that cannot be effectively represented in
lower dimensional spaces can be captured.

γ (di,j) =
[
di,j,

sin(di,j)

20
,

cos(di,j)

20
, ...,

cos(di,j)

2F−1

]
(4)

Learning features from distance maps is essential because
the arrangement of amino acids in a protein plays a critical
role in its function. Two popular neural networks are available:
transformers and CNNs. CNNs are preferred for their simplicity
and computational efficiency, particularly for large images. Addi-
tionally, the transformer architecture requires a large dataset to
converge, making CNNs a more practical choice for small dataset
tasks, such as binding affinity prediction tasks. Moreover, we
conducted a comparative analysis between MulinforCPI and an
alternative model (where a transformer architecture replaced the
CNN blocks), as depicted in Supplementary Tables 16 and 17. By
acquiring features from the distance map, which provides high-
level knowledge of the protein, our model can determine ‘where’
to learn from the protein.

To integrate the local and high-level features of the protein,
we adopt a cross-attention technique where the atomic-level
features are assigned key and value roles (K, V). In contrast, the
residue-level features act as queries (Q).

Q = fQ(Twhere); K = fK(Twhat); V = fV(Twhat); (5)

xprot = CrossAttention(Q, K, V), (6)

where Twhat and Twhere represent the final outputs of 1DCNNs and
2DCNNs, respectively.

Cross-attention allows the model to capture complex relation-
ships between atomic- and residue-level features by attending
to relevant information. This attention mechanism enables the
model to focus selectively on important features and discard
irrelevant or noisy information.

In conclusion, a comprehensive pattern from multiple perspec-
tives is essential for our model to gain a more profound insight
into the atomic-level structure and features of a protein. This is
achieved by taking information from ‘where’ and ‘what’ to learn
given a protein.

Table 1: Descriptive statistics of QMugs dataset.

Dataset Unique
compounds

Total
conformations

Heavy atoms
max (mean)

QMugs 665 911 1992 984 100 (30.6)

Interaction
Finally, having obtained two final outputs to represent com-
pounds and proteins, we decided to adopt a simpler method,
concatenation, due to the complexity of the model. In the Per-
ceiverCPI model [10], the final cross-attention block captures the
altered information resulting from the interaction between the
compound and protein. However, we experimentally observed
that the cross-attention technique employed in a previous study
exhibited suboptimal performance when applied to highly sparse
datasets. In addition, this technique yielded results comparable
with those achieved using the MulinforCPI method on the Davis
dataset. Consequently, we transfer these outputs to two MLP
layers to enhance the precision of the predictions.

z = σ(wT
z (xcomp, xprot) + bz)

ŷ = σ(wT
o (z) + bo),

(7)

where xcomp and xprot denote the final outputs of the two networks
and σ represents the activation function.

DATASETS
In the pre-training task, the QMugs compilation encompasses
quantum mechanical features of over 665 000 molecules with
significant biological and pharmacological importance derived
from the ChEMBL database. This corresponds to approximately
2 million conformers, as indicated in Table 1. The conformers of a
compound refer to the different spatial arrangements or configu-
rations that the molecule can adopt while maintaining the same
connectivity between atoms. These conformations arise from the
rotation of the single bonds in the molecule. Each conformer
represents a distinct arrangement of atoms in three-dimensional
space.

We evaluated our models against SOTA models for the
regression task using four well-established datasets, as shown in
Table 2. Because of the 100 percent density of the Davis dataset,
which covers approximately 80% of the human catalytic protein
kinomes, we conducted three experiments: novel pairs, novel
compounds and novel protein settings. Only a novel hard pair
setting was used for the KIBA and Metz datasets.

We conducted an experiment involving zero-shot testing on
a subset of the CASF-2016 benchmark dataset. The choice of
this dataset was justified by its reputation as a benchmark for
comparing different docking scoring methods. We filtered to
select ligands within the weight range of 300 (Dalton) to 650
(Dalton). Our objective was to obtain ligands with molecular
weights comparable with those of small-molecule drugs. Within
the processed dataset, it has been ascertained that each protein
is associated with a minimum of four distinct drugs capable of
binding to it. In addition, the pKi-binding affinities ranged from
2.4 to 11.15. Moreover, this dataset lends itself well to docking
simulations.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad484#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad484#supplementary-data
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Table 2: Statistics of the benchmark datasets.

Dataset Task Proteins Drugs Interactions Density (%)

Negatives Positives

Davis Regression 442 68 30 056 100
KIBA Regression 229 2068 117 657 24,84
Metz Regression 170 1423 35 259 14,57
CASF-2016 Regression 15 57 57 6.6
DUD-E Diverse Classification 7 108 212 107 590 1759 14,43
BindingDB Classification 813 49 752 27 493 33 777 0,15

Figure 3. The label histogram and label density estimation of four regression datasets. (A) Davis dataset, (B) KIBA dataset, (C) Metz dataset and (D)
CASF-2016 dataset.

The results in Figure 3 illustrate the label distributions of four
benchmark datasets. The Davis and KIBA datasets exhibited
skewed distributions, whereas the Metz dataset and CASF-
2016 dataset exhibited well-distributed labels. This disparity
in label distribution contributed to more effective learning
outcomes.

Furthermore, compared with the classification models, we
reconstituted the training dataset from the BindingDB dataset
for the enrichment factor task [28]. Conforming to the discourse
on the activity threshold discussed in the literature, we labeled
the interactions as positive if their IC50 value was less than
100 nM and negative if their IC50 value exceeded 10 000 nM.

Figure 4 provides an insightful visualization of the relative
proportions of positive and negative instances within two distinct
datasets.

CROSS-CLUSTER VALIDATION
Instead of using the conventional k-fold separation method, com-
monly used in previous studies, we adopted a cluster cross-
validation technique. This technique is an advancement in the
similarity-split cross-validation method. This method guarantees
that compounds within the same cluster do not end up in the
training or testing sets, as it applies to proteins.
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Figure 4. The pie chart of two classification datasets. (A) BindingDB dataset, (B) DUD-E Diverse dataset.

Figure 5. Demonstration of cluster cross-validation for DAVIS dataset by principal component analysis. (A) compound clusters and (B) protein
clusters.

In our approach, we group compounds using the Butina
clustering algorithm by [29]. This algorithm is hierarchical
and relies on Tanimoto similarity coefficients for compound
clustering, computed through pairwise comparisons. These
coefficients were computed using the molecular fingerprints
generated by the RdKit library. For the clustering of proteins, we
used the k-means clustering method, which involves grouping a
given set of data points into K clusters based on their Euclidean
distance metrics. Figure 5 illustrates the clusters for proteins and
compounds in the Davis dataset. Unlike the separation approach
proposed by [30], our methodology employs a hierarchical
algorithm for clustering compounds because of its effectiveness
in identifying structurally similar molecules, which leads to more
precise and constrained cluster formation. Tables 9 and 13 in
the Supplementary demonstrate the validity of our technique in
effectively reducing the similarity between the training and test
interactions.

The proposed separation strategy enhances the generality of
the model in real-world applications by creating a clear distinc-
tion between the training and test sets such that they exhibit
significant dissimilarities.

EXPERIMENTS
Experimental settings
To compare the performance of the proposed method with SOTA
models, we used the following five settings:

• Novel pair (Davis): No overlaps exist between the training and
test datasets. Neither the training compound nor the training
protein appeared in the test set.

• Novel compound (Davis): No intersections of compounds
exist in the training set and compounds in the test set.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad484#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad484#supplementary-data
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• Novel protein (Davis): No intersections of proteins exist in the
training set and proteins in the test set.

• Novel hard pair (Metz, KIBA): No overlaps exist between the
training and test datasets. For the testing interactions, we
specifically selected those with similarities below 0.3 (We
removed interactions from the training dataset if either the
protein sequence or the compound had a similarity score
exceeding the threshold).

• Cross-domain (Metz, CASF-2016): No overlaps exist in interac-
tions between the training set and the test set. We removed
interactions involving 56 proteins and 105 compounds with
similarities higher than 0.3 from the Metz dataset.

• Enrichment factor analysis (BingdingDB, diverse DUD-E):
No overlaps of interactions exist between the training set
(BingdingDB) and diverse test set (we removed interactions
for two proteins and compounds that appeared in both
datasets (GCR_HUMAN (P04150) and AKT1_HUMAN (P31749)
and 102 compounds) from the training set).

Metrics
We assessed the compatibility between MulinforCPI and its
competitors using three main metrics: mean squared error
(MSE), concordance index (C-index) and Spearman correlation
coefficient (ρ).

MSE = 1
n

∗
n∑

i=0

(yi − ŷi)
2 (8)

C-Index =
∑

i,j 1yi>yj · 1ŷi>ŷj∑
i,j 1yi>yj

with : 1yi<yj = 1 if yi <= yj else 0

1ŷi<ŷj
= 1 if ŷi <= ŷj else 0

(9)

ρ = 1 − 6
∑i=n

i=1 d2
i

n(n2 − 1)
, (10)

where y is the ground truth value, ŷ is the corresponding predic-
tion, d is the sum of the squared differences between the ranks of
the corresponding pairs of values in the y and ŷ arrays and n is the
number of predictions.

ρ provides information regarding the strength and direction of
the monotonic relationship between two variables. In contrast,
MSE measures the average squared difference between the pre-
dicted and actual values of the dependent variable. Therefore,
they can be used to evaluate the predictive accuracy of the mod-
els. The C-index metric is useful in survival analysis to estimate
confidence intervals around model performance measures.

Furthermore, we used enrichment factors at 1 percent
(EF1%) and Boltzmann-Enhanced Discrimination of Receiver
Operating Characteristic with a specific parameter value of 80.5
(BEDROCα=80.5) to show the performance of all models in decoy
classification experiments. EF1% refers to the enrichment of true-
positive interactions within the top 1 percent of the predictions.
In addition, BEDROCα=80.5 was calculated based on the area under
the interpolated precision-recall curve. We used the alpha value
recommended by [31].

Table 3: Restult for novel-pair in Davis dataset (MSE ↓ better, CI
↑ better, Spearman Correlation ↑ better, mean and standard
deviation values were computed from 5-fold results’ averages).

Models MSE CI Spearman
Correlation

DeepDTA 0.719(±0.312) 0.456(±0.107) −0.054(±0.162)
DeepConvDTI 0.602(±0.221) 0.580(±0.065) 0.141(±0.105)
TransformerCPI 0.565(±0.252) 0.552(±0.024) 0.087(±0.037)
GraphDTA (GINs) 1.078(±0.564) 0.499(±0.100) 0.011(±0.139)
HyperattentionDTI 0.633(±0.249) 0.529(±0.046) 0.049(±0.078)
PerceiverCPI 0.668(±0.357) 0.547(±0.071) 0.062(±0.124)

MulinforCPI (ours) 0.547(±0.256) 0.646(±0.05) 0.237(±0.061)
MulinforCPI (ours)
Freeze 95%

0.580(±0.258) 0.528(±0.073 0.055(±0.093)

Experimental results
To assess the predictive capability of our proposed approach,
we conducted a comparative analysis with SOTA end-to-end DL
methodologies and docking-based programs. The outcomes of
the four experiments, namely novel pair, novel compound, novel
protein and novel hard pair, were obtained using a 5-fold cluster
cross-validation technique. Meanwhile, the result of the cross-
domain experiment was acquired by zero-shot testing. We com-
prehensively evaluated MulinforCPI alongside SOTA competitors
for two fundamental tasks: regression and classification. We use
the binary cross-entropy loss and the MSE loss for classification
and regression, respectively.

The primary objective of this study was to examine the
performance of various SOTA models in three novel settings
using regression datasets. However, all these models exhibited low
ρ values in novel pair settings, indicating their limited capacity
to predict the target based on the learned features. Nevertheless,
the MulinforCPI model showed robustness in learning from the
training datasets, consistently achieving the highest CI values and
lowest MSE across most experiments. More specifically, high CI
suggests that the model has a strong ability to predict outcomes,
which is generally desirable in predictive modeling. In the novel
pair settings across the three benchmark datasets, the proposed
method, MulinforCPI, attained the lowest MSE, thereby indicating
its capability to generate predictions that closely align with real
labels compared with the baseline models as shown in Table 3.

Our experimental results revealed that the models trained on
datasets characterized by well-distributed labels, such as the Metz
dataset, exhibited superior predictive performance. These mod-
els yielded higher Spearman correlation coefficients than those
trained on datasets with skewed label distributions, such as the
Davis and KIBA datasets, which can be seen in the Supplementary
material (Table 2). These results indicate that the models can
generate more accurate predictions for unseen test sets where the
model has no prior information regarding the test interactions.
Our analysis of the Metz dataset includes two experiments: a
cross-domain experiment and a novel pair setting. We observe
a moderate correlation in both cases, as seen in Table 6 and
Supplementary Table 3 (To enhance the comprehensibility of our
work, we have relocated the results pertaining to the Metz and
KIBA datasets to the supplementary document).

The unfreeze–freeze technique revolutionizes transfer learning
for better performance in new domains, offering benefits like
reduced computational requirements and improved generaliza-
tion. In our experiments, we froze the upper layers of the PNA net-
work to prevent it from being updated during subsequent training,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad484#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad484#supplementary-data
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Table 4: Result for novel-comp in Davis dataset (MSE ↓ better, CI
↑ better, Spearman Correlation ↑ better, mean and standard
deviation values were computed from 5-fold results’ averages).

Models MSE CI Spearman
correlation

DeepDTA 0.873(±0.274) 0.549(±0.036) 0.086(±0.068)
DeepConvDTI 0.750(±0.275) 0.674(±0.048) 0.312(±0.075)
TransformerCPI 0.831(±0.244) 0.615(±0.039) 0.205(±0.051)
GraphDTA (GINs) 0.750(±0.283) 0.688(±0.05) 0.333(±0.062)
HyperattentionDTI 0.757(±0.269) 0.589(±0.057) 0.157(±0.104)
PerceiverCPI 0.746(±0.245) 0.669(±0.036) 0.303(±0.054)

MulinforCPI (ours) 0.690(±0.275) 0.679(±0.072) 0.317(±0.113)
MulinforCPI (ours)
Freeze 95%

0.679(±0.219) 0.688(±0.028) 0.290(±0.084)

Table 5: Result for novel-prot in Davis dataset (MSE ↓ better, CI ↑
better, Spearman Correlation ↑ better, mean and standard
deviation values were computed from 5-fold results’ averages).

Models MSE CI Spearman
correlation

DeepDTA 0.529(±0.130) 0.729(±0.014) 0.396(±0.031)
DeepConvDTI 0.465(±0.151) 0.755(±0.062) 0.433(±0.094)
TransformerCPI 0.487(±0.172) 0.660(±0.040) 0.278(±0.066)
GraphDTA (GINs) 1.122(±0.887) 0.694(±0.051) 0.333(±0.088)
HyperattentionDTI 0.542(±0.219) 0.707(±0.040) 0.352(±0.044)
PerceiverCPI 0.513(±0.213) 0.748(±0.022) 0.427(±0.033)

MulinforCPI (ours) 0.488(±0.138) 0.756(±0.017) 0.439(±0.022)
MulinforCPI (ours)
Freeze 95%

0.478(±0.140) 0.753(±0.020) 0.435(±0.027)

thus ensuring that the model’s previously acquired knowledge
remained intact. We empirically set the freezing threshold based
on the depth of the PNA network in MulinforCPI [0, 0.95]. Tables 4
and 5 demonstrate that reducing the number of learnable param-
eters in the model leads to improved prediction capability. How-
ever, when novel pair settings are considered, the effectiveness
of the techniques is diminished, primarily because of the limited
size of the dataset. In scenarios where the dataset is smaller or
less diverse, freezing and unfreezing layers can hinder the ability
of the model to learn and generalize effectively.

In the cross-domain experiment, we made a comparison with
three well-known docking simulations: Glide [32], Autodock-GPU
(AutoDock version 4.2.6) [33] and Autodock-Vina (version 1.2.3)
[34]. As shown in Table 6, none of the data-driven methods
matched the performance of the first-principles methods. Despite
MulinforCPI outperforming its DL competitors in this task, our
approach failed to achieve the robust correlation exhibited by
Glide. Docking simulations involve generating potential ligand
positions and orientations within the binding site, then evaluating
each pose using a scoring function. The goal is to systematically
explore the ligand/receptor’s conformational space to find the
best binding position with the lowest energy. In contrast, DL
methods often need abundant labeled data for training, which
can be challenging to obtain in CPI domains or resource-intensive
to create.

We compared our method with five well-known first-principles
methods (Gold [35], Surflex [36], FlexX [37], Blaster [38] and Glide)
on an enrichment factor analysis task. This task quantitatively

Table 6: The results cross-domain experiments when similarity
threshold = 0.3 (MSE ↓ better, CI ↑ better, Spearman Correlation
↑ better).

Model MSE CI Spearman
correlation

DeepDTA 6.193 0.542 0.135
DeepConvDTI 6.611 0.562 0.176
TransformerCPI 4.999 0.6 0.298
GraphDTA (GINs) 6.676 0.512 0.02
HyperattentionDTI 5.484 0.606 0.314
PerceiverCPI 5.279 0.615 0.342

MulinforCPI (ours) 4.698 0.602 0.297
MulinforCPI (ours)
Freeze 95%

4.391 0.642 0.395

Autodock-GPU N/A 0.717 0.620
Autodock-Vina N/A 0.711 0.608
Glide N/A 0.722 0.614

Table 7: The enrichment factor analysis results on a Diverse
subset from the DUD-E database (EF1%↑ better, BEDROCα=80.5↑
better, mean and standard deviation values were computed
from per protein results’ averages).

Models EF1% (±std) BEDROCα=80.5

(±std)

DeepConvDTI 6.357(±6.173) 0.118(±0.109)
TransformerCPI 7.039(±12.496) 0.117(±0.192)
HyperattentionDTI 1.753(±2.551) 0.038(±0.051)
PerceiverCPI 4.649(±3.136) 0.094(±0.067)

MulinforCPI (ours) 7.886(±10.642) 0.137(±0.167)
MulinforCPI (ours)
Freeze 95%

4.248(±5.787) 0.078(±0.095)

Random Guessing 0.940(±0.844) 0.022(±0.010)
Gold N/A 0.253(±0.182)
Glide N/A 0.259(±0.171)
Surflex N/A 0.119(±0.093)
FlexX N/A 0.104(±0.060)
Blaster 13.571(±12.908) N/A

measures a model’s performance in retrieving true-positive inter-
actions from a large pool of candidates and helps in benchmark-
ing and comparing different models in drug–target interaction
prediction tasks. For enhanced clarity, we describe the results
obtained by random estimation. This entailed making arbitrary
predictions regarding the probability of binding, ranging from 0
to 1, regardless of the information from the interaction pair (the
results were obtained by computing the average of three indepen-
dent iterations of the guessing experiments) as shown in Table 7.
Our findings indicated that the MulinforCPI model could identify
true-positive pairs across all targets. Because of the considerable
number of interactions within the test set derived from the DUD-
E dataset, we experienced difficulties executing the experiments
with Autodock-GPU and Autodock-Vina. Nevertheless, we relied
on the information in the original paper for the qualitative results.

DISCUSSION
In our experiments, we observed that none of the SOTA models
that used the protein sequence as plain text was successful in
accurately predicting the interaction in all settings. Based on
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Figure 6. The scatter plot visualization of ranking predictions between data-driven methods (A,B) and a docking-based method (C) in the cross-domain
experiment.

the ρ coefficient, this indicates an inability to demonstrate sat-
isfactory performance on the test set. This inadequate perfor-
mance can be attributed to the limited availability of curated
datasets designed explicitly for CPI prediction tasks. Nonetheless,
we believe that with the rapid accumulation of datasets, there
is potential for the gap between data-driven and first-principles
methods to diminish over time. Moreover, our approach to incor-
porating 3D information and transfer learning techniques demon-
strated superior performance compared with previous canon-
ical approaches. By leveraging multi-resolution techniques, we
identified a suitable direction for the long-term advancement of
this task.

We visualized the ranking predictions from three typical mod-
els, including the first-principle and data-driven methods, regard-
ing the prediction rankings, as shown in Figure 6 (The full visu-
alization can be found at Supplementary Figure 1). This figure
demonstrates that a significant portion of the ranking predictions
generated by the various data-driven methods for the subset from
CASF-2016 were arbitrary. Conversely, predictions derived from
MulinforCPI and first-principles methods exhibit superior perfor-
mance, exhibiting a pronounced linear relationship between the
predicted and actual rankings. In three specific examples, Mulin-
forCPI accurately predicted the ranks of the testing points. The
intensity of the colors indicates the accuracy of the predictions,
with lighter shades representing poorer predictions and darker
shades indicating more accurate predictions.

DL models have the potential to function as valuable filters,
thereby significantly expediting drug discovery. A high-speed
inference runtime is essential for tasks such as high-throughput
virtual screening of drug candidates and reverse screening to
identify protein targets [39]. By combining the strengths of
data-driven methods with those of first-principles methods, an
efficient and robust approach can be established [40].

CONCLUSION AND FUTURE WORK
Conclusion
In this study, we developed a DL framework that leverages multi-
level information from both the compound and protein of the
interaction by adopting the transfer learning technique. Instead
of conducting end-to-end training of deep neural networks based
solely on binding data, we opt for pre-training the embeddings for
compounds using a more extensive chemical feature space. This
approach, combined with the protein fold predictions, enabled
us to extend the scope of the CPI prediction task to encompass
chemical structures beyond those encountered in the training
data. Furthermore, we have also proposed a splitting method that

helps researchers avoid the potential overlap between training
and test sets.

Future work
Notwithstanding that the outstanding performance of the pro-
posed network, considerable work is required to enhance the
performance of CPI prediction tasks in the future.

• Based on the data obtained from ESMFold, MulinforCPI
requires a substantial amount of memory for preprocessing
before proceeding to GPU training. Enhancing the input while
maintaining optimal performance can accelerate the training
process.

• The interpretability of our DL network is constrained by the
dimensionality reduction of the CNNs and the MLP layers.
Addressing these significant characteristics will form an inte-
gral part of future endeavors.

• Leveraging equivariant networks, such as E(n) Equivariant
GNNs [41] and Euclidean Neural Networks [42], to incorporate
positional information (rotation, translation, inversion) has
the potential to enhance the model’s capacity to capture
more informative patterns.

Key Points

• We propose that the MulinforCPI DL model, which uti-
lizes multi-level information from compounds and pro-
teins, can address significant challenges in CPI predic-
tion tasks.

• In contrast to prior research where most end-to-
end models used sequences of amino acid charac-
ters to conduct protein representations, our approach
involved leveraging both atomic-level attributes and 3D
information extracted from proteins to augment the
model’s capacity.

• The developed transfer learning technique leverages
the extensive Quantum-Mechanical Properties of Drug-
like Molecules (QMugs) dataset and employs it for fine-
tuning of CPI datasets.

• Our separation strategy enables the model to closely
approximate the actual problem when faced with unfa-
miliar test sets.

• Our research reveals the gap between first-principle
methods and data-driven approaches. We believe these
findings open up opportunities for future research on
CPI prediction tasks.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad484#supplementary-data
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