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ABSTRACT
Recent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian
influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of adaptation to sustained
transmission in mammals, including humans. We report H5N1 clade 2.3.4.4b infection of two grey seals (Halichoerus
grypus) from coastal waters of The Netherlands and Germany in December 2022 and February 2023, respectively.
Histological and immunohistochemical investigations showed in both animals a non-suppurative and necrotising
encephalitis with viral antigen restricted to the neuroparenchyma. Whole genome sequencing showed the presence
of HPAIV H5N1 clade 2.3.4.4b strains in brain tissue, which were closely related to sympatric avian influenza viruses.
Viral RNA was also detected in the lung of the seal from Germany by real-time quantitative PCR. No other organs
tested positive. The mammalian adaptation PB2-E627K mutation was identified in approximately 40% of the virus
population present in the brain tissue of the German seal. Retrospective screening for nucleoprotein-specific
antibodies, of sera collected from 251 seals sampled in this region from 2020 to 2023, did not show evidence of
influenza A virus-specific antibodies. Similarly, screening by reverse transcription PCR of tissues of 101 seals that had
died along the Dutch coast in the period 2020–2021, did not show evidence of influenza virus infection. Collectively,
these results indicate that individual seals are sporadically infected with HPAIV-H5N1 clade 2.3.4.4b, resulting in an
encephalitis in the absence of a systemic infection, and with no evidence thus far of onward spread between seals.
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Introduction

Avian influenza viruses (AIVs) display a high level of
diversity with respect to surface glycoproteins hae-
magglutinin (HA 1–16) and neuraminidase (NA 1–
9) subtypes and are endemic among many species
of wild birds including Anatidae (i.e. ducks, geese,
swans), Scolopacidae (shorebirds/waders), and Lari-
dae (gulls, terns) [1]. The AIV/H5 and AIV/H7 sub-
types have been classified as low pathogenic avian
influenza virus (LPAIV) or highly pathogenic avian
influenza virus (HPAIV), due to differences in the
usage of host-proteases involved in HA cleavage
and henceforth the severity of the resulting clinical
disease. Activation of the H5 and H7 of LPAIV
strains is mediated by proteases expressed in the gas-
trointestinal tract and respiratory tract of wild birds
and domestic poultry in which a mild disease is
induced, including ruffled feathers and/or a drop in

egg production [2]. However, AIVs encoding H5 or
H7 can evolve into the HPAIV phenotype upon infec-
tion of domestic poultry, by the acquisition of mul-
tiple basic amino acids at the HA proteolytic
cleavage site. This enables cleavage of the glyco-
protein by the ubiquitous host protease furin, result-
ing in increased viral tropism and disease severity
[2–4]. Consequently, HPAIV may cause severe disease
in poultry and wild birds that affects multiple organs
resulting in 90%−100% mortality within a few days
of infection. However, HPAIV may cause milder
symptoms in some waterfowl species, thus allowing
increased virus spread over long distances [3,5].
Transmission of HPAIV between birds occurs via
direct or indirect contact with virus-infected excreta
or by predation.

Multiple reassortment events of the HPAIV A/
Goose/Guangdong/1/96 (Gs/GD H5N1) from
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Guangdong (China, 1996) [4] with other AIVs have
resulted in ten different phylogenetic H5 clades (clades
0–9) [6]. Clade 2 has been further divided into five
subgroups (clades 2.1–2.5) [6], and additional third-
and fourth-order clade subdivisions e.g. clades
2.3.4.4a to 2.3.4.4 h. The Eurasian HPAIV H5N1 bear-
ing HA clade 2.3.4.4b was first identified in Europe in
October 2020, as a reassorted Gs/GD H5NX genotype
[7,8] and was subsequently identified in wild bird
populations throughout Europe, Africa, Asia, and
the USA. Alongside multicontinental outbreaks of
Gs/GD HPAIV H5N1 infection among domestic
poultry and wild birds, sporadic infections with
HPAIVH5N1 were detected in domestic and free-ran-
ging terrestrial and aquatic carnivorous mammalian
species [9]. Isolated cases of HPAIV H5 clade
2.3.4.4b infection of mammals were reported in 2021
and 2022 during the ongoing epizootic in birds in Eur-
asia and the Americas. Sporadic infections of scaven-
ging and predatory terrestrial mammals included the
red fox (Vulpes vulpes), polecat (Mustela putorius)
and badger (Meles meles) in The Netherlands [10].
An outbreak of HPAIV H5 clade 2.3.4.4b in farmed
American minks (Neovison vison) in Spain in October
2022, along with indications of virus transmission
between animals, has increased concerns about poss-
ible adaptation of this virus to mammals, including
humans [11,12]. More recently, infection of several
other species, including skunk (Mephitis mephitis),
raccoon (Procyon lotor), bobcat (Lynx rufus), opossum
(Didelphis virginiana), coyote (Canis latrans) and
fisher (Pekania pennanti) were reported in the USA
[13]. Aquatic carnivore species have also been
reported to be susceptible to HPAIV H5N1 infection,
including harbour seals (Phoca vitulina), grey seals
(Halichoerus grypus), porpoises (Phocoena phocoena),
common dolphins (Delphinus delphis), and otters
(Lutra lutra) [9,14,15]. Unusual mass mortality events
caused by epizootics of HPAIV H5N1 infection have
been reported in harbour and grey seals in North
America [14], and sea lions (Otaria flavescens and Arc-
tocephalus australis) in South America [16]. Analysis
of HPAIV H5N1 strains identified in mammals has
shown the presence of mutations indicative for adap-
tation to mammals [9]. This includes E627 K in PB2,
which enhances virus replication in mammalian
cells, while reducing its capacity to replicate in avian
cells [17]. Such mammalian adaptive mutations can
serve as molecular markers to facilitate assessment of
the pandemic risk posed by circulating AIVs.

In this study, we combine data about the identifi-
cation and characterisation of HPAIV H5N1 2.3.4.4b
in two grey seals from the Dutch and German North
Sea seal population, referred to as case 1 and 2, that
have initially been individually studied in two German
research institutes. Both seals died with an encephali-
tis, and the virus was recovered from the brain of both

seals and in the lung of case 2. Retrospective serologi-
cal and molecular screening of hundreds of grey and
harbour seal samples did not provide further evidence
of AIV infections among seals in this region in the past
three years.

Materials and methods

Clinical samples

Case 1. The Sealcentre Pieterburen, Pieterburen, The
Netherlands, provided clinical samples (lung, brain,
spleen, kidney, and liver tissue and oropharyngeal
swabs) from an adult male grey seal (approximately
eight years-old), which had died on the beach of the
Dutch island of Terschelling (NL) in December
2022, with respiratory and neurological clinical
signs. These included laboured breathing, ataxia and
body tremors. Following natural death, the seal was
transported to the Sealcentre Pieterburen located in
Pieterburen, The Netherlands, for gross pathology
analysis. Collection of dead seals for diagnostic pur-
poses by the Sealcentre Pieterburen is permitted by
the government of The Netherlands (application num-
ber FF/ 75/2012/015). Necropsy was performed at the
Sealcentre Pieterburen in Pieterburen (NL) under
stringent protective measures, and clinical samples
were stored at −80°C for virological and molecular
analyses and additional tissues were fixed in 10%
buffered formalin for patho-histological analyses.
Samples were transported to the Research Center for
Emerging Infections and Zoonoses, University of
Veterinary Medicine Hannover, Germany for further
analysis under permit number DE 03 201 0043 21
obtained from the Fachbereich Öffentliche Ordnung,
Gewerbe- und Veterinärangelegenheiten, Hannover,
Germany. Serum samples were collected from seals
at the Sealcentre Pieterburen for routine diagnostic
procedures during rehabilitation of the animals.

Case 2. A grey seal pup (approximately 2 weeks old)
that was admitted to the Seal Rehabilitation Centre at
Friedrichskoog, on the Wadden Sea coast of Germany
on 1 January 2023, developed well until February 18th,
when it became anorectic and showed reluctance to
dive. It died February 26th without further conspicu-
ous clinical signs. Necropsy was performed one day
after death at the Landeslabor Schleswig-Holstein
(LSH), Neumünster, Germany following the LSH
standard procedure for seals. Gross pathology analysis
and sampling of the animal was conducted under ethi-
cal permit of the Ministry of Energy, Agriculture,
Environment and Rural Areas of Schleswig-Holstein,
Germany (Permit number V 312-72241.121-19 (70-
6/07)). No further seals had been admitted since the
February 4th. The other seals present in the centre
stayed healthy until being released in April. Swab
samples were obtained twice from 19 grey seals and
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1 harbour seal at the centre and additional blood
samples were taken. Tissue samples for PCR analysis
were taken during necropsy and directly analysed.
Furthermore, tissues for patho-histological analyses
were fixed in 10% buffered formalin and parasitologi-
cal investigation on intestinal content were performed.

Histology and immunohistochemistry

The fixed tissue samples from case 1 and 2 were rou-
tinely embedded in paraffin wax, sectioned at 3 µm
and stained with haematoxylin and eosin. Immuno-
histochemistry (IHC) was performed on paraffin-
embedded tissue sections using a murine monoclonal
antibody specific for the nucleoprotein (CLONE-
GENE LLC, HB65) [18] according to a previously
described procedure [19]. Immunohistochemistry for
morbillivirus antigen was performed as described pre-
viously [20].

Virus detection and subtyping

Frozen tissues (approximately 60 mg) obtained at the
necropsy were homogenised in 500 µl in phosphate-
buffered saline (PBS) solution using ceramic beads
in a FastPrep-24 5G homogeniser (MP Biomedical),
and then centrifuged at 12,000 RCF for 5 min. RNA
isolation from 140 µl of this clarified supernatant
from tissues was performed using a QIAamp Viral
RNA Mini Kit protocol (Qiagen). Subsequently,
RNA extracted from multiple organs was tested by a
reverse transcription PCR (RT–PCR) or by real-time
quantitative PCR (RT-qPCR) using primers already
available for detection of phocid alpha herpesvirus 1
(PhHV-1) in case 1, phocine or canine distemper
virus (PDV, CDV, Canine, Phocine morbillivirus).
The primer sets that were used have been previously
designed to detect the presence of herpesviruses and
paramyxoviruses, and CDV [21–23]. A specific primer
pair (CPHV-gB-FW: GCCAGATCTGTWTATCCA-
TAT and CPHV-gB-RV: [G]TAAGAYCCCTTA-
TACTCATCACG) targeting canine herpesvirus
glycoprotein B gene fragment (GenBank accession
number AF361073) was used to test for the presence
of herpesviruses in case 2. The amplified RT–PCR
amplicons were analysed by gel electrophoresis, pur-
ified using the Monarch® DNA Gel Extraction Kit
(New England BioLabs), Sanger sequenced, and ana-
lysed using BLAST (Basic Local Alignment Search
Tool) with the GenBank NCBI nucleotide database.
A RT-qPCR targeting a conserved region of the AIV
matrix gene (MP RT-qPCR) was used to test all clini-
cal samples of case 1 [24]. RNA from multiple organs
of seal from case 2 was also assayed by a specific RT-
qPCR to detect and subtype the virus from case 2
[25]. AIV subtyping of case 1 was instead performed
using specific HA and NA primers (Table S1).

Virus isolation

To prove the viral etiology of the encephalitis and to
investigate the acquisition of genetic signatures of
mammalian adaptation in the avian H5N1 virus
upon infection of the new host [17] the H5N1 virus
from case 1 was cultured on mammalian cells. For
this purpose, Madin-Darby Canine Kidney (MDCK)
cells were cultivated in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal
bovine serum and penicillin (100 IU/mL)/streptomy-
cin (100 µg/mL) (1% Pen/strep). Then, 100 µl of
clarified supernatant from homogenised brain tissue
of the seal from case 1 was inoculated onto an 80%
confluent MDCK monolayer cultivated in DMEM
supplemented with 0.1% BSA, 1% Pen/strep, 1% Glu-
tamax, 1 ×MEM non-essential amino acids solution,
1M HEPES and 1 µg/mL of TPCK in T25 tissue cul-
ture flasks. RNA was extracted from supernatant of
inoculated cultures at 0- and 3-days post inoculation
(dpi) and virus replication was assessed using an MP
RT-qPCR. Full-length H5N1 genomes from cell
supernatant collected at 2 and 3 dpi were assayed by
deep sequencing together with the original clinical
samples.

Genome sequencing

Full-genome sequencing of original case 1 and case 2
clinical samples and MDCK isolates (2 and 3 dpi)
was performed using a previously described nano-
pore-based real-time sequencing method with prior
full genome amplification [26]. In brief, RNA was
extracted using TRIZOL and RNeasy Mini Kit (Qia-
gen, Germany) and genome amplification was per-
formed via a universal AIV-End-RT–PCR using
Superscript III One-Step and Platinum Taq (Thermo
Fisher Scientific, USA). This used one primer pair
(Pan-IVA-1F: TCCCAGTCACGACGTCGTAGC-
GAAAGCAGG; Pan-IVA-1R: GGAAACA GCTAT-
GACCATGAGTAGAAACAAGG), which binds to
the conserved ends of the AIV genome segments.
PCR products were purified with AMPure XP Mag-
netic Beads (Beckman-Coulter, USA), prior to full-
genome sequencing on a MinION platform (Oxford
Nanopore Technologies, ONT, UK) using Rapid Bar-
coding Kit (SQK-RBK114-24 or SQK-RBK004, ONT)
for transposon-based library preparation and multi-
plexing. Sequencing was performed according to the
manufacturer’s instructions with R10.4.1 or R9.4.1
flow cells on an Mk1b device with MinKNOW Soft-
ware Core (v5.4.3). Live high accuracy base calling of
the raw data with Guppy (v6.4.4, ONT) was followed
by demultiplexing, a quality check and a trimming
step to remove low quality, primer and short
(<20 bp) sequences. Full-length genome consensus
sequences were generated in a map-to-reference
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approach utilising MiniMap2 [27]. A curated collec-
tion of all HA and NA subtypes alongside an assort-
ment of internal gene sequences were chosen as
reference genomes to cover all potentially circulating
viral strains. Polishing of the final genome sequences
was performed manually after consensus production
according to the highest quality (60%) in Geneious
Prime (v2021.0.1, Biomatters, New Zealand).

Phylogenetic analyses

Segment specific and concatenated whole-genome
multiple alignments were generated for both genomes
with H5N1 genomes collected worldwide since Octo-
ber 2020 using MAFFT (v7.450) [28] and subsequent
maximum likelihood (ML) trees were calculated with
RAxML (v8.2.11) [29] utilising model GTR
GAMMA with rapid bootstrapping and search for
the best scoring ML tree supported with 1000 boot-
strap replicates or alternatively with FastTree
(v2.1.11) [30]. Subsets of close relative genomes were
extracted and used for further ML phylogenetic ana-
lyses. Each segment was aligned with homologous seg-
ments from closely related avian strains using
Molecular Evolutionary Genetics Analysis (MEGA)
11 [31].

Serological analysis

Serum samples collected routinely post-mortem from
the two diseased seals and from convalescent grey seals
and harbour seals in The Netherlands (n = 325) and in
Germany (n = 20) from 2020 to 2023, were tested ret-
rospectively with a commercial nucleoprotein-specific
competitive ELISA (ID VET, ID Screen Influenza A
Antibody Competition Multi-species). The sera were
heat-inactivated at 56°C for 30 min and diluted 1:20
in PBS solution prior to testing.

Results

Detection and isolation of AIV from grey seals

Case 1. Macroscopic finding at necropsy included
dark-red colouration of left/right lung. No ectopara-
sites or liver-, heart-, and lungworms were observed.
A multifocal moderate acute, lympho-histiocytic and
necrotising encephalitis with mild gliosis and neuronal
necroses was observed upon histological analysis
(Figure 1(A)). A focallymild, lympho-histiocytic pneu-
monia was present in the lung tissue. Intralesional
nucleoprotein antigen of AIV was detected only in
the brain of this animal (Figure 1(B)). Given the obser-
vation of neurological clinical signs, initial RT–PCR
testing of RNA extracted from brain tissue was per-
formed for neurotropic viruses, which have been pre-
viously documented in seal populations in the North

Sea. No amplicons were detected for PhHV-1 and
CDV/PDV in the brain (data not shown).Morbillivirus
antigen was not detected by IHC of brain sections from
this animal. Testing of RNA extracted from lung, brain,
liver, spleen, and kidney tissue and throat/nose swabs
for AIV using a MP RT-qPCR showed a positive signal
in brain tissue (Ct, 16.60).

Case 2. Macroscopic observation at necropsy
showed that the seal pup was in good body condition.
The lung showed failure to collapse, diffuse firmness
and patchy dark red parenchyma with hyperplastic
lymph nodes. In addition, moderate thymic atrophy,
fibrinous perisplenitis and perihepatitis and catarrhal
enteritis was obvious. The brain was macroscopically
without pathological findings. No ecto- or endopara-
sites were found macroscopically. In addition, endo-
parasites were not detected, upon microscopic
investigation of the intestinal content. The dead seal
displayed a multifocal to coalescing moderate to severe
lympho-histiocytic meningoencephalitis, lymphohis-
tiocytic to necrotising vasculitis and widespread single
cell necroses in the neuroparenchyma (Figure 1(C,D)).
In the lung, a multifocal mild to moderate non-sup-
purative interstitial pneumonia with lymphohistiocytic
vasculitis was found. Depletion of lymphocytic organs
and vasculitis in several organs were found addition-
ally. Quantitative PCRs (qPCR) specific for CDV (in
lunge tissue) were negative. However, qPCR for AIV
was positive in lung and brain tissue. Lung tissue was
used for further specification as AIV H5. IHC revealed
viral antigen only in the brain located in the nuclei,
perikarya and processes of neurons as well as in nuclei
and cytoplasms of glial cells (Figure 1(E)).

Molecular and phylogenetic analysis

Following molecular confirmation of AIV infection in
case 1 and case 2, the specific subtype was identified
using H5 and N1 specific RT-PCRs, given the recent
detection of H5N1 AIV in carnivore species in The
Netherlands [10]. Sanger sequencing of positive
amplicons showed the presence of the PLRE-KRRKR
multiple basic cleavage site in the HA, which classified
these strains within the HPAIV H5 pathotype. The
complete consensus genome sequence of both strains
was obtained by next-generation sequencing to enable
assessment of the evolutionary relationship between
the strains and identify possible mutations indicative
of mammalian adaptation. Analysis of a phylogenetic
tree based on concatenated whole genome sequences
showed that the HPAIV H5N1 strains from case 1
and case 2 are closely related to sympatric wild and
domestic bird H5N1 isolates of H5 from clade
2.3.4.4b, but cluster into geographically distinct clades
(Figure 2). Both genomes were H5N1 reassortants
(Ger-10-21-N1.5/Rus-09-21-N1; A/duck/Saratov/29-
02/2021-like) dominating the H5N1 cases in Europe
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2023 and circulating in Germany and The Netherlands
since November 2021 [32].

Neither of the seal HPAIV strains possessed amino
acid substitutions in the HA protein such as Q226L
and G228S, which are known to enhance binding of
the H5 viruses to human-like receptor α−2,6 [33]. How-
ever, approximately 40% of the virus population present
in the brain of case 2 from Germany displayed the well-
characterised E627 Kmutation in PB2, whereas 100% of
the virus population in tissue of case 1 from The Neth-
erlands displayed the avian 627E variant in PB2.

Virus isolation

AIV was isolated in MDCK cells from supernatant of
homogenised and centrifuged brain tissue supernatant
in the Hannover BSL3 setting. Extensive cytopatho-
genic effects including cell rounding, ballooning, and
vacuolisation were visible at 3 dpi. Assessment of
virus replication by MP RT-qPCR showed a reduction
in Ct values from 33 to 11 between day 0 and day 3

post-inoculation. No genetic mutations have been
detected in the virus at 2 and 3 dpi compared to the
original virus from the brain.

Retrospective screening of seals for AIV
infections (2020–2023)

Retrospective screening of sera collected from grey (n
= 59) and harbour seals (n = 266) sampled in the same
geographic area from 2020 to 2023 did not show AIV-
specific antibodies in a competitive multi-species
ELISA. Similarly, screening by RT–PCR of lungs and
brains of 101 grey seals (n = 12) and harbour seals
(n = 89) that had died in the same area between
years 2020 and 2021, did not provide evidence of
AIV infection. A total of 20 serum samples taken
from 19 further grey seals pups and one harbour
seals 14 days after the death of the grey seal pup in
the Friedrichskoog centre tested negative for influenza
A virus antibodies indicating that no further spill-over
infections had occurred at the centre.

Figure 1. Histopathology and immunohistochemical findings in the brain tissue of the seals. The cerebellum of the H5N1 infected
seal from The Netherlands (case 1) showed the following changes: (A) An acute non-suppurative and necrotising encephalitis with
mild perivascular lympho-histiocytic infiltration (circle), diffuse gliosis of the adjacent neuroparenchyma (molecular layer), necrosis
of Purkinje cells (arrow) and necrosis of inner granular cells (arrowheads); (B) Abundant intralesional AIV nucleoprotein in cells of
the inner granular layer (arrowheads) and within the adjacent neuropil. The brain of the H5N1 infected seal from Germany (case 2)
showed: (C) Moderate lympho-histiocytic leptomeningitis. (D) Moderate non-suppurative and necrotising encephalitis with peri-
vascular lympho-histiocytic cuffing and vasculitis (arrows), gliosis and necrosis (arrowheads) in the adjacent
parenchyma. E. Abundant AIV nucleoprotein in neuronal nuclei, perikarya and processes (arrows) and in various glial cells (arrow-
heads) of the cerebrum.
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Discussion

Since 2021, the HPAIV H5N1 epizootic has been
associated with multiple AIV outbreaks in Europe
and beyond, causing mass mortalities amongst wild
birds, and domestic poultry, the latter of which has
necessitated targeted culling of infected flocks and
associated movement restrictions. In this study, we
describe HPAIV H5N1 clade 2.3.4.4b infection of
two grey seals originating from Dutch and German
coastal areas, respectively. Case 1 has been infected
in the wild, whereas case 2 became infected several
weeks after its admission to the German rehabilitation
centre, most likely through indirect contact with gulls
that frequented the centre during feeding times. The
clinical manifestations of case 1 were indicative of cen-
tral nervous system (CNS) disease. Alterations in the
lungs of both animals were observed by gross patho-
logical examination interstitial pneumonia was
confirmed by histological examination in case 2.

Extensive histological lesions indicative of an acute
encephalitis, with detection of AIV antigen within
these lesions by IHC and positive MP-RT-qPCR of
the brains of both cases identified the viral cause of
death of both animals. Other known viral causes of
encephalitis in seals such as herpesvirus and morbilli-
virus infections [34–37] could not be demonstrated by
molecular analyses of brain tissue from case 1 and case
2. Finally, the isolation of HPAIV H5N1 from the
brain of case 1, confirmed that this virus was the
cause of the clinical disease and the observed histologi-
cal lesions.

It remains unclear how HPAIV H5N1 reached the
brain of seals in the absence of detectable viremia or
systemic virus replication. It has been suggested that
H5N1may spread to the CNS via infection of olfactory
nerves in the nasal cavity with subsequent axonal
transport leading to infection of the olfactory bulb,
or alternatively through the myenteric plexus from
the intestine [38,39]. Similarly, individual cases of

Figure 2. Phylogenetic relationships of concatenated consensus whole-HPAIV H5N1 sequences from The Netherlands and
Germany in 2022–2023. The complete genome sequence of H5N1 strains derived from infected seals in Germany and The Nether-
lands were compared to sympatric avian strains belonging to the clade 2.3.4.4b of H5. Sequences were obtained from the Epi-
FluTM GISAID database. Isolate identifier contains the following information: Accession number, virus designation, subtype
and collection date. Maximum likelihood (ML) trees were calculated with RAxML (v8.2.11) utilising model GTR GAMMA with
rapid bootstrapping. Scale bar indicates nucleotide substitutions per site. Bootstrap values below 70 are not displayed.
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encephalitis caused by HPAIV H5N8 infection have
been reported from the same geographical region
[40]. No indications were found for horizontal spread
of HPAIV H5N1 detected in case 1 and case 2. This
may be related to sudden death due to viral encepha-
litis. However, analysis of previous outbreaks of AIV
H10N7 in seals in the North Sea has shown that hori-
zontal transmission of AIV among seals is possible
[41,42]. Similarly, probable horizontal transmission
of HPAIV H5N1 has been reported following infec-
tion of farmed minks in Spain, in which high numbers
of animals were co-housed [11]. Although trans-
mission of HPAIV H5N1 among seals has not yet
been confirmed, seal-to-seal transmission could not
be excluded among four seals during the recent out-
break in seals on the New England coast, due to the
sequence similarity of the virus strains [14]. Alterna-
tively, these animals may have been infected by the
same source, most likely dead or moribund infected
bird or bird excreta, given that seals share the coastal
habitat with multiple bird species. Combined retro-
spective serological screening of seal sera and molecu-
lar analysis of lung and brain tissues of dead animals as
well as a previous serological study (40), showed no
evidence of further AIV infections along the North
Sea coast of The Netherlands and Germany between
2020 and 2022.

The HPAIV H5N1 infected of case 2 displayed a
minority virus population (approximately 40%) in
the brain with the PB2-E627K mutation. This prob-
ably arose upon host switching from bird to mammal
[17]. Other mutations such as Q226L and G228S in
HA which induce a shift from avian receptor specifi-
city to the α−2,6 human-like receptors, were not
observed [43]. Thus far H5N1 clade 2.3.4.4b strains
have caused sporadic infections in humans worldwide,
including individual cases in China, Vietnam, US,
Chile and Ecuador and two cases in UK and Spain,
most of them resulting in a mild febrile illness, with
exception of the two human cases from South America
displaying severe flu symptoms [44]. Since other AIVs,
including HPAIV H5N1 of other clades have caused
fatal infections in humans, extensive monitoring of
AIVs in birds and mammals is of the utmost impor-
tance. Furthermore, human contacts with HPAIV
H5N1 infected animals and their excreta should be
avoided to mitigate the risk of zoonotic infections.

Conclusions

We have shown that probably upon direct or indirect
contact with infected birds, HPAIV H5N1 clade
2.3.4.4b may sporadically cause fatal infections of
seals, without so far evidence of seal-to-seal trans-
mission. The widespread epizootic of HPAIV H5N1
clade 2.3.4.4b among wild birds in Eurasia and the
Americas apparently increases the risk of infection

of wild mammalian carnivore species, and conse-
quently enhances the chance of emerging mamma-
lian-adaption mutations. Increased surveillance and
molecular characterisation of HPAIV H5N1 clade
2.3.4.4b in wild birds, domestic poultry and carnivor-
ous aquatic and terrestrial mammals is therefore of the
utmost importance to better inform ongoing risk
assessment of potential for sustained transmission of
these viruses in mammals and eventually in humans.
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