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Rhenium-186 (186Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has 

shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize 

the delivery of RNL, we have developed a framework to predict patient-specific response to RNL 

using image-guided mathematical models.

Methods: We calibrated a family of reaction-diffusion type models with multi-modality imaging 

data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient’s 

tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon 

emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, 

respectively. The optimal model from the family was selected and used to predict future growth. A 

simplified version of the model was used in a leave-one-out analysis to predict the development of 

an individual patient’s tumor, based on cohort parameters.

Results: Across the cohort, predictions using patient-specific parameters with the selected model 

were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume 

and total cell number, respectively, when compared to the measured data. Predictions utilizing the 

leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the 

population, respectively.

Conclusion: We have shown that patient-specific calibrations of a biology-based mathematical 

model can be used to make early predictions of response to RNL therapy. Furthermore, the 

leave-one-out framework indicates that radiation doses determined by SPECT can be used to 

assign model parameters to make predictions directly following the conclusion of RNL treatment.

Statement of Significance: This manuscript explores the application of computational models 

to predict response to radionuclide therapy in glioblastoma. There are few, to our knowledge, 

examples of mathematical models used in clinical radionuclide therapy. We have tested a family 

of models to determine the applicability of different radiation coupling terms for response to the 

localized radiation delivery. We show that with patient-specific parameter estimation, we can make 

accurate predictions of future glioblastoma response to the treatment. As a comparison, we have 

shown that population trends in response can be used to forecast growth from the moment the 

treatment has been delivered.

In addition to the high simulation and prediction accuracy our modeling methods have achieved, 

the evaluation of a family of models has given insight into the response dynamics of radionuclide 

therapy. These dynamics, while different than we had initially hypothesized, should encourage 

future imaging studies involving high dosage radiation treatments, with specific emphasis on the 

local immune and vascular response.
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1. Introduction

Glioblastoma multiforme (GBM) is the deadliest primary brain cancer [1], with a median 

survival of only 15 months [2]. The standard-of-care treatment for recurrent GBM typically 

consists of gross resection of the primary tumor, followed by external beam radiotherapy 

and/or concurrent chemotherapy to target residual disease [3]. Given the limited success 
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of this approach in achieving tumor control, alternative methods of treatment have been 

desperately sought. This study focuses on mathematically modeling the response of GBM to 

an intracranial injection of rhenium-186 (186Re) labeled nanoliposomes (RNL) [4]. During 

decay, 186Re emits beta particles and a gamma ray, the former providing the radiation dose 

while the latter can be captured by single photon emission computed tomography (SPECT) 

to image it’s in vivo distribution. Intracranially injected RNL has the potential to deliver 

radiation doses (e.g., > 140 Gy) [4,5] well above those that can be achieved by external 

beam methods (approximately 60 Gy) [2,3]. Providing accurate predictions of response 

to RNL treatment would enable patient-specific delivery protocols [6] potentially yielding 

improved outcomes.

There is now a mature literature on mathematical models describing the growth and 

response of GBM to treatment with radiotherapy, chemotherapy, and surgery [7-11]. The 

most common modeling framework for these studies is the reaction-diffusion model, 

which simplifies GBM behavior to infiltration (via a diffusion term) and proliferation 

(via a reaction term). While this approach has been widely applied to modeling external 

beam radiation, [12-14], there is only minimal applications to radionuclide therapy in the 

preclinical setting [15], and no examples in the clinical setting. The present study serves 

as an initial application of predicting the spatio-temporal response of GBM to high dose, 

continuous radiation treatments in patients.

We utilize longitudinal magnetic resonance images (MRI) to estimate the total tumor burden 

and cellularity, and SPECT to estimate the RNL spatiotemporal distribution, which allows 

for personalizing the parameters within the mathematical models. We investigated two 

different methods to accomplish this goal. First, we calibrate a family of models to the 

patient-specific imaging data, select the highest performing model, and use it to predict 

each patient’s response to therapy. Second, we utilize a training cohort to build distributions 

of model parameters as a function of mean absorbed dose due to RNL delivery. Utilizing 

the predetermined distributions, predictions were made for the testing patient using a leave-

one-out cross validation (LOOCV) approach. These two methods show how mathematical 

modeling can be used to predict the growth and response of GBM to locoregional cancer 

therapy via interstitial infusion of radionuclides.

2. Methods

Fig. 1 provides an overview of the entire process, and the reader is encouraged to refer to it 

as they proceed through the following sections.

2.1. Clinical protocol

Ten adult patients from the Phase I/II clinical trial of RNL (NCT01906385), presenting 

with Grade III/IV recurrent GBM after initial tumor resection were included in the study. 

These patients were recruited during phase I of the study, each receiving an increasing 

concentration of RNL according to their place in the dose escalation arm. Patients were 

excluded from the retrospective study only if the minimum MRI data were not available 

(five patients removed, full details of exclusion can be found in Appendix table A.1). 

A minimum of a baseline, plus two follow-up imaging sessions were required to make 
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predictions with both frameworks described below (Fig. 1C and D). While a complete 

description of the trial can be found at [16], here we summarize only the salient details 

relevant to our study.

Patients included in the clinical trial undergo a pre-treatment screening and imaging session 

(see Imaging data below), prior to the insertion of an intra-cranial catheter(s) at the site 

of infusion. After the prescribed activity has been selected, RNL is delivered through 

the catheter(s) with a syringe pump. Simultaneously, combination SPECT/x-ray computed 

tomography (CT) scans are acquired to assess local delivery and radiation exposure. 

Following treatment and removal of the catheter, patients return for follow-up MR imaging 

sessions to monitor tumor response. Table 1 summarizes key details of the patient protocol, 

while Table A.2 of Appendix A provides additional patient information (e.g., infusion 

details, prior treatment status, and tumor volumes).

2.2. Imaging data

SPECT images were collected with a GE Healthcare (Milwaukee, WI) Infinia SPECT/ CT 

scanner. During the first imaging visit, a 186Re source with known radioactivity was placed 

in the imaging field of view to allow for quantifying all SPECT data to radioactivity in 

megabecquerels (MBq). SPECT/CT images are collected halfway through the delivery of 

RNL, at the end of infusion (2 - 9 h), and 24, 120/144, and 192/196 h post infusion.

Patients also undergo pre- and post-treatment MRI on a Phillips Acheiva 3T (Best, 

Netherlands) scanner or a Siemens Skyra 3T (Malvern, PA) using an 8-channel coil. 

The protocol includes pre- and post-intravenous contrast injection (Gadovist; Bayer, 

Whippany, NJ) T1-weighted images, and diffusion weighted images. Apparent diffusion 

coefficient (ADC) maps are computed on the scanner from the diffusion weighted MRI 

data. Additionally, T2-weighted, T2-fluid attenuated inversion recovery, and diffusion tensor 

images were obtained, but not utilized, in this study. The imaging timeline for each patient is 

presented in Table 1 and acquisition details are available in Table 2.

2.3. Image processing

All image processing was performed in MATLAB 2021a (MathWorks, Natick, MA) using 

the Image Processing Toolbox. MATLAB’s rigid registration functions are used to align 

all images to the pre-treatment, T1-weighted scan. Prior to registration, the field-of-view 

of the SPECT/CT images must be manually cropped to closely match that of the MRI 

data. Following cropping, all SPECT/CT images are registered in CT space to align 

with the 24-hour CT scan. The 24-hour CT scan is then registered to the pre-treatment, 

T1-weighted image. The resulting transformation is then applied to all other SPECT/CT 

images. Magnetic resonance (MR) scans from all visits are registered individually to the 

pre-treatment, T1-weighted image. MATLAB’s “imregtform” and “imwarp” functions can 

register structural components and interpolate imaging resolutions in the same step with 

high accuracy.

The MR images are processed to determine the total volume and cellularity at each 

imaging visit as follows. Contrast enhanced images and CT scans are used to determine 

the tumor and skull regions-of-interest, respectively. To determine the total tumor boundary, 
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first the pre-contrast, T1-weighted images are subtracted from the T1-weighted, post 

contrast images to estimate the enhancing boundary. A threshold is applied to remove 

noise from background regions. The 3D regions of interest (ROI) are then manually 

generated by traveling slice-by-slice and outlining the T1 hyperintensity with MATLAB’s 

“roipoly”. This is repeated for each MRI timepoint to have the tumor segmented over 

time. Similarly, a segmentation defining the brain boundary is determined from intensity 

thresholds on the baseline CT scan. The skull is then removed from the domain by manually 

correcting the generated segmentation on a slice-by-slice basis. This segmentation defines 

the computational domain for the mathematical model. We return to the limitations of this 

segmentation approach in the Discussion section.

Next, voxel-wise cellularity estimates are based on assuming a linear relationship between 

with total cells in a voxel and the measured ADC, determined by Eq. (1):

N(x, t) = θ ADCw − ADC(x, t)
ADCw − ADCmin

, (1)

where ADCw is the ADC of water at 37 °C (2.5 × 10−3 mm2/s), ADC(x, t) is the ADC 

at position x of imaging time point t, ADCmin is the minimum ADC found within tumor 

ROIs for a specific patient, and θ is the voxel-specific carrying capacity. For details on this 

method, see refs. [17-19]. The local cell number map N(x, t) is then set to zero outside of the 

determined tumor region-of-interest for each time point.

The SPECT data are first normalized across imaging time points using a field-of-view based 

method [20] to quantify the radioactivity in MBq. To accomplish this, a phantom with 

known activity is placed in the field-of-view at the beginning of the SPECT acquisition. The 

remaining activity in the phantom at subsequent scans is estimated based on the half-life of 
186Re and applied to determine a correction factor for SPECT images using Eq. (2):

γ(t) = A0(0.5)−90t

I(t) , (2)

where A0 is the activity initially placed in the phantom, I(t) is the phantom intensity in 

counts, and the half-life of RNL is 90 h [21]. SPECT images at time t are multiplied by the 

correction factors, γ(t), to transform the images into maps of activity.

Spatially resolved dose rates are estimated by determining the spread of ionizing radiation 

from each voxel to its nearest neighbors with a dose-point kernel method [22]. Each 

processed SPECT image is used individually to determine the dose rate at the respective 

time point, using Eq. (3):

D(x) = ∑
i = 1

n A(i)Si x

m , (3)

where A is the local activity at position i, m the mass contained in a voxel, Si x represents 

the absorbed fraction of energy in voxel x per disintegration in voxel i, and n is the set 

of neighboring voxels with significant energy deposition. A discrete dose-kernel for 186Re 
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defines the energy deposition fraction, S. [23]. The dose-rates at each SPECT time point are 

linearly interpolated between scans to determine the spatio-temporally resolved, dose-rate.

2.4. Mathematical model

The standard reaction-diffusion equation [7] is used with variations to model the 

spatiotemporal response of each patient’s tumor to RNL:

∂N(x, t)
∂t = ∇ ⋅ (d∇N(x, t)) + kp(x) 1 − N(x, t)

θ N(x, t), (4)

where cell motion and proliferation are described by a diffusivity, d, and rate kp, respectively. 

Table 3 lists how different terms are incorporated into Eq. (4) to build the model family; 

each resulting model is then calibrated to the measured data (see Table 4 for parameter 

descriptions). Models 0 and 1 consist of the base model (i.e., Eq. (4)) where cell death is 

incorporated via a global (i.e., one value per tumor) or local (i.e., one value per voxel) net 

proliferation rate, respectively. In these two models, kp(x) is allowed to take on negative 

values, allowing for treatment to be modeled implicitly; in all subsequent radiation coupled 

models where treatment effects are explicitly defined, this proliferation rate is nonnegative.

Models 2–5 (Table 3) incorporate radiation damage to reduce the effective proliferation rate 

[24,25]. This is assumed to account for fatal DNA damage manifesting over time as cell 

divisions are completed, resulting in fewer proliferating cells [26]. The sigmoid scaling of 

the radiation term follows a classic assumption in radiation response, that response levels off 

at higher cell densities as proliferation slows down [27]. Models 6–9 (Table 3) include cell 

death directly due to ionizing radiation [15,25]. These models assume that apoptosis occurs 

based on a calibrated radiation sensitivity and activity concentration. For both mechanisms 

of response, the RNL distribution is coupled with one of four terms (described below) to 

find the optimal link between measured response and activity distribution.

Models 2 and 6 directly use the spatio-temporal distribution of absorbed-dose rate 

determined from the SPECT data. In this formulation, cell death is due to the current activity 

provided by RNL in each voxel, giving individual voxels high flexibility in their response 

to therapy throughout time. In contrast, Models 3 and 7 utilize a global RNL coupling, 

which models radiation response based on the mean absorbed-dose rate at the current time 

step. This method assumes that the spatially resolved distribution of RNL does not provide 

enough information to inform local response, so the radiation must be averaged across the 

tumor. Models 4 and 8 assume that the radiation effects linger past the expiration of ionizing 

particles due to residual DNA damage taking several cell cycles to manifest itself and cause 

cell death. Here the accumulated dose each voxel is exposed to determines the magnitude of 

the initial effect. The impact on proliferation (Model 4) and cell death (Model 8) recovers to 

baseline over time. Finally, Models 5 and 9 do not explicitly incorporate RNL information 

into the coupling term, leaving behind a single calibrated parameter to capture the radiation 

effects.
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2.5. Numerical implementation

The MRI gridding serves as the basis for discretizing the images into a grid for finite 

difference method (FDM) simulations in 3-dimensions; that is, each voxel in the MR image 

becomes a single point on the FDM grid. Images are interpolated resulting in a grid spacing 

of 2 × 2 × 2 mm3, or halfway between the ADC and SPECT resolutions. For each member 

of the model family determined by Eq. (4), the model is run forward with a time step of 2 

days, chosen to ensure numerical stability of the simulation with the chosen grid size and 

range of potential diffusivities [28]. The RNL spatiotemporal distribution is interpolated to 

match the grid and time spacing of the simulation, using MATLAB’s “interpn” function.

To reduce the computational burden of the simulations, the domain is reduced to surround 

the maximum extent of tumor with additional padding to prevent cell build up around the 

boundaries. This is performed by first finding the voxels where the tumor exists at any 

measured time point, then extending the domain past the tumor edges in each direction by 

10 mm, or until the brain segmentation is reached. These steps allow for up to an 80 % 

reduction in domain size compared to utilizing the whole brain and can be seen in Fig. 2, 

showing the simulation does not reach the edge of this reduced domain. Neumann conditions 

are specified at all boundaries, skull, or domain, to allow for zero-flux, preventing movement 

of cells out of these regions.

2.6. Patient-specific calibration and prediction

Early response predictions are determined by a patient-specific calibration [15,29]. We 

utilize a Levenberg–Marquardt scheme [30] to update the model parameters until the change 

in the sum-squared errors between successful updates has converged (change in SSE < 

1e-6) or a maximum number of iterations is reached (see reference [31] for full details on 

Levenberg–Marquardt implementation). Two calibration scenarios are evaluated. Scenario 1 

focuses on model fit, using all available imaging time points for each respective patient to 

calibrate the model parameters. Scenario 2 focuses on prediction, leaving the last imaging 

time out of the data set to be calibrated. Parameters from Scenario 2 calibrations are then 

used to predict the local tumor burden at the final imaging time point.

The Akaike Information Criterion (AIC) [32] is used to select the optimal model from the 

family based on the results from the Scenario 1 calibrations. The raw AIC value is calculated 

using Eq. (5):

AIC = n ⋅ lnSSE
n + 2p + 2p2 + 2p

n − p − 1, (5)

where n is the number of voxels in the domain and p is the number of calibrated parameters. 

The SSE and n are calculated by including only non-zero voxels. The raw AIC value is then 

converted into an AIC weighting with Eqs. (6) and (7):

ΔAICi = AICi − min(AIC) (6)
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wi =
exp − 1

2ΔAICi

∑i = 1
N exp − 1

2ΔAICk

, (7)

where i is the current patient, and k is the number of patients included in the study. Eq. (6) 

is used to determine the change in raw AIC obtained from each model, AICi, relative to the 

minimum AIC value. Eq. (7) then uses this difference to determine the probability that each 

model fits the data.

Outputs from the Scenario 1 (i.e., full time course calibration) and Scenario 2 (i.e., final 

visit left out of calibration and used for prediction) calibrations are then analyzed at the 

local level using the concordance correlation coefficient (CCC) [33], and at the global 

level using the Sorenson-Dice coefficient [34], for all patients and models individually. The 

CCC quantifies the degree of movement away from the line of unity when comparing the 

measured and simulated cellularity maps. The Dice is used to ensure that a low percent 

error between measured and simulated volumes, also represents a high degree of overlap 

between the measured and simulated tumors. We also tabulate the absolute percent error 

between the measured and calibrated/predicted volumes and total cell numbers to further 

assess global accuracy. At the cohort level we will also use the concordance Spearman 

correlation coefficient (SCC) to assess the strength of association between the measured and 

simulated values for volume and cell number. For Scenario 1 calibrations where all patient 

data is used, all simulations are compared together, whereas for Scenario 2, calibrated and 

predicted time points are separated for analysis.

2.7. Leave-one-out validation

The simplest model (M0; see Table 3) is used to validate a population based forecast 

for individual patients, due to its reduced parameter burden. The Scenario 1 calibration 

results from M0 are separated based on each patient’s mean accumulated dose to the tumor. 

A testing patient is selected, and their parameter values are subsequently removed from 

the parameter distributions, leaving a training dataset of nine patients (i.e., one has been 

“left out”). An initial guess for the diffusivity of the test patient is obtained by fitting the 

calibrated values of d from the training dataset to a truncated normal distribution (Shapiro-

Wilk test; p = 0.155), with mean and standard deviation from the population, and sampling. 

An initial guess for kp is obtained by fitting an exponential function to the training dataset 

and is sampled based on the confidence of the fit. For the diffusivity and proliferation, we 

sample from the fit normal distribution or exponential function, respectively, 100 times for 

each parameter, yielding a range of parameter values to make predictions.

The simulation is run forward until the patient’s first imaging time point is reached with 

each sampled diffusivity/proliferation combination, resulting in a mean and 95 % confidence 

interval for the prediction. Imaging data from the current time point is then used to update 

parameters from the initial sampling and serves as the starting point for the next forward 

evaluation. This assimilation starts with a Levenberg–Marquardt calibration, to all currently 

acquired MRI data, providing patient-specific values of d and kp. Parameter estimates for 
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proliferation and diffusivity are weighted equally between the original one hundred samples 

and the new calibrated values using Eqs. (8) and (9), respectively:

kpest = ∑
i = 1

tn 1
tn

kpi, (8)

dest = ∑
i = 1

tn 1
tn

di, (9)

where tn is the current scan number (e.g., 1 at baseline), and kpi and di are the outputs from 

the ith calibration (with kp1 and d1 being the initial sampled parameters). This results in one 

hundred new samples for kpest and dest to be used in a prediction, starting from the most recent 

measured tumor burden. The sequence is repeated for each imaging time point available. 

Each patient serves as the testing patient once with this method. Absolute percent error is 

evaluated at all time points for tumor volume and total cell number. Cohort predictions for 

volume and total cell number are analyzed with the SCC.

3. Results

3.1. Model selection

Table 5 present the results of the model selection analysis. M1 was the highest performing 

model, as seen by having a higher average AIC weight (0.6) than all the other models. 

The middle rankings (M2 to M9) display a large standard deviation in the average ranking. 

Despite the substantial reduction in parameters from M1 to M0 (due to accounting for a 

single global proliferation value, rather than a field of proliferation values in other models), 

the high sum of squared errors results in M0 being the worst performing model across most 

patients (Rank = 9.5 ± 0.9). As M1 was identified as the optimal model from AIC, it is used 

to generate the results in Sections 3.2 and 3.3 (See Fig. A.1 in Appendix A for results from 

all models).

3.2. Visualization of the model calibration

Fig. 2 shows results from the M1 calibration for patient 7. In panel A we focus only on the 

central slice to visualize the differences between the cellularity estimates of simulations and 

measured data. The middle row shows the results from the Scenario 1 (calibrated to full data 

set) calibration and the bottom presents the Scenario 2 (last follow-up used for prediction) 

calibration results. In panel B, cellularity measurements for individual voxels are plotted 

against the simulated counterpart from the same time point to assess the local correlations. 

For Scenario 1, the calibrations across all time points show a high overlap (Dice = 0.82 

± 0.02) with a strong local correlation (CCC = 0.73 ± 0.09). The Scenario 2 calibrations 

display a slight improvement (but not significant, p = 0.20 for Dice, p = 0.80 for CCC) in the 

Dice and CCC values for calibrated time points, 0.91 ± 0.02 and 0.80 ± 0.14, respectively. 

Lastly, the predicted time point in the Scenario 2 calibration displays a sharp drop in CCC 

(0.29), and a slight decrease in Dice (0.75). In the following section, we present the results 

across the entire cohort of patients.
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3.3. Cohort calibration results

Results of global and local metrics can be found in Fig. 3. Median CCC values for 

calibrations from Scenarios 1 and 2 are 0.71 (range = [0.50, 0.83]) and 0.90 (range = 

[0.46, 0.98]), respectively; these values drop considerably when moving to the predictions 

from Scenario 2 where CCC = 0.12 (range = [0.02, 0.29]). Similarly, the median Dice scores 

for Scenarios 1 and 2 calibrations are 0.88 (range = [0.65, 0.94]) and 0.92 (range = [0.71, 

0.98]), respectively, dropping to 0.72 (range = [0.60, 0.86]) for the Scenario 2 prediction. 

The median absolute volume error increases from 1.84 % (range = [0.12, 40.41]) to 8.97 

% (range = [0.37, 51.69]), and total cell number error increases from 4.81 % (range = 

[0.04, 35.97]) to 14.98 % (range = [3.75, 92.96]) for Scenario 2 calibrations and predictions, 

respectively. The volume time courses of individual patients can be found in Fig. 4A. Here 

the low calibration error is visible, with an increase when predicting that depends on how 

the volume changes with respect to the previous follow-up. For the Scenario 1 calibrations, 

volumes and cell counts exhibit high correlation between measurements and calibrations 

(SCC = 0.98, p-values < 7e-7). For the Scenario 2 calibrations (Fig. 4B and C), global 

metrics display a SCC = 0.99 (p-value ~ 0) and SCC = 0.98 (p-value ~ 0) between measured 

and calibrated volumes and cell counts, respectively. These correlations drop slightly for the 

predictions, with a SCC of 0.84 (p-value = 4.0e-3) for volumes and 0.93 (p = 1.0e-3) for 

total cell numbers.

3.4. Leave-one-out distributions and sampling

Fig. 5 shows the results for parameter distributions used in the leave-one-out study. Panel A 

of Fig. 5 shows the diffusivity and proliferation values calibrated from M0 versus the dose 

absorbed for each patient. The diffusivity shows no correlation, PCC = −0.25 (p = 0.49), 

whereas the proliferation shows a significant negative correlation, with a PCC of −0.64 (p = 

0.049). Panel B of Fig. 5 shows an example histogram from the sampled diffusivities, with 

a normal distribution centered around the cohort mean. The median absolute error for the 

initial proliferation estimate is 45.16 % (range = [2.56, 695.51]) and the mean is 120.63 %, 

which is driven upwards by the outlier patients 7 (error = −209.74 %) and 9 (error = −695.51 

%), as seen in Table 6.

3.5. Leave-one-out results

Fig. 6A displays the predicted paths for each patient’s volume time course using the 

leave-one-out method and M0, with the 95 % confidence intervals tightly following the 

mean prediction. The absolute volume error reduces with each additional calibration step; in 

particular, the median error at time points 1, 2, and 3 are 44.68 % (range = [4.03, 206.38]), 

30.57 % (range = [15.84, 67.72]), and 9.82 % (range = [5.63, 55.89]), respectively. Fig. 

6B shows the cohort comparison plots for volume and cell numbers, with a SCC between 

measured and predicted tumors of 0.89 (p = 2e-6) for volumes and 0.88 for cell counts (p = 

2e-6).

4. Discussion

In this work we have presented results from two different prediction methods for GBM 

response to RNL therapy, both a patient-specific and population based prediction; we 
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first focus on the patient specific calibration. Model selection with the patient-specific 

calibrations showed that a local proliferation model with no additional treatment effects 

(M1) was the highest scoring in most patients. This is not a surprising finding as combining 

treatment effects into a net proliferation term allows for the highest flexibility of predicted 

cell changes. Forecasting responses with patient-specific parameters provided high global 

accuracy of tumor volume and cell number, and a strong degree of overlap between 

predictions and measured tumors but was unsuccessful at predicting local cellularity 

changes. This suggests that the total tumor burden is predictable with a patient-specific 

model and would allow for an early assessment of response.

The downside of using this model is that the radionuclide distribution is not explicitly 

included in predictions, but rather assumed by the calibrated proliferation rates. However, 

this does not imply that the radiation coupled models were unsuccessful, M8 and M9 were 

the highest performing in three and one patients, respectively, but they were unable to 

consistently model the changes in cell number across the cohort. Despite the benefits of 

patient specific calibrations, the heterogeneity of response proved to be too great across the 

cohort to be captured with the available data and a single, radiation coupled mathematical 

model. (We return to the desire for more comprehensive imaging data below.)

In contrast to the patient-specific calibration, the LOOCV utilizes population trends to 

assign parameters based off the measured radio-nuclide distributions. The predictions with 

this method performed similarly to the patient-specific calibrations at the cohort level. Initial 

global error was higher, but improved over time as additional, patient-specific data became 

available and was assimilated into the prediction. This method provides the benefit of being 

able to predict immediately following the conclusion of RNL imaging with SPECT/CT or, 

potentially, before treatment begins if a planned or simulated RNL distribution is provided. 

The computational burden for the leave-one-out method is also significantly lower, requiring 

less than 1 h for the cohort, versus 10+ hours for a single patient-specific calibration with 

local parameters.

Unfortunately, we are currently limited to employing M0 for the LOOCV due to the small 

number of parameters included in this model. While calibrating proliferation on a local basis 

(i.e., at the voxel level) has shown great accuracy when predicting the growth of GBM (see 

ref. [14], as well as in the present effort), there is currently not an established method to 

assign locally distributed parameters a priori. Additionally, ten patients is a small sample 

size to statistically validate the found parameter distributions. This leads to large errors 

in the few outlier patients (e.g., Patients 7 and 9 in Table 7) for parameter assignment. 

These two example patients had the least tumor growth between scans (Table A.1) and were 

poorly represented by the rest of the population. A larger cohort would prove invaluable for 

validating the LOOCV method.

All mathematical modeling studies are built on imaging data containing uncertainty from a 

variety of sources, including errors during data acquisition, image segmentation, and model 

calibration. Uncertainty in cellularity estimates has been previously studied in relation to 

a patient specific calibration [35] and was found to have a limited effect on parameter 

estimation. The authors showed that parameters could be calibrated to noisy data with high 
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correlation to true parameters (PCC > 0.80). In addition to uncertainty in estimating the 

cellularity, spatial dose-rate calculations also can be inaccurate due to the limited spatial 

resolution of SPECT, and difficulty quantifying energy deposition in vivo [36]. Despite the 

assumed imaging uncertainties, we were able to confirm that for the models we evaluated, 

all calibrated parameters were identifiable (Fig. A.2). This translated to consistent error 

between simulations and measured data in vivo with both prediction frameworks, regardless 

of an individual patient’s presentation and response trajectory.

Tumor segmentation potentially plays a key role in simulation results near the periphery 

of the tumor where boundaries can be inaccurate due to manual drawing of the region of 

interest. A multi-institutional study showed high agreement in bulk tumor boundaries with a 

median Dice of 0.85 [37], suggesting that our predicted metrics for total tumor volume and 

cell number should have minimal dependence on our manual tumor segmentation, however 

it should be noted that the segmentations were not performed by a trained radiologist. 

As the treatment under consideration is a radionuclide therapy providing elevated dosages 

compared to the well-studied external beam therapy, we want to focus the discussion of 

segmentation inaccuracies on the assumptions employed in defining tumor boundaries, 

rather than the exact segmentation methodology used. For this study, tumor segmentations 

are based on identifying the brain regions that display post-contrast enhancement, which 

has the possibility to contain pseudo-progression unrelated to the tumor burden we are 

modeling [38]. Imaging techniques such as delayed contrast enhanced [39] MRI or dynamic 

susceptibility contrast MRI [40] could be used to further refine these boundaries. To add 

to this, studies have shown that high dosages can cause permanent damage to vascular 

networks [41,42], potentially resulting in lasting enhancement on MRI despite a lack of 

tumor. The in vivo response to high dosage therapy must be further explored to fully validate 

this type of mathematical model.

While providing evidence that the reaction-diffusion based model fits the growth of 

GBM treated with RNL, we were unable to verify that including an RNL spatiotemporal 

distribution in the modeling efforts would significantly improve the predictive accuracy 

of the models for all patients. The leave-one-out method did provide a correlation in the 

mean accumulated dose and resulting proliferation but lacks the connection to cell death 

seen when modeling global exposure with external beam radiation therapy [13,24,25]. We 

have identified potential reasons for these observations. First, the RNL exposure could act 

in a manner which cannot be explicitly defined by an additional term in the mathematical 

model. Second, the model itself only accounts for proliferating tumor cells, whereas areas 

receiving exceedingly high radiation dose may be comprised of immune and vascular 

cells [43], and additional tumor cell phenotypes, all invading the site and affecting the 

ADC estimates of tumor cell number. Without accounting for the uncertainty described 

in the previous discussion sections, further exploration of potential mechanisms of action 

or numerical methods would be needed to address these points of concern. There are 

other mechanisms found in the GBM literature used to define radiation response that we 

could look to evaluate in our modeling framework, including carrying capacity reductions 

[44,45] or hypoxia induced radiation resistance [9,46,47]; however, the in vivo imaging data 

available is currently a major limitation in exploring these further. We also chose to focus 

on spatially resolved models due to the highly heterogenous nature of rGBM growth and 
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response [48,49]. Future work could approach this from a global perspective to focus on 

defining the mechanisms that best predict changes in cellularity across a whole tumor, rather 

than at individual voxels [50,51].

This study represents a novel direction for modeling the effects of radionuclide treatment, 

however there are numerous opportunities for further investigation which could improve the 

applications to RNL therapy. In particular, we described eight different mechanism-based 

models coupled to the radionuclide distribution, a fraction of what is possible depending 

on the data types available. Future work should expand on these models, performing 

additional sensitivity analysis to quantify the assumptions made by each. Additionally, the 

sample size for the retrospective study was limited to just ten patients for both prediction 

methods, resulting in large variability between patients in terms of average dose absorbed, 

tumor location, baseline tumor size, and observed growth rates. Increasing the number of 

patients could alter trends found with the prediction methods, so further validation on a 

larger cohort is necessary before application in a clinical setting. These suggestions for 

future work only focus on the advancements in predictive modeling required to clinically 

validate personalized radionuclide therapy, but additional work in optimizing the convection 

enhanced delivery of RNL [6,52,53] is needed, both in silico and in vivo, before this goal 

can be realized.

5. Conclusion

We have proposed a family of mathematical models for predicting the in vivo 

response of glioblastoma multiform to convection enhanced delivery of Rhenium labeled 

nanoliposomes. A biology-based, reaction-diffusion model with a net proliferation term 

proved to be the most accurate for both calibrations and predictions. This model can make 

an early, accurate prediction of tumor response when using early time point, patient-specific 

data to calibrate the model on a patient-specific basis. Additionally, we have shown that 

model parameters obtained from calibrating a simplified version of the model to a training 

set of patients allows for accurate predictions of tumor development from baseline on a 

patient-specific basis.
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Appendix

Table A.1

Full patient imaging details with exclusion criteria.

Original 
Patient #
(study #)

T1 scan times
[Day]

T1 + Contrast 
scan times
[Day]

ADC scan 
times
[Day]

SPECT/CT scan 
times [Hours
after infusion]

Exclusion reason

1 56, 112 56, 112 0, 56, 112 1, 2, 26, 120, 194 No baseline MRI to 
initialize model

2 (1) 0, 28, 56, 112 0, 28, 56, 112 0, 28, 56, 112 1, 2, 26, 120, 194 N/A

3 (2) 0, 28, 56 0, 28, 56 0, 28, 56 1, 2, 26, 120, 194 N/A

4 0, 28, 112 0, 28, 112 0, 28, 112 2, 4 No post infusion 
SPECT/CT to track 
RNL

5 (3) 0, 28, 56, 112 0, 28, 56, 112 0, 28, 56, 112 2, 4, 28, 124, 196 N/A

7 0 0 0 2, 4, 28, 124, 196 No follow up MRI 
available

8 (4) 0, 28, 56 0, 28, 56 0, 28, 56 4, 9, 33, 153, 205 N/A

10 (5) 0, 28, 56, 112 0, 28, 56, 112 0, 28, 56, 112 4, 9, 33, 129, 205 N/A

11 0, 28 0, 28 0, 28 4, 9, 33, 129, 205 Only one follow 
up image available, 
cannot predict 
response

12 0, 28, 56, 112 0, 28, 56, 112 28, 56, 112 4, 9, 33, 129, 201 Baseline ADC 
unavailable to 
initialize cell 
density

13 (6) 0, 28, 56, 112 0, 28, 56, 112 0, 28, 56, 112 4, 9, 33, 129, 201 N/A

14 (7) 0, 28, 56, 112 0, 28, 56, 112 0, 28, 56, 112 4, 9, 33, 129 N/A

16 (8) 0, 28, 56 0, 28, 56 0, 28, 56 2, 9, 33, 129, 201 N/A

17 (9) 0, 56, 112 0, 56, 112 0, 56, 112 1, 6, 30, 126, 198 N/A

18 (10) 0, 56, 112 0, 56, 112 0, 56, 112 1, 3, 6, 30, 126, 198 N/A

Table A.2

Extended patient details.

Patient Infused 
volume (mL)

Infusion time 
(min)

Number of 
catheters

# Of prior 
treatment(s)

Baseline 
tumor volume 
(cm3)

Final tumor 
volume 
(cm3)

1 0.66 132 1 1 5.24 25.83

2 0.66 132 1 2 3.24 43.32

3 1.32 264 1 1 4.47 29.19

4 2.64 528 1 2 29.04 72.94

5 2.64 528 1 2 4.37 52.73

6 5.28 528 2 2 28.22 78.26

7 5.28 528 2 1 6.21 12.18

8 5.28 528 2 3 6.97 49.99

9 5.28 352 3 2 26.77 23.54

10 5.28 352 3 2 22.30 113.99
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Fig. A.1. Full patient-specific calibration results.
Panel A provides results from all Scenario 1 calibrations. For CCC and Dice accuracy, M0 

consistently has the worst performance for all patients, other models all perform similarly 

in these two metrics. The global metrics, volume, and cell % error, have more variation 

across each patient, with no clear and consistent best performing model. These trends are 

confirmed when looking at the averages across patients in Panel B, where the high variation 

leads to insignificant differences between all groups, except for the CCC with M0 being the 

worst performer.

Table A.3

In-silico study for parameter identifiability.

Model M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

% 
Error

d 0.21 ± 
3.6e-4

0.32 
± 
0.73

0.37 ± 
3.1e-3

0.37 ± 
2.7e-2

3.01 ± 
18.25

0.38 ± 
0.24

1.61 ± 
6.65

0.23 ± 
3.2e-5

−0.58 ± 
1.91

0.94 ± 
3.36

kp(x) −0.023 
± 
5.2e-5

−1.95 
± 
11.87

−0.29 
± 0.02

−0.49 
± 0.36

6.53 ± 
15.54

−1.32 
± 3.41

−4.68 
± 
15.61

−0.19 
± 
4.9e-4

−1.28 ± 
7.05

−5.01 
± 28.7

kd – – −0.042 
± 
4.1e-3

−0.082 
± 
5.6e-2

−6.63 
± 
24.84

−0.26 
± 0.63

−1.81 
± 6.59

−0.044 
± 
1.4e-4

−24.61 
± 36.41

−0.77 
± 4.30

μ – – – – 1e5 ± 
3e5

– – – 3e4 ± 
5e4

–
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A.1. In-silico study

The models presented in this study have a large number of calibrated parameters due to 

the spatially varying proliferation rate. In order to determine the feasibility of each model 

we have performed an additional calibration study with in-silico data. These tumors were 

generated from a single in-vivo tumor, with the patient’s measured distribution used as 

an input. For each model, the required parameters were sampled 50 times followed by 

forward simulations to day 112. The true data was finalized by applying gaussian white 

noise (MATLAB’s "awgn") to each time point. Model calibrations were performed to the 

longitudinal scans of the virtual tumors for each sampled parameter set. A model was 

determined identifiable if all parameters had less than 10 % error across the calibrated 

samples.

In Table A.3 the results are presented for each model. All models have consistent parameter 

error except for M4 and M8, which contain an additional calibrated parameter (μ) for the 

decay of the radiation effects over time. With a fixed value of μ, the data generation for these 

two models was repeated, which provided in an improved ability to identify the remaining 

parameters through calibration. In M4, that was seen with reductions in average percent 

error for d, kp and kd, now equaling 0.50 %, 0.39 %, and 0.0027 %, respectively. A similar 

trend was seen with M8 where the average percent error is now, d = −0.86 %, kp = 0.071 

% and kd = 0.095 %. The fixing of μ is represented in Table 3 and was used for all 

applicable calibrations in the study (M4 and M8 Scenario 1 calibrations). The actual value 

for this parameter was determined by evaluating a range across all patients for M4 and M8 

individually. For both models, the value that provided the highest AIC weighting across all 

patients was chosen to calculate the results in Table 5.

References

[1]. Wen PY, Weller M, Lee EQ, et al. , Glioblastoma in adults: a Society for Neuro-Oncology (SNO) 
and European Society of Neuro-Oncology (EANO) consensus review on current management 
and future directions, Neuro Oncol. 22 (8) (2020) 1073–1113. [PubMed: 32328653] 

[2]. Fernandes C, Cost A, Osório L, et al., Current standards of care in glioblastoma therapy, in: 
Vleeschouwer SD (Ed.), Glioblastoma, 2017, pp. 197–241. Brisbane, AU.

[3]. Stupp R, Mason WP, van den Bent MJ, et al. , Radiotherapy plus concomitant and adjuvant 
temozolomide for glioblastoma, N. Engl. J. Med 352 (2005) 987–996. [PubMed: 15758009] 

[4]. Phillips WT, Goins B, Bao A, et al. , Rhenium-186 liposomes as convection-enhanced nanoparticle 
brachytherapy for treatment of glioblastoma, Neuro Oncol. 14 (4) (2012) 416–425. [PubMed: 
22427110] 

[5]. Floyd J, Phillips W, Goins B, Bao A, Brenner A, ATNT-03 First in human study of rhenium 
nanoliposomes for intratumoral therapy of glioma [abstract], Neuro Oncol. (2015) 17.

[6]. Woodall RT, Hormuth DA II, Wu C, et al. , Patient specific, imaging-informed modeling 
of rhenium-186 nanoliposome delivery via convection-enhanced delivery in glioblastoma 
multiforme, Biomed. Phys. Eng. Express 7 (4) (2021).

[7]. Swanson KR, Alvord EC, Murray JD, A quantitative model for differential motility of gliomas in 
grey and white matter, Cell Prolif. 33 (2000) 317–329. [PubMed: 11063134] 

[8]. Alfonso JCL, Talkenberger K, Seifert M, et al. , The biology and mathematical modelling of 
glioma invasion: a review, J. R Soc. Interface 14 (136) (2017).

Christenson et al. Page 16

Brain Multiphys. Author manuscript; available in PMC 2024 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[9]. Saut O, Lagaert JB, Colin T, Fathallah-Shaykh HM, A multilayer grow-or-go model for GBM: 
effects of invasive cells and anti-angiogenesis on growth, Bull. Math. Biol 76 (9) (2014) 2306–
2333. [PubMed: 25149139] 

[10]. Subramanian S, Gholami A, Biros G, Simulation of glioblastoma growth using a 3D multispecies 
tumor model with mass effect, J. Math. Biol 79 (3) (2019) 941–967. [PubMed: 31127329] 

[11]. Hormuth DA II, Farhat M, Christenson C, et al. , Opportunities for improving brain 
cancer treatment outcomes through imaging-based mathematical modeling of the delivery 
of radiotherapy and immunotherapy, Adv. Drug Deliv. Rev 187 (2022), 114367. [PubMed: 
35654212] 

[12]. McMahon SJ, The linear quadratic model: usage, interpretation and challenges, Phys. Med. Biol 
64 (2019) 01TR01.

[13]. Rockne R, Alvord EC, Rockhill JK, Swanson KR, A mathematical model for brain tumor 
response to radiation therapy, J. Math. Biol 58 (4–5) (2009) 561–578. [PubMed: 18815786] 

[14]. Hormuth II, Al DA, Feghali KA, Elliott AM, Yankeelov TE, Chung C, Image-based 
personalization of computational models for predicting response of high-grade glioma to 
chemoradiation, Sci. Rep 11 (1) (2021) 8520. [PubMed: 33875739] 

[15]. Annede P, Cosset JM, Van Limbergen E, et al. , Radiobiology: foundation and new insights in 
modeling brachytherapy effects, Semin. Radiat. Oncol 30 (1) (2020) 4–15. [PubMed: 31727299] 

[16]. Hedrick MDM, A Dual Phase 1/2 Study to Determine the Maximum Tolerated Dose, Safety, and 
Efficacy of 186rhenium Nanoliposomes (186rnl) in Recurrent Glioma. Identifier NCT01906385, 
2015. https://www.clinicaltrials.gov/ct2/show/NCT01906385.

[17]. Atuegwu NC, Gore JC, Yankeelov TE, The integration of quantitative multi-modality imaging 
data into mathematical models of tumors, Phys. Med. Biol 55 (9) (2010) 2429–2449. [PubMed: 
20371913] 

[18]. Anderson AW, Xie J, Pizzonia J, Bronen RA, Spencer DD, Gore JC, Effects of cell volume 
fraction changes on apparent diffusion in human cells, Magn. Reson. Imaging 18 (6) (2000) 
689–695. [PubMed: 10930778] 

[19]. Atuegwu NC, Colvin DC, Loveless ME, et al. , Incorporation of diffusion-weighted magnetic 
resonance imaging data into a simple mathematical model of tumor growth, Phys Med Biol 57 
(1) (2012) 225–240. [PubMed: 22156038] 

[20]. Mezzenga E, D’Errico V, D’Arienzo M, et al. , Quantitative accuracy of 177Lu SPECT imaging 
for molecular radiotherapy, PLoS ONE 12 (8) (2017), e0182888. [PubMed: 28806773] 

[21]. PubChem compound summary for CID 161105, Rhenium-186, Nat. Center Biotechnol. Infor 
6 (2022). https://pubchem.ncbi.nlm.nih.gov/compound/Rhenium-186. Updated Sept. 3, 2022. 
Accessed Sept.

[22]. Ramonaheng K, van Staden JA, du Raan H, Accuracy of two dosimetry software programs for 
(177)Lu radiopharmaceutical therapy using voxel-based patient-specific phantoms, Heliyon 8 (7) 
(2022) e09830. [PubMed: 35865988] 

[23]. Reiner D, Blaickner M, Rattay F, Discrete beta dose kernel matrices for nuclides applied in 
targeted radionuclide therapy (TRT) calculated with MCNP5, Med. Phys 36 (11) (2009) 4890–
4896. [PubMed: 19994497] 

[24]. Rockne R, Rockhill JK, Mrugala M, et al. , Predicting the efficacy of radiotherapy in individual 
glioblastoma patients in vivo: a mathematical modeling approach, Phys. Med. Biol 55 (12) 
(2010) 3271–3285. [PubMed: 20484781] 

[25]. Liu J, Hormuth II, Yang J DA, Yankeelov TE, A multi-compartment model of glioma response to 
fractionated radiation therapy parameterized via time-resolved microscopy data, Front. Oncol 12 
(2022), 811415. [PubMed: 35186747] 

[26]. Wouters BG, Cell death after irradiation: how, when, and why cells die. Basic Clinical 
Radiobiology, 5th ed., CRC Press, 2018.

[27]. Joiner MC, Quantifying cell kill and cell survival, Basic Clin. Radiobiol (2018).

[28]. Li N, Steiner J, Tang S, Convergence and stability analysis of an explicit finite difference method 
for 2-dimensional reaction-diffusion equations, The ANZIAM J. 36.2 (1994) 234–241.

Christenson et al. Page 17

Brain Multiphys. Author manuscript; available in PMC 2024 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01906385
https://www.clinicaltrials.gov/ct2/show/NCT01906385
https://pubchem.ncbi.nlm.nih.gov/compound/Rhenium-186


[29]. Hormuth DA II, Jarrett AM, Yankeelov TE, Forecasting tumor and vasculature response 
dynamics to radiation therapy via image based mathematical modeling, Radiat Oncol 15 (1) 
(2020) 4. [PubMed: 31898514] 

[30]. Levenberg K, A method for the solution of certain non-linear problems in least squares, Q. Appl. 
Math (2) (1944) 164–168.

[31]. Hormuth DA II, Eldridge SL, Weis JA, et al. , Mechanically coupled reaction-diffusion model 
to predict Glioma growth: methodological details, Methods Mol. Biol 1711 (2018) 225–241. 
[PubMed: 29344892] 

[32]. Akaike H, Information theory and an extension of the maximum likelihood principle, in: 
Breakthroughs in Statistics, 1, Springer, 1973, pp. 610–624.

[33]. Lin LI, A concordance correlation coefficient to evaluate reproducibility, Biometrics 45 (1) 
(1989) 255–268. [PubMed: 2720055] 

[34]. Dice LR, Measures of the amount of ecologic association between species, Ecology 26 (3) (1945) 
297–302.

[35]. Hormuth DA II, Weis JA, Barnes SL, et al. , Predicting in vivo glioma growth with the reaction 
diffusion equation constrained by quantitative magnetic resonance imaging data, Phys. Biol 12 
(4) (2015), 046006. [PubMed: 26040472] 

[36]. Tran-Gia J, Salas-Ramirez M, Lassmann M, What you see is not what you get: on the accuracy 
of voxel-based dosimetry in molecular radiotherapy, J. Nucl. Med 61 (8) (2020) 1178–1186. 
[PubMed: 31862802] 

[37]. Pati S, Verma R, Akbari H, et al. , Reproducibility analysis of multi-institutional paired expert 
annotations and radiomic features of the ivy glioblastoma atlas project (Ivy GAP) dataset, Med. 
Phys 47 (12) (2020) 6039–6052. [PubMed: 33118182] 

[38]. Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, et al. , Pseudoprogression and 
pseudoresponse: imaging challenges in the assessment of posttreatment glioma, AJNR Am. J. 
Neuroradiol 32 (11) (2011) 1978–1985. [PubMed: 21393407] 

[39]. Zach L, Guez D, Last D, et al. , Delayed contrast extravasation MRI: a new paradigm in 
neuro-oncology, Neuro Oncol 17 (3) (2015) 457–465. [PubMed: 25452395] 

[40]. Elshafeey N, Kotrotsou A, Hassan A, et al. , Multicenter study demonstrates radiomic features 
derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma, 
Nat Commun 10 (1) (2019) 3170–3179. [PubMed: 31320621] 

[41]. Arnold KM, Flynn NJ, Raben A, et al. , The impact of radiation on the tumor microenvironment: 
effect of dose and fractionation schedules, Cancer Growth Metastasis (2018) 11.

[42]. Rahmathulla G, Marko NF, Weil RJ, Cerebral radiation necrosis: a review of the pathology, 
diagnosis and management considerations, J. Clin. Neurosci 20 (2013) 485–502. [PubMed: 
23416129] 

[43]. Lorimore S, Coates P, Scobie G, et al. , Inflammatory-type responses after exposure to ionizing 
radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene (20) (2001) 
7085–7095. [PubMed: 11704832] 

[44]. Zahid MU, Mohsin N, Mohamed ASR, et al. , Forecasting individual patient response to radiation 
therapy in head and neck cancer with a dynamic carrying capacity model, Int. J Radiat. Onco. 
Biol. Phys 1113 (2021) 693–704.

[45]. Hormuth DA II, Weis JA, Barnes SL, et al. , A mechanically coupled reaction–diffusion model 
that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth, J. R Soc. 
Interface 14 (128) (2017).

[46]. Rockne RC, Trister AD, Jacobs J, et al. , A patient-specific computational model of hypoxia-
modulated radiation resistance in glioblastoma using 18F-FMISO-PET, J. R Soc. Interface 12 
(103) (2015).

[47]. Yan H, Romero-Lopez M, Benitez LI, et al. , 3D mathematical modeling of glioblastoma 
suggests that transdifferentiated vascular endothelial cells mediate resistance to current standard-
of-care therapy, Cancer Res. 77 (15) (2017) 4171–4184. [PubMed: 28536277] 

[48]. Ali MY, Oliva CR, Noman ASM, et al. , Radioresistance in glioblastoma and the development of 
radiosensitizers, Cancers (Basel) 12 (9) (2020) 2511. [PubMed: 32899427] 

Christenson et al. Page 18

Brain Multiphys. Author manuscript; available in PMC 2024 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[49]. Parker NR, Khong P, Parkinson JF, et al. , Molecular heterogeneity in glioblastoma: potential 
clinical implications, Front. Oncol 5 (2015) 55. [PubMed: 25785247] 

[50]. Ribba B, Kaloshi G, Peyre M, et al., A tumor growth model for low-grade glioma treated with 
chemotherapy or radiotherapy, Cancer Chemother.: Basic Clin. Appl., Hahnemann Symp., 15th 
18 (18) (2012) 5071–5080. [PubMed: 22761472] 

[51]. Ollier E, Mazzocco P, Ricard D, et al. , Analysis of temozolomide resistance in low-grade 
gliomas using a mechanistic mathematical model, Fundamentals Clinic. Pharmacol 31 (3) (2017) 
347–358.

[52]. Chengyue Wu, Hormuth DA, Christenson C, et al. , RADT-14. Towards image-guided modeling 
of patient-specific Rhenium-186 nanoliposome distribution via convection-enhanced delivery 
for glioblastoma multiforme [Abstract], Neuro-oncol. (Charlottesville, Va.) 23 (Supplement_6) 
(2021) vi44.–vi44.

[53]. Antoine LH, Koomullil RP, Wick TM, A Nakhmani, Optimization of catheter placement for 
convection-enhanced delivery to brain tumors, F1000Res 10 (2021) 18.

Christenson et al. Page 19

Brain Multiphys. Author manuscript; available in PMC 2024 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic of the experimental-computational framework. Panel A displays the imaging 

datatypes used in this study. The timeline in the bottom of panel A visualizes the imaging 

acquisitions, with SPECT-CT occurring during the first week and MRI after treatment 

with RNL. Panel B highlights the image processing techniques used in this study. The 

patient-specific calibration flowchart is in panel C, which starts with the processed cell maps 

and RNL time course, loops through the calibration sequence, and outputs a prediction to be 

assessed. The leave-one-out method in panel D begins with parameters from the calibrated 

cohort to make an initial prediction for the patient, new data is then added to improve 

subsequent predictions.
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Fig. 2. Visualization of the patient-specific M1 calibration for patient 7.
Panel A shows measured cell counts in the central slice from the four imaging time points 

for one patient, with red corresponding to a voxel filled with cells. Panel B displays the 

local cellularity results from the two calibration scenarios, Scenario 1 on the top row and 

Scenario 2 on the bottom. All correlation plots in the top row correspond to calibrated time 

points (blue), and all display a strong correlation with the measured data. In the bottom row, 

only the first two time points are from calibrated images (blue) and the last is a prediction 

(orange), displaying a large drop in CCC.
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Fig. 3. Patient-specific M1 calibration results.
Cohort statistics from the M1 calibration are presented from both calibration scenarios. In 

Panel A, we see consistent CCC values across all patients from the calibrated time points, 

with a significant drop when we move to the Scenario 2 prediction. Panel B shows the 

Dice metric, which have a similar trend to the CCCs, with a less significant drop in the 

prediction accuracy. Panels C and D show high global accuracy across both scenarios and 

simulation types. Significance is calculated with the paired Mann–Whitney test and marked 

where applicable (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Fig. 4. Patient-specific time course and correlation for M1.
Panel A shows the time course of percent volume change from the Scenario 2 calibrations. 

Here we see first the calibrated trajectory (dark blue line) aligns closely to the measured 

data; however, the prediction accuracy (orange) is dependent on whether the tumor 

experiences consistent growth to the final time point. The absolute volume error of the 

predictions for these 10 patients ranges from 0.37 % to 51.69 % (median = 8.97 %). 

Panels B and C display the volume and cell count Spearman correlation from the Scenario 

2 calibrations, respectively. Calibration SCC values are remarkably high for both metrics, 

and prediction SCC values suggest high correlation. Marker colors correspond to individual 

patients and are consistent across charts.
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Fig. 5. Leave-one-out parameter distribution and sampling.
Panel A shows the population parameter values for diffusivity (left) and proliferation rate 

(right) plotted versus calculated dose for all patient M0 calibrations. Proliferation rates 

have a visible correlation with dose (shown with exponential fit over the cohort), whereas 

diffusivities do not. Thus, the exponential fit to the proliferation rates from the training 

patients allows us to assign a growth rate to the test patient based on the accumulated dose, 

whereas the diffusivity is sampled one hundred times from a truncated normal distribution 

for each testing patient (an example distribution is shown in panel B). The confidence 

intervals from the fit of the exponential function (panel A right) allow for sampling to yield a 

distribution of 100 potential proliferation rates.
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Fig. 6. Leave-one-out prediction results.
Each plot in panel A corresponds to a forecast for the respective patient using M0, with the 

blue lines charting the predicted path and the black dots representing the measured data for 

the time point. Light blue shading represents the 95 % confidence interval of the charted 

path indicating slight deviations from the mean. Panel B displays the final volume (left) and 

cell number (right) for each acquisition time point compared to the measured result from 

imaging data for all patients, where consistent error is visible across all patients and time 

points.
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Table 1

Key details from the patient imaging and treatment protocol.

Patient RNL
delivered
[MBq (mCi)]

Average
accumulated
dose [Gy]

MRI scan times
[Days after
treatment]

SPECT/CT scan
times [Hours
after infusion
starts]

1 37.0 (1.0) 26.5 0, 28, 56, 112 1, 2, 26, 120, 194

2 37.0 (1.0) 4.6 0, 28, 56 1, 2, 26, 120, 194

3 55.5 (1.5) 40.4 0, 28, 56, 112 2, 4, 28, 124, 196

4 148 (4.0) 49.7 0, 28, 56 4, 9, 33, 153, 205

5 148 (4.0) 19.8 0, 28, 56, 112 4, 9, 33, 129, 205

6 296 (8.0) 22.1 0, 28, 56, 112 4, 9, 33, 129, 201

7 296 (8.0) 160.5 0, 28, 56, 112 4, 9, 33, 129

8 495.8 (13.4) 155.3 0, 28, 56 2, 9, 33, 129, 201

9 495.8 (13.4) 166.3 0, 56, 112 1, 6, 30, 126, 198

10 495.8 (13.4) 79.4 0, 56, 112 1, 3, 6, 30, 126, 198
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Table 2

Imaging resolutions.

Modality In-plane resolution
(mm)

Slice resolution
(mm)

FOV (Voxels)

T1 1.0 1.0 256 × 256 × 165

T1+Contrast 1.0 1.0 256 × 256 × 165

ADC 1.0 5.0 256 × 256 × 30

SPECT 4.42 4.42 128 × 128 × 128

CT 1.10 6.10 512 × 512 × 90
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Table 4

Model parameter descriptions.

Parameter Description Units Assigned by

N Cell count Cells DW-MRI

D Cell diffusivity mm2 day−1 Calibration

kp Cell proliferation day−1 Calibration

kd Radiation effect rate, dose-rate Gy−1 Calibration

kc Radiation effect rate, accumulated dose Gy−1 day−1 Calibration

M Recovery rate day−1 Fixed (see A.1)

Θ Voxel carrying capacity Cells Image resolution

D Dose rate Gy day−1 SPECT

C Coupling constant Gy day−1 Calculated
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