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Abstract

Consuming excessive amounts of alcohol causes impaired mobility and judgment and driving 

accidents, resulting in more than 800 injuries and fatalities each day. Passive methods to detect 

intoxicated drivers beyond the safe driving limit can facilitate Just-In-Time alerts and reduce 

Driving Under the Influence (DUI) incidents. Popularly-owned smartphones are not only equipped 

with motion sensors (accelerometer and gyroscope) that can be employed for passively collecting 

gait (walk) data but also have the processing power to run computationally expensive machine 

learning models. In this paper, we advance the state-of-the-art by proposing a novel method that 

utilizes a Bi-linear Convolution Neural Network (BiCNN) for analyzing smartphone accelerometer 

and gyroscope data to determine whether a smartphone user is over the legal driving limit (0.08) 

from their gait. After segmenting the gait data into steps, we converted the smartphone motion 

sensor data to a Gramian Angular Field (GAF) image and then leveraged the BiCNN architecture 

for intoxication classification. Distinguishing GAF-encoded images of the gait of intoxicated 

vs. sober users is challenging as the differences between the classes (intoxicated vs. sober) are 

subtle, also known as a fine-grained image classification problem. The BiCNN neural network 

has previously produced state-of-the-art results on fine-grained image classification of natural 
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images. To the best of our knowledge, our work is the first to innovatively utilize the BiCNN to 

classify GAF encoded images of smartphone gait data in order to detect intoxication. Prior work 

had explored using the BiCNN to classify natural images or explored other gait-related tasks but 

not intoxication Our complete intoxication classification pipeline consists of several important 

pre-processing steps carefully adapted to the BAC classification task, including step detection and 

segmentation, data normalization to account for inter-subject variability, data fusion, GAF image 

generation from time-series data, and a BiCNN classification model. In rigorous evaluation, our 

BiCNN model achieves an accuracy of 83.5%, outperforming the previous state-of-the-art and 

demonstrating the feasibility of our approach.
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Neural Networks; Gait Analysis; Blood Alchol Content (BAC); Convolutional Neural Networks 
(CNNs)

I. INTRODUCTION

Excessive alcohol consumption is associated with numerous health risks and accounts for 

more than 380 deaths per day [56]. Beyond medical issues, alcohol consumption often 

results in risky and violent situations, such as drunk driving. In 2013, 10,076 crash fatalities 

in the US (nearly a third) involved impaired driving due to alcohol. These consequences 

are mainly due to alcohol’s detrimental effects on psychomotor performance [57], which 

lead to poor decision-making [58]. Timely detection of intoxication can facilitate lifesaving 

interventions. Currently, breathalyzers are the most popular and most accurate method of 

measuring blood intoxication levels [28]. However, breathalyzers need to be purchased 

in advance and carried around, making them inconvenient to use. Novel methods for 

passively measuring the alcohol-related psychomotor impairments and providing real-time 

notifications can help avoid life-risking behaviors such as driving under the influence and 

reduce the likelihood of injury [59]. A drinker’s gait is a reliable measure of psychomotor 

impairment that is particularly sensitive to alcohol. Intoxication impairs subjects’ gait, 

characterized by increased trunk sway and changes in their gait kinetics and kinematics [27] 

and in attributes such as gait velocity, walking balance, cadence stride attributes [5] [6].

Gait analysis is a convenient and reliable method of estimating Blood Alcohol Concentration 

(BAC), which can done passively and unobtrusively. Gait analysis as a field is the systematic 

study and analysis of human walking to discover abnormalities, disease pathologies [2], 

health conditions, and impairment due to consumed substances such as alcohol [22]. Today, 

gait analysis is widely used to monitor diseases that affect the locomotor system, such as 

Parkinson’s disease (PD) [37], Huntington’s disease [38], Traumatic Brain Injury (TBI), 

and Tetanus [7]. Previously proposed gait analysis methods include mathematical modeling 

[2] [3], mechanical engineering, and, more recently, machine learning analysis [29]. The 

literature includes several literature reviews and surveys on methods of gait analysis [31]–

[36]. Besides, several prior papers have discussed the strengths of utilizing applying deep 

learning for gait classification [61]–[66]. Our work differs from these prior works, which 

are outlined in section II and table I, as they either focused on other devices (e.g. wearable 
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sensors and smart shoes) or predicted other conditions such as freeze of gait associated with 

Parkinson’s disease.

Figure 1 (top) shows the foot placement, stances, and phases of a single gait cycle. The 

bottom figure illustrates the magnitude of the corresponding accelerometer signal of a 

smartphone carried on a user’s hip during the gait cycle. This example was generated from a 

single sober step data sample in a smartphone gait dataset we gathered in a human subjects 

study that will be explained in section IV-A.

Gait analysis to detect intoxication involves identifying subtle deviations of a subject’s gait 

from baseline. Robust intoxication detection should be accurate across genders, age ranges, 

and subjects’ alcohol tolerance differences. Detecting intoxication from gait is a challenging 

problem for several reasons. First, the differences between a subject’s sober and intoxicated 

sensor data are minor. In fact, the differences are so subtle that it takes years of training 

for gait experts to get trained. Secondly, individuals have a wide range of walk patterns 

even when sober, resulting in large intra-class variability. Thirdly, people typically have a 

wide range of alcohol tolerance, resulting in different subjects exhibiting different levels of 

alcohol-induced gait impairments even when they consume the same amount of alcohol or 

are at the same BAC level. Finally, various real-world factors alter the gait signal captured, 

including different phone placements, looseness of clothing, hardness of the heels of the 

subject’s shoes, and how tightly the smartphone is attached.

In this paper, we explored gait analysis to detect intoxication using neural networks and 

gait data recorded from smartphone sensors. Smartphones, owned by 85% of the US 

population [23], not only come equipped with accelerometers and gyroscopes facilitating 

the passive gathering of user’s gait data but also possess the computational power to run 

machine learning algorithms. These smartphone sensor data can be classified either on the 

device in the case of high end smartphones with the necessary processing power, or in the 

cloud/server in the case of low end smartphones. Convolutional Neural Networks (CNN) 

have achieved state-of-the-art performance on diverse image analysis tasks. Essentially, the 

smartphone has become a pervasive, sensor-rich device for human gait analysis, diagnosis, 

and treatment. Our intoxication detection from the gait method combines various innovative 

algorithms to mitigate unique challenges. In order to facilitate classification in units of a 

single step, we utilized the state-of-the-art CyclePro method to detect the start-end of each 

step and then segmented continuous data into individual steps. To reduce inter/intra-subject 

gait variability, we normalized data by subjects’ Body Mass Index (BMI). To facilitate 

classification using CNNs, we converted the time-series accelerometer and gyroscope data 

into the Gramian Angular Fields (GAF), an image-based representation that has proven 

effective for classifying human activity and movement time-series data [4]. Distinguishing 

GAF-encoded images of the gait of intoxicated vs. sober users is challenging as images 

belonging to both classes are quite similar, a so-called fine-grained image classification 

problem. We classified GAF-encoded smartphone sensor data using the Bi-Linear CNN 

(BiCNN) neural network, which has previously produced state-of-the-art results on fine-

grained image classification of images. Gramian Angular Field (GAF) has been employed 

for tasks including sensor based human activity recognition [68], gait classification [73], 

detecting excessive load-carrying tasks [69], and health outcomes [70] [71] [72]. The 
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BiCNN neural networks model has produced excellent, state-of-the-art results on several 

fine-grained image classification problems. However, our work is the first to innovatively 

utilize GAF encoded time-series images and a BiCNN classification model to detect 

intoxication by analyzing smartphone gait data, which are then classified using the BiCNN

In rigorous evaluations, we compared the classification performance of our BiCNN approach 

to state-of-art LSTM and CNN-GAF models using various metrics including classification 

accuracy, F1-score, and p-value. Our BiCNN model, when trained on data that was 

normalized by subjects’ BMIs yielded an accuracy of 83.5%, outperforming all baselines. 

While our work focusses on the classification task of detecting whether the subject’s BAC 

is above or below the legal drinking limit (0.08), other recent work has utilized models such 

as the MLP, CNN, Bi-LSTM to explore the related regression problem of predicting the 

subject’s actual BAC value from their gait. Our work makes the following contributions.

• Innovatively framing intoxication detection from GAF-encoded smartphone gait 

signals as a fine-grained image classification problem due to subtle differences 

between intoxicated and sober classes.

• Innovatively proposing intoxication classification using the state-of-the-art 

BiCNN model, which has previously produced excellent results on several fine-

grained image classification problems.

• Proposing several carefully thought out, specific pre-processing methods 

that improve intoxication detection performance including step-segmentation, 

normalization of subject’s data by their BMI and rescaling to fit time series data 

into a fixed size suitable for deep learning model.

• Rigorous evaluation of our proposed BiCNN approach including comparisons 

with various state-of-the-art gait models, and evaluation of various gait 

normalization methods.

The rest of paper is as follows. In section II, we describe the existing work related to gait 

analysis. Section III discusses Gramian Angular Field (GAF) and Bi-Linear CNN. Section 

IV presents our proposed method including our data collection study and our BiCNN neural 

networks pipeline of steps for detecting intoxication. Section V describes experiments to 

evaluate our approach and section VI presents our results. Section VII discusses our main 

findings and section VIII concludes the paper.

II. RELATED WORK

A. Camera-based gait analysis

Researchers have utilized computer vision algorithms to analyze subjects’ gait in videos by 

detecting the movements of key points of the human skeleton. Camera-based gait analysis 

are used for user identification and recognition tasks [8] [39] [40] [67]. However, the 

camera-based gait analysis is vulnerable to illumination levels and raises privacy concerns.
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B. Pressure-sensor-based gait analysis

Pressure-based gait analysis systems analyze pressure patterns exerted by subjects on 

sensors embedded into the floor, mat on the floor, or the soles of a shoe as they walk [41]. 

For instance, patients afflicted with diabetic nephropathy frequently have painful wounds 

on the soles of their feet, making patients walk abnormally to avoid exerting pressure on 

the painful areas. Pressure-based gait systems have recently been used to study the severity 

of Huntington’s disease [7] and to sense alcohol-induced gait impairments [9]. However, 

pressure-based gait systems require subjects to attach additional hardware to their bodies, 

and are not portable and cannot be used to monitor subjects’ free movements passively and 

unobtrusively.

C. IMU-based gait analysis to detect intoxication

An IMU is a sensor module that typically has three tri-axial sensors integrated: 

accelerometer, gyroscope, and magnetometer. In IMU-based gait analysis systems, 

researchers record data from a single IMU attached to the subject’s body. This data is then 

analyzed to detect gait abnormalities or monitor patients in natural settings continuously 

[10]. Smartphones now have IMUs with motion sensors integrated, which prior work has 

utilized to detect gait impairment caused by alcohol consumption. Some prior work focused 

on solving the classification problem of classifying whether users are over or under the legal 

limit for driving (Yes/No) or the current discrete range of a subject’s BAC.

Arnold et al. [11] explored intoxication classification using traditional machine learning 

techniques on hand-crafted features extracted from the smartphone’s accelerometer. They 

found that the Random Forest (RF) classifier outperformed other methods, including Naive 

Bayes and Support Vector Machines (SVM), achieving an accuracy of 70%. Zaki et al. [13] 

explored deep learning-based intoxication classification for distinguishing subjects over the 

legal drinking limit from those under the limit on an imbalanced dataset, and achieved an 

accuracy of 79%. In contrast, another group of related work has focused on the regression 

problem that tries to estimate the subject’s exact BAC value (a floating-point number) from 

their gait. Pedram [12] explored the intoxication regression problem using a Multi-Layer 

Perceptron (MLP) neural network, achieving a 0.0226 Root Mean Squared Error (RMSE). 

Li et al. [24] employed Bi-LSTM and CNN neural network for neural networks regression, 

achieving RMSEs of 0.0167 and 0.0168, respectively. This paper explores the intoxication 

classification problem using a novel image-based approach with Bi-Linear CNN neural 

networks model.

Eight representative prior research works are listed in table I in order to compare their work 

and ours. [61], [62] and [63] utilized coarse grained models for relatively straightforward 

tasks including posture classification and detection of freezing of gait. The rest of the tasks 

listed are more challenging including predicting age, gender and intoxication level detection. 

Such tasks are essentially fine grained with very similar samples that belong to different 

classes and the accuracy that can be achieved in such experiments is typically much lower 

than for coarse grained tasks. Additionally, in order to utilize state-of-the-art CNN-based 

neural networks methods for gait analyses, several of these prior work encoded sensor data 

as an image. Our work demonstrated the effectiveness of utilizing this approach for solving 
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the intoxicated gait detection problem even when data is collected from a single phone 

attached to the subject’s left back pocket.

Our work is novel as it does not require subjects to attach any additional hardware to their 

bodies, is not affected by adverse illumination, and outperforms existing work for the task of 

classifying gait as sober or intoxicated. Also, our work is the first to frame the intoxication 

detection from GAF-encoded smartphone gait signals as a fine-grained image classification.

III. BACKGROUND

A. Encoding sensor time series signals into GAF images

In gait analysis using IMUs, most early approaches extracted time-series features manually, 

which were then classified using traditional machine learning models such as Support Vector 

Machine (SVM), Naive Bayesian (NB), and Random Forest (RF) [44]. However, manual 

feature extraction is tedious and error-prone. Motivated by the state-of-the-art performance 

of deep learning architectures for image analysis and computer vision, recent human activity 

classification research has used them to classify human activity after converting time-series 

sensor data to images using representation such as Recurrence Plots (RP) (Figure 3 (b)) 

and Markov Transition Fields (MTF) [15] [16]. Such sensor data conversion to images is 

automated and facilitates gait classification and regression using state-of-the-art image-based 

CNN architectures.

Gramian Angular Field (GAF): encodes time series data into an image. GAF represents 

temporal correlations between various time points in an image, enabling subsequent analysis 

using image-based deep learning models. Prior work [17] has demonstrated that GAF 

encoding methods achieved improved classification performance in image-based deep 

learning for the Human Activity Recognition (HAR) in the healthcare domain [18], similar 

to our intoxication detection task. This finding led us to explore the GAF encoding of 

smartphone sensor data as the input to our image-based Convolutional Neural Networks 

(CNN) intoxication classification models.

Figure 4 shows the GAF encoding of different parts of a time-series accelerometer signal. 

GAF images not only encode the left and right step information (left bottom corner; right 

top corner) but also encodes the underlying relationship between two steps (left top; right 

bottom). We have two hypotheses: 1) Compared with other imaging encoding techniques 

and time-series signals, GAF images have conspicuous unique four-pointed stars. The ”Star” 

in a GAF image contains more important information than other parts in the image. 2) The 

deep learning model is able to determine which part of the gait cycle plays a critical role 

in alcohol prediction. In conclusion, some parts of a subject’s gait may contain important 

information necessary for gait analysis. For intoxicated gait, we believe that four pointed 

stars may play a pivotal role in making accurate predictions during intoxicated gait analyses.

B. Fine Grain Classification

Fine-grained classification tries to classify images that belong to target classes that appear 

quite similar (high interclass similarity), which is quite challenging. Classic fine-grained 

image classification problems include distinguishing sub-categories of a class of images, 
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such as identifying the species of birds or types of cars, airplanes, and stages of cancer in 

an image [1] [45] [19] [20]. Our goal is to use a CNN to distinguish GAF images generated 

from sensor data of subjects over vs. under the legal driving limit (BAC of 0.08). However, 

we found that images in both classes looked quite similar, making it very challenging to 

distinguish under the legal limit vs. over the legal limit (Figure 14 and ??). We innovatively 

framed the intoxicated GAF image classification task as a fine-grained image classification 

task to leverage the Bi-Linear CNN, a state-of-the-art fine-grained classification neural 

networks architecture proposed in the computer vision community [1].

Bi-Linear CNN (BiCNN): To address the fine grained image classification problem, Tsung-

Yu et al. [43] proposed the Bilinear CNN (BiCNN) architecture that utilizes two extractors 

to extract features from the same image in parallel (See Figure 5). These extracted feature 

representations are then multiplied together using the outer product at each pixel of the 

image and pooled to obtain a descriptor of the input image [14]. One branch of the BiCNN 

is a part detector and the other one is a local feature extractor. The outer product captures 

pairwise correlations between the feature channels and models part-feature interactions. The 

bilinear feature BF is calculated as:

BF L, I, SA, SB = SA L, IA
TSB L, IB

T (1)

Where L is the location of current pixel, IA and IB are input images. SA and SB are the two 

feature outputs extracted from Stream A and Stream B respectively. Sum pooling is used to 

obtain the bilinear vector ϕ(I):

ϕ(I) = ∑
L ∈ I

BF L, I, SA, SB (2)

The BiCNN model can model local pairwise feature interactions, which is helpful for fine-

grained categorization and allows end-to-end training with only image labels. Consequently, 

it has become a popular architecture for fine-grained image classification.

IV. OUR PROPOSED METHOD FOR INTOXICATION CLASSIFICATION

A. Data Collection

In order to create a labeled intoxicated gait dataset for supervised machine learning, we 

collected data from 121 subjects using a controlled drinking protocol (summarized in Fig 7). 

Subjects were administered a pre-determined quantity of alcohol, breathalyzed periodically, 

and walked a fixed distance on a corridor. A smartphone app was attached to their hip that 

passively gathered accelerometer and gyroscope data. The corresponding Blood Alcohol 

Content (BAC) for each walk was recorded using the breath alcohol test device. In order 

to abide by strict research ethics around alcohol consumption while providing high-quality 

data, our study was designed by an expert in conducting alcohol studies and is described 

below in more detail.
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1) Screening: Recruitment for this study included Facebook ads and local posters. 

Subjects were screened via initial phone contact. To participate, individuals had to be 21–65 

years old, have used alcohol at least once in the past month, had at least six drinks per 

occasion for men (four for women) during a single drinking episode at any time in the past, 

be willing to drink beer, weighed 86–229 lbs, were not pregnant or nursing, had no difficulty 

walking, and had never been treated for alcohol or drug use. Participants were also not on 

medication or did not have a medical condition that contraindicated alcohol ingestion, did 

not experience alcohol flushing, did not use marijuana more than three times a week in the 

last month, and did not use drugs other than marijuana in the last week. Eligible individuals 

were scheduled for our gait data collection study and were instructed in advance - no water 

at least 2 hours prior to arrival, no food or other drinks at least 4 hours prior to arrival, and 

no alcohol or marijuana at least 24 hours prior to arrival. Of those who provided consent, 

121 provided data usable for this analysis. All participants were provided cab rides to and 

from the study session; no study participant was allowed to drive themselves.

2) Procedures: Baseline: Upon arrival at the study office, individuals completed 

an Informed Consent form and a brief eligibility check to confirm their age (driver’s 

license or other state-issued identification), weight, pregnancy status, recent drug use (urine 

toxicology), and Breath Alcohol Concentration (BAC). Urine toxicology was assessed 

using a self-contained test cup (Screeners® Dip Drug Test with the Integrated Screeners® 

Autosplit® KO12B™); pregnancy (for women) was assessed with an hCG dipstick test 

(Alere, San Diego, CA); BAC was assessed by a handheld Alcosensor IV Breathalyzer 

(Intoximeters Inc., St. Louis, MO). If found ineligible, participants were compensated for 

their time and were not allowed to participate in the study session.

Eligible participants completed a brief interview and the Walking Protocol and Field 

Sobriety Tests (FSTs). Their baseline BAC was recorded, and they were then administered 

their first drink. The participant waited 15 minutes after completing the first drink before 

the next BAC was taken. Approximately after 5 and 15 minutes of completing each drink, 

participants rinsed their mouths with water and spat to purge any remaining alcohol. After 

the second BAC was recorded, the participant completed a second walk and FSTs, and was 

given another drink. This process was repeated until the individual reached a BAC of 0.10. 

Upon completing the walk and FSTs at this peak BAC, participants were allowed to eat as 

they wanted. Subjects’ BACs began to decline and were measured with walks and FSTs after 

every 7 minutes during the descending BAC limb.

Alcohol Protocol:  All participants received Hurricane Beer, having 8.1% alcohol content. 

Each participant started with either 3 or 4 ounces of alcohol, depending on weight (men over 

150 lbs and women over 160 lbs received 4 ounces initially). A BAC was taken 15 minutes 

later (per Alco-Sensor IV Operator Manual instructions, 9/1/2016). The amount of alcohol 

each participant received subsequently depended on each BAC reading. If an individual 

ascended at an even pace (e.g., .02 BAC with each drink), they continued to receive the same 

amount of alcohol. If an individual’s BAC rose more than approximately .02, or if the BAC 

came very close but did not fully reach 0.10, less alcohol was provided at the next alcohol 
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administration. Increasing the amount of alcohol administered per drink was also possible 

but rarely occurred. Figure 6 shows sample trajectories of subjects’ BACs during the study.

Walking Protocol:  A 75-foot tape line was placed in a straight line on the floor in the 

Butler Hospital corridor shown in Figure 8. Participants started their walk in the middle 

of the line and walked at their normal pace to the end, turned, walked to the other end, 

turned, and returned to their starting point. Each walk lasted 45–60 seconds. A Google Pixel 

XL and an LG Watch Sport with the Alcogait application (preloaded) were used for data 

collection. Using a Velcro belt around the participant’s waist, the phone was holstered over 

the left-back pocket with the face accessible. The watch was placed on the left wrist. At the 

start of the study session, the participant’s ID, gender, age, height, and weight were entered 

into the phone app. Subjects then walked while the Alcogait app collected and recorded the 

smartphone’s accelerometer and gyroscope data for each walk.

B. Neural Networks Intoxication Classification Pipeline

Our intoxication classification pipeline, shown in Figure 9, has three main stages; 1) Sensor 

signal pre-processing, 2) Conversion of time series sensor data to a GAF image, and 3) 

Classification of GAF image using a BiCNN model. These three stages are explained in 

detail in the following sections.

1) Sensor signal pre-processing: Pre-processing steps include step cycle detection, 

segmentation of the continuous gait signal into steps, elimination of physiologically 

implausible steps, and rescaling the subjects’ step length to a fixed value.

In pilot experiments, we discovered that various subjects’ strides and the cycles of sensor 

signals had varying lengths. However, neural network-based classification models require 

the signal inputs to be of the same length. Figure 10 shows plots comparing signals 

corresponding to normal gait vs. intoxicated gait. The variance in the signal lengths, 

start, and endpoints of each step in the intoxicated gait signal are easily observable. Such 

differences may be caused by gait abnormalities, including those caused by intoxication, 

such as shortened steps, stiff-legged weight-bearing, and stance phase with flexed but rigid 

knee [2]. Thus, one pre-processing step involves normalizing variable subject step lengths 

and gait cycles of accelerometer and gyroscope signals to a fixed length.

IMU-based health care applications are susceptible to the sampling rates and the filter 

bandwidths utilized during preprocessing [46] [47]. In our experiments, we used the 

Google Pixel smartphone to collect data running a Bosch Sensortec BMI160 chip on the 

motherboard.

At lower sampling rates, consecutive sensor (accelerometer) readings were assigned the 

same timestamp repeatedly. We removed repeated sensor readings in which adjacent 

readings had zero difference, calculated as Diff(i) = xi + 1 − xi. The gyroscope, the higher 

frequency sensor, is then down-sampled to the same sampling rate as the accelerometer.

Gait step cycle detection and segmentation using the CyclePro algorithm:  Step 

counting is a popular application that uses accelerometer data for health analysis and 
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monitoring and as a pre-processing step for gait analysis. We extracted subjects’ steps from 

continuous gait sensor signal using the CyclePro algorithm proposed by Ma et al. [55] as it 

has outperformed other step cycle detection methods [52]. The CyclePro algorithm utilizes 

the normalized correlation of triaxial accelerometer data to detect the peaks and troughs of 

the Signal Vector Magnitude (SVM) of the accelerometer and gyroscope signal, as shown in 

equation 3. CyclePro was used to detect the step cycle to segment the continuous gait signal 

into individual steps that are the inputs to subsequent analysis. The CyclePro step cycle 

detection algorithm is robust to different signal sampling frequencies and sensor orientations 

(e.g., smartphones carried in different positions).

SV Macc = accx
2 + accz

2 + accz
2 (3)

Rescaling subjects’ steps to a fixed length:  As subjects’ stride length varies, but deep 

learning requires fixed step length inputs, each individual step is then re-scaled to a fixed 

length on the time axis, which is also a hyperparameter used for training the Bilinear CNN 

deep learning model.

Filtering out physiologically implausible steps:  To filter out physiologically implausible 

data and scenarios, we compared each subject’s cadence (step rate) values to normal ranges 

for various age ranges, as shown in Table IV. In our experiments, the walking speed is 

calculated by dividing the distance covered by subjects based on the walking protocol 

distance (150 feet (45.72m)) by the time taken to cover this distance (See equation 4). If 

the subject’s speed falls within the range of normal speed values, the step cycle time is then 

calculated using equation 5. Otherwise, abnormal steps are removed based on their time, 

speed, and cadence.

Speed(m/s) = 45.72(m)
TimeStampend − TimeStampstart (s) (4)

Cycle Speed(s) = 120
cadence(steps/min) (5)

Gait data normalization:  As motivated by prior work, our gait dataset should be 

segmented, standardized, and normalized [49] [51] [53]. We used a time-normalization 

method inspired by prior work by Tanawongsuwan, which compares and matches gait 

data from various subjects. They normalized time series data with respect to duration and 

footstep count (or walk cycles) [53], subtracted the mean of each signal followed by division 

by the estimated standard deviation. The pseudocode of our time-normalization method that 

we call rescaling in time is shown in figure 13 and pseudocode in 1. In Tanawongsuwan’s 

normalization, the authors used Dynamic Time Warping (DTW) to normalize the time 

series into the same length. DTW calculates the distance of two temporal sequences and 

standardizes them to the same length with a O(N2) time complexity. In our normalization 

method, we normalize the time series of one cycle before and after midswing. By keeping 
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the first swing phase signal in figure 1, the final image could maintain the mid-swing 

data point at the same position and the speed information. This procedure is shown 

in the First Swing Phase of pseudocode 1. The after-swing data was normalized using 

linear interpolation and linear alignment. Compared with Tanawongsuwan’s algorithm, our 

method’s total time complexity is O(N).

For a sober subject, the normalized steps have similar speeds and smaller variance. As 

shown in figure 10, the normalized steps of an intoxicated subject has a short first swing and 

larger variance in the second swing.

Converting smartphone sensor time series signal into a Gramian Angular Field 
(GAF):  Previous research [15] demonstrates that GAF encoding of sensor time series data 

improves the classification performance of the Human Activity Recognition (HAR) task and 

various healthcare tasks [16] [17] [18]. During conversion to a GAF image, a time-series 

signal is firstly normalized to the [0, 1] range as follow:

Algorithm 1

Normalization

l: procedure INTERPOLATION

2: signal ← sensor signal after mid-swing

3: siglen ← length of signal

4: len ← Target Length—First Swing Phase Length

5: outputz : signal after first swing

6: ifsiglen > lenthen

7:  r ← len/signal.

8:  returninterp(sigual,r)

9: else returnsignal(0:len)

10: procedure FIRST SWING PHASE

11: signal ← sensor signal of First swing

12: siglen ← length of signal

13: len ← Target First Swing Phase Length

14: output: Signal of first swing

15: ifsiglen < lenthen

16:  returnzeros (len – siglen) + signal

17: else returnsignal(siglen-len:siglen)

18: procedure MAIN NORMALIZATION

19: signal ← Signal of first swing + signal after first swing

20: ratio ← (Attribute-Attributemin)/(Attribwtemax – Attributemin)

21: output: Normalized Signal

22: iflength of signal = Target Lengththen

23: returnsignal * ratio

24: else returnIllegalSampleError
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xi = xi − max(x) + xi − min(x)
max(x) − min(x) (6)

Each element of the N-length-series is then converted to polar coordinates by encoding the 

value as the angular cosine, and the timestamps of each element, divided by a regularizing 

constant factor, R, the radius as shown in equation 7:

Φi = arccos xi

ri = i
N

(7)

After the rescaled time-series has been transformed, the Gramian field is set by defining the 

angular perspective as the trigonometric sum of each point in the interval (Equation 8). The 

resulting Gramian Angular Field (GAF) is given by equation 9.

GAF i, j = sin Φi + Φj (8)

GAFMatrix =
sin Φ1 + Φ1 … sin Φ1 + Φn

⋮ ⋱ ⋮
sin Φn + Φ1 … sin Φn + Φn

(9)

Figure 14 and Figure 15 illustrate two example results of GAF transformation of time series 

sensor data from the same subject at different sobriety levels.

Gait data normalization to reduce inter-subject variability:  The alcohol consumption 

efficiency and subjects’ gait attributes such as walking speed and cadence length vary widely 

among individuals based on various factors. Numerous studies in clinical research have 

found gender differences in alcohol absorption. Since the female body has more lipid and 

less water than the male body, females experience a greater BAC increase than males after 

drinking the same amount of alcohol. Walk patterns and gait attributes such as range of 

cadence and cycle speed, as well as the effects of alcohol, vary between men and women. 

In addition, subject height will affect the cadence length and walking speed. Table IV shows 

the wide ranges of subjects’ ages, cadence, cycle times, and speeds in our dataset.

BMIi = W eigℎti
2(kg)

Heigℎti(cm) (10)

NormSignali = Signali − μ accsvmisober

σ accsvmisober
; (11)

A popular mitigation strategy for inter-subject variability is to normalize each subject’s 

gait sensor data by demographic attributes such as age or physiological attributes [54]. 

Since Body Mass Index (BMI) (Equation 10) utilizes both weight and height and has been 
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related to subjects’ BAC values, we normalize subjects’ gait sensor data by their BMI, 

weight, height, and age. Specific to alcohol, we also normalize each subject’s intoxicated 

gait data by their sober gait data (Equation 11). We compared improvements in our 

specific intoxication classification pipeline’s detection accuracy after various normalization 

approaches on our specific dataset.

C. Classification using a BiCNN Model

After segmentation, time-normalization, gait data normalization, and conversion to GAF 

images of dimension 512 ∗ 512, we used a BiCNN method to classify GAF images to 

determine whether a subject was under or above the limit of 0.08 BAC. We refer the reader 

to the original BCNN paper for additional details [1]. The authors compared the VGG-M, 

VGG-D, and customized VGG-M with SVM neural networks models. Besides, they applied 

boosted CNN techniques to accelerate the training process. The Boosted customized-VGG-

M were found to outperform other models. Considering our smaller dataset, we did not 

utilize boosted CNN, deciding instead to utilize a Bi-linear VGG-M model.

All GAF images derived from the smartphone accelerometer were imported into the Bi-

VGG-M linear model as shown in the table V. We setup the batch size, momentum, and 

weight decay as 128, 0.9, and 0.0005 respectively. The learning rate of each layer were setup 

as 0.01 initially with a 0.001 decay rate. The Training and test process for 500 iterations are 

shown in figure 18. After fine-tuning the model and selecting optimal hyper parameters, the 

final model’s results were compared to baseline models. There are two leading methods of 

deploying deep learning model, which are built-in model in application and model in server 

to provide service. In previous research [24], we deployed a trained CNN regression model 

to a smartphone application to estimate BAC value. However, in this study, since the GAF 

encoding, sensor pre-processing tasks and BiCNN classification are more elaborate model, 

for most smartphone models, we envision that deployment of our gait analyses pipeline 

makes most sense in the cloud using a GPU. During development, our neural networks 

models were trained using the NVIDIA GeForce RTX 3080 GPUs and evaluated it on the 

personal computer. Our results are shown in tables IX and X.

V. EVALUATION

A. Dataset Creation

To facilitate deep learning classification experiments, we created a dataset from the data 

gathered in our controlled study. First, we checked that all data was valid and not corrupted. 

The demographics of subjects included in our dataset are summarized in table VI. Figure 17 

shows the number of data instances collected from all subjects at various BAC levels; more 

data is collected at lower BAC levels.

Results after pre-processing of gait data: As discussed in section IV, during signal 

pre-processing (Figure 11), NCC of signals were combined to generate a time-series 

template. Individual steps within the continuous gait signal were then detected, followed 

by segmentation, rescaling to a fixed length, and transformation into a corresponding GAF 

image.
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After segmenting and normalizing the alcohol dataset and splitting the dataset at the subject 

level, the distribution of data samples and dataset attributes are shown in Table VI. Subject 

level splitting refers to a splitting approach whereby all of each subject’s data appears either 

in the training or test set but not both.

B. Classification metrics

Fβscore = (1 + β)2 ∗ precision ∗ recall
β2 ∗ precision + recall (12)

To rigorously evaluate our approach, we utilized accuracy, P-value, sensitivity, F1, and 

Fβ score. The F1 score is a better measure of performance than accuracy for imbalanced 

datasets, where Fβ score is harmonic mean of the precision and recall given by equation 12.

C. Experiments

According to the previous study, We design two sets of experiments to solve the impaired 

gait classification task and three experiments to visualize and evaluate our model.

1) Comparing BiCNN vs Baseline models: We compared our BiCNN classification 

model to the state-of-the-art deep learning models for the related Human Activity 

Recognition (HAR) task. Based on our previous research and state-of-the-art models [11] 

[48], we compared our approach to the three main algorithms used for the HAR task 

and detection of other impairments using IMU data: 1) A Convolutional Neural Networks 

(CNN) (3-layer), 2) Unidirectional Long Short Term Memory (LSTM) with Attention and 

3) Support Vector Machine [49] [50]. Besides, to compare with other image encoding 

algorithm, we utilize recurrence plot as another baseline. Based on our findings in previous 

experiments, we pick a 50% sliding window to segment and GAF to image time-series with 

the same parameters used in the preprocessing steps in our previous work [51].

2) Comparing various normalization approaches : As the performance of pre-

processing, normalization, and machine learning algorithms tend to be dataset-specific and 

task-specific, we compared the effects of various normalization techniques motivated by the 

literature, including normalization by subject’s weight, height, and sober gait values, BMI, 

and age.

3) Evaluating the usefulness of step detection and z-normalization: To 

evaluate the role of step detection and z-normalization on our proposed model’s 

performance, we assessed the performance of our BiCNN model with individual steps 

detected and z-normalization performed vs. a version without these operations.

4) Visualization features map: In order to gain some intuition about the model, 

we visualized the model’s learned filters, which contain the features extracted, from the 

previous layer. By examining the model’s feature map shown in figure 4, the parts of the 

GAF image that the model focused on to make its predictions were discovered.
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5) Confidence in predicting intoxication for various BACs: We computed the 

confidence of our models in predicting the intoxication of various subjects at various BACs 

for our BiCNN approach and baseline models. The confidence value is calculated using 

equation 13. It represents the probability of predicting a subject’s BAC correctly in each 

0.01 BAC range.

C(r) = P r [r > = 0.08/r > = 0.08] ∩ [r < 0.08/r < 0.08] (13)

6) Model running time: Our models were programmed using MATLAB and python; 

The compiler platforms we used were MATLAB and Pycharm. We evaluated our model’s 

running time for all stages on a Personal Computer with an Nvidia 2080 graphics card, 

16GB of RAM and a 3.2GHz CPU.

VI. RESULTS

1) Comparing BiCNN vs Baseline models :

Our results in Tables VIII (baseline models) and X show that the BiCNN outperforms all 

baseline models. We considered both binary classification (Sober or Intoxicated) and 5-class 

classification of BAC levels.

2) Comparing various normalization approaches:

The performance of various gait data normalization methods is listed in Tables IX and X 

with the best performing highlighted using bold fonts. Normalization by the subject’s BMI 

produced the best results.

3) Evaluating the usefulness of step detection and z-normalization:

The results in tables Tables IX and X show that step detection and z-normalization boosted 

the accuracy of the BiCNN by approximately 3.5%.

4) Visualization features map:

The visualization of the activation layer’s features map in figure 19 shows that the model 

focused on the information in the first stride and demonstrate our conjectures previously 

described in part III-A: 1) The ”Star” is more pivotal than other parts of the image. 2) The 

Mid-Wing and the first step are important in gait analysis.

5) Confidence in predicting intoxication for various BACs:

As shown in Figure 20, all three models had their lowest confidence in the region of the 

class boundary (BAC of 0.08). Confidence generally increased for BAC values further away 

from this 0.08 threshold.

6) Model running time:

As shown in figure 21, it takes about 2.4 seconds for a single 30-second walk to be analyzed 

and for results to be received back. The model prediction time of about 1.1 seconds was 
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the most significant component, followed by the time required to segment the continuous 

gait signal into individual steps (0.7 secs), then conversion to a GAF image (0.5 secs). 

Normalization of our gait data was the fastest step (0.15 seconds). These encouraging results 

indicate that our model could be useful in a near-real-time intoxicated gait system.

VII. DISCUSSION

Our approach of converting sensor time series into a GAF image that was then classified 

using the BiCNN, a leading architecture for fine-grained image classification, produced 

convincing results. The pre-processing steps that played a vital role in improving the 

performance included detection, data rescaling, and normalization by the subject’s BMI. 

The baseline models and BiCNN assessed in this study were previously state-of-the-art 

in intoxicated gait classification research. Random Forest previously achieved an accuracy 

of 73% [11] using hand-crafted features. LSTM produced state-of-the-art results for BAC 

regression from gait data [48]. In other work, we utilized a sliding window and GAF on 

marijuana gait analysis [51], and found that using 50% overlapping sliding windows yielded 

the best results. In this paper, we extended our previous work by employing the detection of 

step cycles and segmentation using CyclePro. Tables IX and X demonstrate that compared 

with sliding-window segmentation, step segmentation could refine the dataset and improve 

classification accuracy. Figure 16 demonstrates a considerable similarity between the same 

subject’s sober and intoxicated gait. Still, we could distinguish the blurry intoxicated 

image from the same subject’s normal walking. The alcohol administration protocol we 

utilized yielded an imbalanced dataset with fewer samples in the upper BAC ranges, which 

ultimately impacted our model’s performance in those ranges. Less firm findings that will be 

explored further in future work include: a) Time-series gait signal data need to be segmented 

in a way that is tailored to the classification/regression task rather than divided into lengths 

directly; b) Even though table IV shows that subjects’ ages affected their gait, we found that 

with regards to intoxication, subjects’ weight and height both affected gait signal magnitude 

more than their age; c) Conversion of time-series to images and subsequent classification 

using CNNs increased the performance of deep learning. Additional analysis is necessary 

for future research before making these latter findings firmer. For a), Our CyclePro with a 

sliding window approach needs to be compared to other segmentation methods. For b) other 

normalization methods and subject attributes need to be explored. For c) The GAF imaging 

approach needs to be compared to other time-series imaging methods such as Markov 

Transition Fields (MTF) and Recurrence Plots (RP). Our work has several limitations. Due 

to the lack of availability of intoxicated gait datasets, the evaluation of our algorithm was 

based on one gait dataset collected by this study. Our dataset had only 121 subjects and 

was not large enough to contain adequate samples of all subject ages, weights, and height 

ranges. Other conclusions may be reached for specific demographics when larger sample 

sizes are utilized. Finally, our dataset was also imbalanced with relatively fewer intoxicated 

than sober samples.

VIII. CONCLUSION

In this paper, we explored gait data from smartphone motion sensors to detect persons 

with a blood alcohol concentration over the legal driving limit using a BiCNN model with 
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a GAF image representation of the signal. Our pipeline integrates innovative methods for 

mitigating the specific issues with the intoxicated gait signal. Specifically, our approach 

involved a comprehensive set of custom pre-processing steps, including step detection, 

signal step-wise segmentation, normalization, and rescaling, with conversion to a GAF 

image before final classification using a BiCNN model. Among all the variations of BiCNN, 

the best-performing model used gait data normalized by the subject’s BMI and achieved an 

accuracy of 83.5%. Our method could facilitate pervasive assessment and early detection 

of smartphone users who could be alerted when they reach an elevated BAC to prevent 

unnecessary DUI incidents. Continuous tracking of drinking behavior using our approach 

could also monitor subjects currently undergoing treatment for problematic alcohol use, 

providing counselors with more detailed records to inform treatment.

Future Work:

In the future, we will expand the mix of applications of alcohol-induced impairment by 

detecting and exploring the pre-clustering of various walking styles to improve intoxication 

classification/regression performance. In addition, we will also explore other emerging gait 

step segmentation, time-series-imaging, and fine-grained classification methods. Finally, we 

will explore methods to generate synthetic gait data to augment data collection in our 

study using various methods such as Generative Adversarial Networks (GANs) to mitigate 

imbalance in our dataset to improve the accuracy further.
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Fig. 1. 
Gait cycle, stance and foot placement during one step (top). Corresponding accelerometer 

magnitude (bottom)
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Fig. 2. 
Three modalities of gait analysis: Vision, pressure and accelerometers [22]
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Fig. 3. 
(a) Accelerometer’s SVM signal gait cycle; (b) Recurrence plot image; (c) GAF Imaging
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Fig. 4. 
Illustration of time series encoding through GAF
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Fig. 5. 
Bilinear CNN Model Structure
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Fig. 6. 
A sample of BAC values recorded based on our alcohol administration protocol
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Fig. 7. 
Summary of alcohol administration protocol
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Fig. 8. 
Map of walking scenario at Butler Hospital
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Fig. 9. 
Overview diagram of our intoxication classification pipeline
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Fig. 10. 
Examples of normalized and fixed-length (a) Sober gait; (b) Intoxicated gait;
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Fig. 11. 
Implementation of data preprocessing.(SVM denotes Signal Vector Magnitude; NCC 

denotes Normalized Cross Correlation;)
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Fig. 12. 
(a) Accelerometer signal magnitude of one walking scenario and three templates generated 

through normalized cross correlation; (b) Utilizing the rank-1 templates to find all possible 

gait salient points; (c) The salient points (peak/valley) index recorded during a scenario
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Fig. 13. 
Example: Step Segmentation and Normalization
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Fig. 14. 
Converting Time-series Sober Step into a GAF Image (a) Original accelerometor signal of 

one sober segmented step (b) Representing a step cycle segment in Cartesian coordinates (c) 

Representing a step cycle in GAF
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Fig. 15. 
Converting a Intoxicated Time-series Step into a GAF Image (a) Original accelerometer 

signal of one intoxicated segmented step (b) Representing a step cycle segment on Cartesian 

coordinates (c) Representing a step cycle in GAF
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Fig. 16. 
(a) Normalized accelerometer signal with a fixed length of 200 data points; (b) Representing 

the accelerometer magnitude using a GAF image; In both (a) and ( b), the first row shows 

the sober step; the corresponding images in the second rows are intoxicated steps of 

the same subject; Parameters used figures (a) and (b) are selected to generate illustrative 

representations that explain GAF concepts.
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Fig. 17. 
Number of data instances collected at various BAC levels
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Fig. 18. 
Training Test Accuracy
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Fig. 19. 
(a)GAF images ecoded from three walking gait(b)Visualization of Activation heatmaps of 

three GAF images.(Notes: the high intensity visuals(black part) reflects model’s interest)
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Fig. 20. 
Confidence of intoxication classification of subjects with various models
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Fig. 21. 
Running time of the main stages of our BiCNN model
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TABLE II

INERTIAL SENSORS’ ATTRIBUTE OF GOOGLE PIXEL UTILIZED IN EXPERIMENT

IMU Sensors Datasheet

Parameter Accelerometer Gyroscope

Output Rate 12.5 to 1600 Hz 25 Hz to 3200 Hz

Sampling Rate 30 kHz

Final Frequency (3 dB Cutoff Bandwidth) About 220 Hz About 440 Hz
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TABLE III

INERTIAL SENSORS’ ATTRIBUTE OF GOOGLE PIXEL UTILIZED IN EXPERIMENTS

IMU Sensors Datasheet

Parameter Accelerometer Gyroscope

Output Rate 12.5 to 1600 Hz 25 Hz to 3200 Hz

Sampling Rate 30 kHz

Final Frequency (3 dB Cutoff Bandwidth) About 220 Hz About 440 Hz
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TABLE IV

NORMAL RANGE FOR DIFFERENT SUBJECTS [2]

Age Cadence Cycle Time Speed

18–49 98–138 0.87–1.22 0.94–1.66

50–64 97–137 0.88–1.24 0.91–1.63
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TABLE V

BILINEAR CNN MODEL BASED ON VGG-M

Bilinear Arm 1

Layer name parameter

convl 7x7/2

relul

norml

pooll 3x3/2

conv2 5x5/2

relu2

norm2

pool2 3x3/2

conv3 3x3/1

relu3

conv4 3x3/1

relu4

conv5 3x3/1

relu5

pool5 3x3/2

Bilinear Arm 2 has the same structure
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TABLE VI

SUBJECT DISTRIBUTION WITH RESPECT TO PERSONAL ATTRIBUTES

Sample Category Value

Gender total(Male/Female) 96(41/55)

Gender Ratio(Male/Female) 0.73:1

Weight 75.5 kg±13.1 kg

Height 171.9 cm±15.4 cm

Age 30.5± 10.12 years

NOTE: All subjects are based on 96 subjects with usable gait data
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TABLE VII

NORMALIZED SAMPLE DISTRIBUTION RESPECTS TO PERSONAL ATTRIBUTES

Sample Category Value

Total numbers of samples by BAC(<0.08/≥0.08) 3.06:1

Total numbers of samples by gender Ratio(Male/Female) 8092:12262

Gender Ratio 0.66:1

Weight 75.5 kg±13.1 kg

Height 171.9 cm±15.4 cm

Age 30.5±10.12 years

NOTE: The dataset was generated from data of 96 subjects
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TABLE VIII

BASELINE RESULTS OF 3-LAYER CNN AND LSTM WITH ATTENTION USING A SLIDING WINDOW [48]. TIME SERIES 

IMAGING METHODS ARE GAF AND RECURRENCE PLOT(RP) WHICH ARE INTRODUCED IN THE INTRODUCTION. THE RANDOM 

FOREST AND SUPPORT VECTOR MACHINE BASELINE MODELS USED FEATURES FROM ARNOLD ET AL. [11]

Algorithm
5-Class 2-Class

Accuracy P-value Accuracy P-value

Random Forest 34.8% 71.1%

Support Vector Machine 30.8% 68.3%

CNN GAF 43.25% 0.027 77.00% 0.026

CNN RP 36.44% 71.31%

Attention LSTM 42.50% 0.026 74.25% 0.029
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TABLE X

BI-LINEAR CNN RESULTS BASED ON STEP DETECTION AND DIFFERENT Z-NORMALIZATION METHODS

Normalization
5-Class 2-Class

Accuracy P-value Accuracy P-value F1 Score F0.18 Score

Weight 58.60% 0.023 82.33% 0.026 0.84 0.87

Height 50.02% 0.023 81.95% 0.025 0.81 0.82

Sober 49.87% 0.029 81.05% 0.029 0.80 0.83

Age 53.25% 0.027 79.50% 0.570 0.80 0.81

BMI 59.55% 0.021 83.50% 0.027 0.88 0.90

5-Class 2-Class

Class

class 0 0 class 0 0–0.08

class 1 0–0.03 class1 0.08–0.11

class 2 0.03–0.06

class 3 0.06–0.08

class 4 0.08–0.11
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