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Abstract 

Background. Adverse early-life experiences (ELA), including poverty, trauma and 

neglect, affect a majority of the world’s children. Whereas  the impact  of ELA on cognitive 

and emotional health throughout the lifespan is well-established, it is not clear how distinct 

types of ELA influence child development, and there are no tools to predict for an individual 

child their vulnerability or resilience to the consequences of ELAs. Epigenetic markers 

including DNA-methylation profiles of peripheral cells may encode ELA and provide a 

predictive outcome marker. However, the rapid dynamic changes in DNA methylation in 

childhood and the inter-individual variance of the human genome pose barriers to 

identifying profiles predicting outcomes of ELA exposure. Here, we examined the relation 

of several dimensions of ELA to changes of DNA methylation, using a longitudinal within-

subject design and a high threshold for methylation changes in the hope of mitigating the 

above challenges.  

Methods. We analyzed DNA methylation in buccal swab samples collected twice for each 

of 110 infants: neonatally and at 12 months. We identified CpGs differentially methylated 

across time, calculated methylation changes for each child, and determined whether 

several indicators of ELA associated with changes of DNA methylation for individual 

infants. We then correlated select dimensions of ELA with methylation changes as well as 

with measures of executive function at age 5 years. We examined for sex differences, and 

derived a sex-dependent ‘impact score’ based on sites that most contributed to the 

methylation changes.  

Findings. Setting a high threshold for methylation changes, we discovered that changes 

in methylation between two samples of an individual child reflected age-related trends 

towards augmented methylation, and also correlated with executive function years later. 

Among the tested factors and ELA dimensions, including income to needs ratios, maternal 

sensitivity, body mass index and sex, unpredictability of parental and household signals 

was the strongest predictor of executive function. In girls, an interaction was observed 
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between a measure of high early-life unpredictability and methylation changes, in 

presaging executive function. 

Interpretation. These findings establish longitudinal, within-subject changes in 

methylation profiles as a signature of some types of ELA in an individual child. Notably, 

such changes are detectable beyond the age-associated DNA methylation dynamics. 

Future studies are required to determine if the methylation profile changes identified here 

provide a predictive marker of vulnerabilities to poorer cognitive and emotional outcomes.  
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Research in context 

Evidence before this study 

Identification of individuals at risk for cognitive and emotional problems is required for 

targeted interventions. At the population level, experiencing early-life adversity has been 

consistently linked to an elevated susceptibility to various mental illnesses. However, 

recent studies have revealed a significant limitation in the ability of early-life adversity to 

predict individual-level risk, and there is presently no reliable tool available to determine 

whether a child experiencing adversity will develop future mental health problems. 

Promising efforts to discover predictive markers by examining DNA methylation in 

peripheral cells are challenged by extensive genetic and epigenetic population variability 

and the rapid methylation changes taking place during childhood, rendering the 

identification of clinically valuable predictive markers a complex endeavor. 

Added value of this study 

This study examined neurodevelopmental outcomes following several dimensions of ELA, 

including a recently identified dimension- unpredictability of parental and environmental 

signals to the child. It demonstrates changes in DNA methylation in children exposed to a 

spectrum of ELA dimensions and severity using alternative approaches to those used 

previously:  It employs a longitudinal within-subject design, enabling assessment of DNA 

changes within an individual over time rather than a cross section comparison of different 

groups, and focuses on the first year of life, an understudied epoch of development. The 

study uses reduced representation bisulfite sequencing to measure methylation, an 

approach compromising between targeted sequencing and a whole genome approach, 

and sets a high threshold for methylation changes, in consideration of the large changes 

of DNA methylation during childhood. Finally, in accord with emerging discoveries of the 

differential effects of ELA on males and females, the study uncovers sex-effects arising 

already before puberty.  

Implications of all the available evidence  

Collectively, our study, together with a robust existing literature (1) identifies early-life 

unpredictability as an additional determinant of DNA methylation changes, (2) indicates 

that within-subject changes in methylation profiles of peripheral cells hold promise as 
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precision medicine tools for predicting risk and resilience to the adverse consequences of 

early-life hardships on mental health, and (3) suggests that sex-differences should be 

explored even prior to puberty. Our study contributes significantly to the important goal of 

early identification of predictive "epigenetic scars" caused by adverse early-life 

experiences. Such markers are required for targeting interventions to those most at need.  
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Main Text 
 
Introduction 
 
Early-life experiences may exert a profound cumulative impact on lifespan trajectories of 

mental and physical health. Unsurprisingly, a robust body of work has focused on the 

contribution of salient early-life experiences, and especially of early-life adversity (ELA) to 

cognitive and mental health outcomes. In cohorts from diverse countries, socioeconomic 

levels and cultures, such studies have typically focused on the level of adversity, the 

cumulative impact of different types of adversity, and the distinct impacts of dimensions of 

adversity  such as deprivation vs threat (1–14). This strong literature supports the roles of 

ELA and its specific dimensions in predisposing individuals to physical, cognitive and 

mental health disorders (15–17). However, the predictive value of ELA to vulnerability to 

mental and physical health problems applies well at the population level, whereas ELA 

exposures predict the outcome of an individual child little better than chance (18). 

Therefore, a significant unmet challenge remains in our ability to predict for an individual 

child whether they will be vulnerable or resilient to physical, cognitive or mental health 

problems.  

 

Whereas trauma, poverty and abuse early in life significantly increase the risk of 

experiencing poorer cognition and mental health throughout the lifespan (19–25), the 

significant amount of variance unaccounted for in child developmental outcomes has led 

to a search for additional potential sources of adversity that might have been missed. An 

additional dimension of adversity, which explains some of the variance in cognitive and 

emotional outcomes, is unpredictability of the early parental care behaviors and home 

environment. Initially detected in experimental animal models of early-life adversity (26–

28), unpredictable sequences of parental care behaviors have emerged as an important 

potential predictor of susceptibility to later cognitive and emotional deficits (29). 

Specifically, in experimental rodent models, resource scarcity elicited fragmented and 

unpredictable sequences of maternal care during a sensitive developmental period. In 

turn, these aberrant sensory signals to the developing brain influenced brain circuit 

maturation by altering selective microglial pruning of neuronal synapses (30), leading to 

significant impairments of cognitive functions (31–33) and reward behaviors (27,34–36). 

In human studies, this additional novel ELA was characterized initially by measuring 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.16.571594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.16.571594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

unpredictable sequences of sensory signals that the caregiver transmits to the infant and 

child (such as speech, touch or visual cue). The concept was then extended to other 

proximate sources of signals to the developing brain, including, in addition to caregivers, 

also the household and environment. The multiple sources and timescales of 

unpredictability are measured using the Questionnaire on the Unpredictability of 

Childhood (QUIC) (37,38). The contribution of unpredictable signals from caregivers and 

home environment (“unpredictability”) to children’s cognitive and emotional functions has 

now been established across diverse populations (37,39–44), and remains robust upon 

inclusion in the statistical models of  well-established adverse experiences. Unpredictable 

parental and environmental signals to the infant impact the maturation of structural and 

functional brain connectivity, measured using magnetic resonance imaging (45,46), and 

predict emotional problems also in adulthood (47).  

Sex differences in the outcomes of ELA have been recognized, with women who endorse 

depression, anxiety or addiction being more likely to report adverse early-life experiences 

compared with men (48–58). However, whether or not such sex differences emerge prior 

to puberty and whether females are more vulnerable already in childhood has not been 

resolved. Our studies on the consequences of early-life unpredictability are now 

uncovering selective vulnerability in girls (59), providing an impetus to examine the role of 

sex in the current studies.  

 

Studies focusing on predicting the impact of ELA on later life mental and physical health 

involve three elements: the nature of the insult(s), an appropriate, universally applicable 

outcome, and an accessible reliable marker, detectable already early in life, that correlates 

robustly with the outcome measures. Here we looked at several dimensions of ELA, 

including unpredictability, as ‘drivers’ of neurodevelopmental outcomes. We chose 

children’s ability to regulate behavior and attention as an outcome measure, because it is 

associated with having a high level of executive function (15,60–63). In turn, executive 

function during childhood is one of the most robust predictors of cognitive and emotional 

outcomes and of success throughout life. A child’s self-regulation abilities (effortful control) 

emerge towards the end of the first year of life and continue to develop throughout 

childhood. Importantly, effortful control is highly influenced by early-life experiences (36, 
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47). Therefore, in the current study we focused on effortful control as a key neuro-

developmental outcome.  

 

We employed changes in DNA methylation as a potential marker of (‘signature’) ELA, 

including unpredictability, because such changes are known to be highly sensitive to 

environmental influences (65,66). The levels of methylation of specific DNA nucleotides 

and their changes throughout development have been a topic of extensive study (67–75). 

Indeed, DNA methylation patterns correlate with chronological age, providing ‘epigenetic’ 

or ‘DNA-methylation’ clocks (67,68,72). Adversity throughout life (74,76–79), as well as 

mental and physical disease states (80) have been shown to accelerate this ‘epigenetic 

age’, and even to predict the timing of death (69,77).  

 

However, the use of DNA methylation as a ‘signature’ of ELA and a potential predictor of 

health and development has been challenging. Whereas at the population level, DNA 

methylation ‘signatures’ of adversity / stress are apparent at both individual timepoints and 

across time (73,74,79), their role as a predictive marker for an individual child has been 

limited by the high levels of inter-individual differences of the human genome and its DNA 

methylation patterns. In addition, the development of methylation risk scores for the 

outcomes of ELA needs to consider the highly dynamic changes of DNA methylation early 

in life: Changes in DNA methylation levels during childhood are around 4 fold more rapid 

than in adults (81) and involve both augmented methylation as well as demethylation, 

depending on which CpG sites are examined (75,76,81). Thus, identifying DNA 

methylation patterns and changes that associate with ELA and predict outcome for a given 

child has continued to present a challenge, potentially requiring setting robust criteria for 

methylation changes, which allow detection of adversity effects beyond those of age 

(72,73,76,79,81).  

 

Here we capitalized on our preclinical studies that had employed a within-subject design 

and a high-threshold criterion for DNA methylation changes. Those studies allowed 

distinguishing the effects of ELA from those of age (82). In the current study we examined 

DNA methylation changes between two samples obtained from the same child (in the 

neonatal period and at one year of age) and assessed methylation changes with a high 

change threshold. We then correlated these changes with several dimensions of ELA as 
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well as with the outcome measure of executive function at age 5 years. We identify a novel 

set of DNA methylation changes that correlate with outcomes as well as with 

unpredictability in a sex-specific manner and may thus be useful as a predictive marker in 

future studies.  

 

 
Methods 
 
Participants. Study participants were 126 infants enrolled before birth, part of a longitudinal 

study evaluating the role of early experiences in cognitive and emotional development. All 

study procedures were approved by the Institutional Review Board for Protection of 

Human Subjects at Chapman University and the University of California-Irvine. Each 

mother provided written, informed consent for herself and her child. Demographic 

information for the cohort appears in Table 1.  

 

Five samples were removed because of low sequencing reads (<9 million), seven samples 

were excluded due to high variability in the number of sequenced sites, and four samples 

were removed after participants were diagnosed with significant learning impairments. 

Analysis was performed on remaining 110 samples (m=60, f=50) 

 

Income to Needs Ratio. Family income-to-needs ratio was calculated by dividing total 

annual household income by the appropriate U.S. Census Bureau poverty threshold 

based on family size. The median income-to-needs ratio in this sample was 2.44 (244%), 

and according to federal guidelines, those families living below 200% of the federal poverty 

line (a ratio of 2.0) are considered low income and would, for example, qualify for the 

Supplemental Nutrition Assistance Program (SNAP).  However, the families included in 

our cohort reside in Southern California, which is a relatively expensive area of residence, 

while the income-to-needs ratio standards are based on national living standards. 

Therefore, using metrics that adjust for the cost of living in the county of residence (83), a 

median income to needs ratio of 2.44 corresponds to 70% of the families living below the 

living wage level.  

Maternal Sensitivity. At 6 and 12-months postpartum, maternal sensitivity was evaluated 

using a coding scheme developed for the National Institute for Child Health and 
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Development (NICHD) Study for Early Child Care and Youth Development (84). This 

paradigm is an objective, behaviorally-based laboratory assessment tool for studying 

maternal behavior that is well-validated and predictive of the quality of mother-child 

attachment (84,85). Mother-child pairs were videotaped in a semi-structured 10-minute 

play session, in which mothers are given a standard set of age-appropriate toys and told 

to play with their infant as they would at home. Following the NICHD procedure (86), a 

composite rating of quality of maternal care is created by summing ratings of sensitivity to 

non-distress, maternal positive regard, and intrusiveness (reverse-coded). Twenty percent 

of the tapes were selected at random, without coder knowledge, and double-coded to 

obtain an index of inter-rater reliability, which averaged 88% across the two assessments. 

The correlation between 6 and 12 months was 0.36 and so they were combined to create 

a single composite measure, to provide a consistent measure of this dimension of 

maternal care throughout the first postnatal year. Separate analyses of the correlation of 

maternal sensitivity at 6 months or 12 months with effortful control are provided in the 

Supplemental Materials (Figure S-3).   

Maternal Depressive Symptoms.  At 2, 6, and 12 months postpartum maternal depressive 

symptoms were measured with the 10-item Edinburgh Postnatal Depression Scale 

(EPDS) (87). Possible scores on this scale range from 0 to 30, with a score of 10 or more 

indicating probable minor depression and 13 or more likely major depression. In the 

present study, 38 percent of the mothers scored above the threshold for minor depressive 

episode and 18 percent scored in the probable major depressive range for at least one of 

the postpartum assessments. Correlations between the depression scores at the three 

timepoints ranged from 0.57 to 0.66. In view of these high correlations, the scores at the 

three time-points for each mother were averaged to provide a consistent measure of 

maternal depressive symptoms throughout the first postnatal year. 

 

Unpredictability. Unpredictability of signals from the caretaker(s) has been identified by us 

as an important dimension of early life adversity (37-41), and these findings have been 

confirmed and extended by others (42). Here, we assessed unpredictability of the early 

environment with the Questionnaire of Unpredictability in Childhood (QUIC;(37)). The 

original self-report version of the QUIC is a 38-item questionnaire that assesses exposure 

to unpredictability in social, emotional and physical domains of a child’s environment. It 
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displays excellent psychometric properties (α = 0.89; test-retest reliability = 0.91) and is 

associated with observational measures of parental and household unpredictability. For 

the purposes of this study, the parent-report preschool version of the QUIC was employed 

(88). This version predicts both behavioral observations and parent-report of child effortful 

control (41,59). Items and endorsement rates are included as Supplemental Table S-1. 

 

Child Effortful Control. Effortful control is widely considered an optimal measure of 

executive function in children. Notably, in large prospective studies, effortful control in 

young children was an excellent predictor of school performance and of success later in 

life (15,60–63).  Here, at roughly five years of age, effortful control measured with the Child 

Behavior Questionnaire (CBQ) (89) was collected from 90 participants who attended the 

5 year follow up visit. This measure exhibits strong internal reliability and validity (90–92) 

and consistency between parent report and home and laboratory observations (93,94).  

 

Buccal swab collection. Infant DNA samples were collected via buccal swab from 

newborns (Mage = 2.6 weeks, SD = 0.92) and again at one year (Mage = 12.4 months, SD 

= 0.52) using the DNA Genotek Oragene Discover (DNA Genotek Cat# OGR-575) kit. 

 

Isolation and quantification of DNA for making reduced representation bisulfite sequencing 

(RRBS) libraries from Human Buccal swab/saliva. The Buccal swab/saliva samples were 

incubated at 50ºC for 2 hours. Next, 1/25 volume of prepIT-L2P (DNA Genotek Cat# PT-

L2P-45) was added, samples were incubated on ice for 10 min and centrifuged at room 

temperature to collect the supernatant. Genomic DNA was prepared from this supernatant 

using the Quick gDNA kit (Zymo Research, Cat# D3025) following the manufacturer's 

protocol. The quantity of double-stranded DNA was analyzed using Qubit.  

 

RRBS libraries were prepared from 200 ng of genomic DNA digested with MspI restriction 

enzyme and then extracted with ZR-DNA Clean & Concentrator™-5 kit (Zymo Research, 

Cat# D4014). According to Illumina's specified guidelines, fragments were ligated to pre-

annealed adapters containing 5’-methylcytosine instead of cytosine (www.illumina.com). 

Adaptor-ligated fragments were then bisulfite-treated using the EZ DNA Methylation-

Lightning™ Kit (Zymo Research, Cat# D5459). Preparative-scale PCR (16 cycles) was 

performed with Illumina index primers, and the resulting products were purified with DNA 
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Clean & Concentrator for sequencing. Amplified RRBS libraries were quantified and 

qualified by Qubit, Bioanalyzer (Agilent), and Kapa library quant (Kapa systems, Cat# 

07960140001) and then sequenced with paired-end 100 bp on the Illumina Nova-seq 

platform. Based on initial experiments, we chose a depth of 25 million for newborns and 

50 million for one- year-olds to gain an average of 10 million mapped reads on the human 

genome for all samples. Samples were sequenced in batches and no batch control was 

employed. 

 

RRBS processing and detection of differentially methylate sites (DMSs).  

The overall workflow and analytical pipeline is depicted in the schematic below:  

 

Adaptor and low-quality reads were trimmed and filtered using Trim Galore! 0.4.3 

(http://www.bioinformatics.babraham.ac.uk/ projects/trim_galore/, RRID:SCR_011847) 

with the parameter “--fastqc –stringency 5–rrbs –length 30 –non_directional.” Reads were 

aligned to the human genome (hg38) by using Bismark 0.16.3 ((95) RRID:SCR_005604) 

with “---non_directional” mode. CpG sites were called by “bismark_methylation_extractor” 

function from Bismark. Sites with coverage of more than 10 were accepted for further 

study.  Differential methylation sites (DMSs) were first called using Methylkit (R 4.0.5) ((96) 

RRID:SCR_005177) to identify sites with  a minimum ±5% change (82) between sample 
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A (neonatal) and B (one year of age) using single CpG sites. We chose a 5% methylation 

change as such a change distinguished the influence of ELA in a preclinical study (82), 

and because it is larger than is expected from changes related to age alone during the 

first year of life, when DNA methylation is rapidly changing (75,76,81). A site that was 

identified as having a minimum 5% change in methylation in any individual was then 

significance-tested for a change in methylation between the A and B samples resulting in 

a p-value for the i-th site of pi. A test was then carried out to determine sites with a 

significant change from the A to B samples across all individuals by combining the 

individual test results using −2∑ ln𝑛
𝑖=1 (𝑝𝑖) as a test statistic as described in (97). A site 

that passed a Benjamini-Hochberg false discovery rate of q=0.1 with a cut off = 0.00005 

was determined to be a DMS. 

 

Calculation of DNA methylation level/percentage and delta methylation. The methylation 

percentage/level was calculated as the ratio of the methylated read counts over the sum 

of both methylated and unmethylated read counts for a single CpG site or across CpGs 

for a region. The delta methylation was calculated using the log2 transformation of the 

ratio of methylation level in the B sample (mB) and the methylation level in the A sample 

(mA), defined as  log2 ((mB + 0.1)/(mA + 0.1)) (82). The addition of 0.1 to the numerator and 

denominator addresses the possibility of zero methylation in one or both samples. 

Increased methylation in the B sample relative to the A sample is shown as a positive 

value, whereas decreased methylation in B is shown as a negative value. 

Principal Component Analysis. From the above, we identified 14,037 DMS which we 

included for further analyses. Principal Component Analysis (PCA) using the prcomp 

(RRID:SCR_014676) function using R version 4.0.2. ((98) RRID:SCR_001905) was used 

as a data reduction technique. PCA analyses were carried out for the A samples, the B 

samples and the changes in methylation (delta methylation values). 

 

Distance from Transcription Start Site (TSS) and Gene Ontology Analyses were performed 

using the Genomic Regions Enrichment of Annotations Tool (GREAT)(99). 

 

Impact score calculation. Impact  scores were calculated using an adapted computational 

method (100) for calculating polygenic risk scores. From the DMS set, for each individual 
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site, the change in methylation, a binarized QUIC variable (QUICbin) and their interaction 

were used to predict effortful control at 5 years (EC ~ “change in methylation by site” * 

QUICbin). We used a binarized QUIC variable because, although the version used here  

has 17 items, it was rare for individuals to endorse more than a few.  Of the 90 subjects 

with QUIC and effortful control data, 45% had a raw score of 0, 23% had a raw score of 

1, and 32% had a raw score of 2 or more (with values ranging from 2 to 8, reflecting more 

unpredictable childhoods).  The choice to characterize 2 or more as “high” unpredictability 

provided a sufficient number of individuals to allow for comparison across the two groups. 

 

Sites were then ranked by the p value associated with the interaction coefficient and the 

top predictive site was added to the set list to be included in the model. The second most 

predictive site through the last site (using p < 0.05 as a criterion) were then considered 

sequentially, with each being correlated against sites already included in the set list. Any 

sites that were not significantly correlated with those already in the list were then added 

to the set list (Fig. 5A). Genes associated with the selected sites were identified using 

Genomics Regions Enrichment Annotations Tool (GREAT, RRID:SCR_005807) (99), on 

the GRCh38 assembly to the single nearest gene within 1000kb. Subject numbers: 

females = 41, males = 49. 28 ‘low’ females; 13 ‘high’. 16 ‘low’ males; 34 ‘high’. 

 

Statistical analyses. All analysis were performed using R 4.0.2 in RStudio (101). Sample 

preparation and analysis and quality control was performed ‘blind’. Correlations were 

calculated using Pearson correlation. A comparison of two group means was performed 

using Student’s t-test. To implement the regression models with interactions, the QUIC 

scores were converted into binary numbers (QUICbin), with scores greater than one 

considered ‘high’ and scores of 0 or 1 considered ‘low’ for the reasons described above. 

Linear regression was performed (EC ~ QUIC * change in methylation). Figures were 

made using ggplot2 (RRID:SCR_014601) in R 4.0.2(98). Heatmaps were created in R 

4.0.2 using ComplexHeatmap ((102) RRID:SCR_017270) using row normalization. 

 

Funding bodies had no role in the study design, data collection or preparation of this 

manuscript. 
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Results 
 
Methylation profiles distinguish neonatal samples from those obtained at one year 
of age  

To determine how methylation changes may inform future outcomes, two buccal swabs 

were collected for each infant: the first, during the first month of life and the second at 

around one year of age (Fig. 1A). In parallel, we collected information on demographics 

of mothers and infants, including infant sex, birthweight, maternal report of infant ancestry, 

maternal body mass index pre- and postpartum and income to needs ratio, as well as 

depressive symptoms. We conducted behavioral assessments of maternal sensitivity as 

well as measures of unpredictability in the infant’s environment (Table 1). In the infants, 

we conducted tests of cognitive and emotional development both during the first year of 

life and at five years of age (Fig. 1A). 

 

The analytic workflow of the buccal swab DNA is depicted in the schematic in the Methods 

section. After mapping each of the two samples from 110 infants to the human genome, 

we accepted samples with 10 million reads and a coverage of 10 reads or more and 

identified 1,744,215 methylated sites per newborn sample and 1,743,344 per one-year-

old sample that were sequenced with sufficient coverage. We selected for differentially 

methylated sites by defining them as sites in which methylation was changed by at least 

±5% and was significantly different between the newborn and one-year of age samples. 

We chose a 5% methylation change with the hope that such a change would distinguish 

the influence of ELA from that of age alone, as found in our preclinical study (82).  A site 

that was identified as having a minimum 5% change in methylation in any individual was 

then significance-tested for a change in methylation between the A and B samples 

resulting in a p-value for the i-th site of pi.  A test was then carried out to determine sites 

with a significant change from the A to B samples across all individuals by combining the 

individual test results using −2∑ ln𝑛
𝑖=1 (𝑝𝑖) as a test statistic as described in (97). A site 

that passed a Benjamini-Hochberg false discovery rate of q=0.1 with a cut off = 0.00005 

was determined to be a DMS (97). This approach generated 14,037 unique sites that were 

included for further analysis. 
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DNA methylation was age dependent (Fig. 1B and 1C), in accord with a robust literature 

(68,69,75,76,81). There was an average 10% increase in methylation levels for the 

differentially methylated sites between birth and one year of age (t(110)= 31.8, p<0.001), 

consistent with a previously described general trend for more CpG sites to have increases 

rather than decreases in DNA methylation during the first year of life (72–75,77). Principal 

Component Analysis (PCA) of all samples revealed that the first principal component, 

accounting for 24.8% of the variation in the methylation percentages at the differentially 

methylated CpG sites, easily distinguished between the samples collected at one month 

and one year of age (Fig. 1D), in accord with our preclinical study (82) and prior reports 

(75). Notably, neither sex, nor maternal BMI or infant birthweight separated upon PCA 

analyses (Supplemental Tables S-2, S-3, S-4 and Fig S-1). 

The 14,037 sites differentially methylated between the neonatal and one-year samples 

resided on all autosomal chromosomes (Fig. 2A). 13,983 of the 14,037 DMS localized to 

within 1000kb of a transcription start site (TSS; Fig. 2B), and these 13,983 DMS 

associated with 2,764 unique genes. Gene ontology (GO) analyses demonstrated a 

striking abundance of genes involved in development (Fig. 2C). We tested the significantly 

changed sites for overlap with the sites comprising Horvath’s DNA methylation clock as 

well as the Pediatric epigenetic clock. None of the Horvath clock sites and none of the 

Pediatric clock sites were among those identified in the current cohort. In contrast, 14 sites 

corresponding to 8 of the 42 genes identified by Wilkenius et al (75) to distinguish samples 

from 6 week old from those of 52 week-old Norwegian infants were differentially 

methylated in our cohort as well. This finding is interesting in view of the homogenous 

ethnicity and SES status of the 214 Norwegian infants assessed in (75) compared with 

the diverse ancestry and SES levels in our sample of 110 subjects.    

 

Methylation changes across time in individual infants, but not methylation at a 

single time-point, predict effortful control.  

Calculating the change in methylation at the differentially methylated sites between 

newborn (first month of life) and one year of age, we performed PCA on the change in 

methylation (delta methylation) and found that the first component accounted for 8.6% of 

the variance. Further investigation revealed that the first component correlated highly (R= 

-0.93, p < 2.2x10-16) with the average change in methylation (Fig. 3A). When PCA was 
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performed on the newborn and one-year timepoints separately, the first component also 

represented the average of the methylation values (R=0.92, p < 1x10-6 and R=-0.81, p < 

1x10-6 respectively). Therefore, further analyses were performed using the average delta 

methylation values (for analyses involving both time points) and the average methylation 

values (for analyses involving a single time point). 

We determined the relationship of changes in methylation profiles and effortful control at 

age five, because effortful control is a reliable predictor of outcomes later in life: lower 

effortful control in childhood is predictive of poorer mental and physical health, as well as 

decreased productivity and material success across the lifespan (15,60–63,103–106). The 

average change in methylation of an individual child from newborn to one year of age was 

significantly associated with effortful control at 5 years (R= 0.27, p=0.01), accounting for 

approximately 7.3% of the variance in child effortful control (Fig. 3B). In contrast, analyses 

of methylation at a single age were not informative: there was no statistically significant 

association of the average percentage methylation in newborns with effortful control (R=-

0.15, p=0.17) (Fig. 3C) and the same applied for the one-year samples (R=0.13, p=0.21) 

(Fig. 3D). We also computed the relation of average methylation in all 1.7 million 

methylated CpGs in the neonatal samples and in the one-year samples, and these did not 

correlate with effortful control (R =-0.069, p=0.52 and R = -0.067, p= 0.53 respectively). In 

contrast, the average of the changes in methylation of all 1.7 million methylated sites 

between the one year and neonatal samples correlated significantly with effortful control 

at age 5 years, though the association was weaker that that observed for the differentially 

methylated sites (R = 0.22, p=0.036; and see supplemental Figure S-3). Together, these 

findings suggest that the change in, or “delta” methylation of an individual child over in the 

first year of life may provide a better indication of the impact of early-life experiences 

compared with methylation at a single timepoint.  

 

Unpredictability associates with executive function outcomes at age five years. 

To determine the dimensions of ELA that might predict effortful control in our cohort, we 

investigated four established early-life influences on child development: Income-to-needs 

ratio (INR), maternal depressive symptoms, maternal sensitivity and unpredictability in the 

child’s caregivers and environment. In our sample, there were weak correlations of INR 

(R=0.15, p=0.16) (Fig. 4A) and maternal depressive symptoms (R=-0.15, p=0.13) with 
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effortful control (Fig. 4B). There was no correlation of effortful control at age 5 and maternal 

sensitivity (R=-0.035, p=0.15) (Fig.  3C), and this result obtained also when we analyzed 

maternal sensitivity separately at 6 and 12 months (R = 0.037. p=0.73 at 6 months and R 

=  -0.086, p=0.45 at 12 months; supplemental Figure S-2). The strongest correlation was 

observed with unpredictability (R=-0.23, p=0.031) (Fig. 4D), such that high levels of 

unpredictability associated with lower effortful control, in accord with prior work (10,42). 

This suggests that unpredictability is a meaningful dimension of ELA and high levels of 

unpredictability portend poor effortful control at five years of age.  

 

Unpredictability during the first year of life alters the relation of DNA methylation 

and later outcomes in girls. 

Only a subset of individuals experiencing ELA exhibit negative impacts later in life and 

identifying individuals who are most at risk following ELA is vital to providing targeted 

interventions. Therefore, we aimed to understand the relationship between maternal and 

environmental unpredictability, a dimension of ELA, and differential DNA methylation over 

the first year of life, and probe if these alterations might provide a marker of future deficits 

in executive function. For the cohort as a whole, we found no direct correlation of the 

change in methylation over the first year of life with unpredictability (R=-0.07, p=0.51). 

However, it is well established that sex influences developmental trajectories (107,108), 

DNA methylation (109,110) and outcomes following ELA, including effortful control 

(15,71,111,112). Therefore, we analyzed the interaction of DNA methylation and ELA on 

effortful control, considering sex (Figs. 5A and 5B).   

 

To examine the interaction, individuals were assigned as either experiencing high levels 

of unpredictability (QUIC >1) or low unpredictability (QUIC ≤1). We used a binary indicator 

of the QUIC (QUICbin) because of the 90 subjects with QUIC data, two thirds (61) had a 

raw score of 0 or 1, and only a third (29) had a raw score of 2 or more. Characterizing the 

latter as experiencing “high” unpredictability provided a sufficient number of individuals to 

allow for comparison across the two groups. A linear regression model including the 

indicator of unpredictability, average delta methylation and the interaction, was used to 

predict effortful control at five years of age for each sex separately and then for both sexes 

combined (Table 2). In females, there was a significant interaction between the change in 

methylation and unpredictability (p=0.038), a main effect of unpredictability (p=0.046) and 
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an effect of the average change in methylation (p=0.016) (Fig. 5C). These results suggest 

that a high level of unpredictability during the first year of life may alter the degree to which 

changes in differentially methylated sites in females predict effortful control at 5 years. 

These results were not observed in males: there were no significant interactions or main 

effects among the parameters tested. Together, these observations imply that sex might 

influence how unpredictability interacts with changes in DNA methylation and, in girls, this 

interaction may have a predictive value for risk.  

 

Calculating an impact score as a predictive marker of individuals susceptible to 

early-life adversity.  

The association of average change in DNA methylation and unpredictability with executive 

function at age five led us to consider an approach for identifying the potential 

contributions of specific sites (and their respective genes) to the overall relationship. 

Combined, such strong-effect sites might serve to construct predictive (“polyepigenic”) risk 

scores for vulnerability to adverse outcomes. Whereas risk scores typically require cohorts 

with a minimum of 100 subjects (113), these size recommendations are based on the use 

of each subject as a unitary entity within a population. However, here, the ‘delta 

methylation’ approach compares each individual to themselves, reducing the effect of 

population variance on diluting effect sizes. 

We used the data from females because the interactions were present in female samples 

only. Adopting a polygenic risk score clumping and thresholding method (100,113), we 

ran a linear regression using each of the differentially methylated sites and the binarized 

QUIC score to predict effortful control, and assessed the significance of the interaction 

(Fig.  6A). The algorithm identified 37 ‘significant’ sites (p<0.05) (Fig. 6B and Table 3). By 

summing the change in methylation from birth to one year of age at these 37 sites in 

females, we created an impact score. We analyzed the females who had experience 

greater and lesser degrees of unpredictability separately. The impact score significantly 

predicted an individual girl’s effortful control performance at 5 years of age (score x 

QUICbin interaction; R2= 0.20, p=0.0016) (Fig. 6C) in females who had experienced greater 

unpredictability. Note that the significance of the interaction here is expected given the 

way in which specific sites were selected. In this cohort of females, this algorithm predicted 

individuals who would develop poor effortful control in later years.  
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The 37 DMS comprising the impact score belonged to 36 genes. GO analyses and gene 

network analyses revealed no significantly enriched terms.  In addition, comparing these 

sites to sites implicated in the Horvath (69) and Pediatric epigenetic clocks (76) uncovered 

no overlapping sites. Thus, in a small female cohort, we identified an approach that may 

have the potential, in future large validation studies, to provide a predictive marker of 

individuals at risk of worse outcomes following high levels of unpredictability and, possibly, 

other dimensions of ELA. 

 
Discussion  
 
The principal findings presented here are: 1) The use of a longitudinal, within-subject 

approach identifies changes in methylation over the first postnatal year as a feasible tool 

which may allow better prediction of executive function at age five years compared to 

methylation profiles at a single time point. 2) Exposures to a higher degree of 

unpredictability in early life, a dimension of ELA, correlate with poorer effortful control. 3) 

The interaction of this dimension of ELA with changes in methylation is sex-dependent in 

our cohort. 4) In girls, unpredictability interacts with change in methylation to presage 

effortful control, suggesting that unpredictability in early life may alter the relationship of 

DNA methylation and outcomes later in childhood. 5) A tentative impact score was created 

using the change in methylation in girls, aiming to provide a predictive marker of the 

influence of high levels of early-life unpredictability on the future outcome of an individual 

child. This score should be validated in future studies as a potential indicator of risk. 

 

Identifying individuals with a high risk of developing cognitive and emotional problems 

after sustaining pre-or early postnatal adversity is important: such a discovery will allow 

targeting preventative and interventional strategies to those who need them most. Indeed, 

a number of investigative groups and consortia have aimed to employ DNA methylation 

profiles of blood or buccal swab cells of infants and children as a correlate of ELA and a 

predictor of the subsequent outcomes (73,74,76,77,79,114–116). 

 

DNA methylation levels vary with age, and normative patterns and rates of these changes 

have been established, providing epigenetic--or DNA methylation (DNAm)—clocks 

(67,76). Deviations from this ‘clock’, and especially acceleration of DNAm vs chronological 
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ages, have been considered predictive of aging and disease (68). The rate of DNA 

methylation change is especially rapid early in life, and a body of work has focused on 

creating and harmonizing DNAm clocks that are optimal for infants and children 

(71,72,75–77,79), and  on the influence of ELA on modulating and especially accelerating 

the pediatric epigenetic clocks (73,74,76,79). Additional clocks have been identified for 

specific early-life epochs including the use of cord blood to assess gestational age (72) 

and buccal swabs to probe the first year of life (75). More recently, Fang et al., 2023 

compared seven pediatric clocks, highlighting the heterogeneity of sites identified across 

studies: Indeed, of 2,587 CpGs,  2,206 (>80%) were specific to only one clock (117). Thus, 

the modest overlap of sites identified here with those identified in other cohorts is not 

surprising.   

 

We find that the changes in overall average methylation between one-year old and 

neonatal samples for sites with a minimum 5% change is largely positive (higher 

methylation). The methylation changes that happen over time during childhood are bi-

directional (75,76,81). Focusing on the neonatal period, Wilkenius et al., found increased 

methylation in 36 of 42 sites that change significantly during the first postnatal year, in 

accord with the current study (75). They considered this augmented methylation surprising 

because higher methylation tends to predict reduced gene expression. These authors 

speculated that the putative reduction in gene expression during the first year of life might 

be compensatory to explosive gene expression in utero (75). It is unclear whether or not 

the overall increase in methylation observed in the current study is beneficial. While it 

might be considered an acceleration of the epigenetic ‘clock’ for this age, the implications 

of such acceleration are not obvious: Whereas in adults, acceleration of epigenomic clocks 

is almost universally detrimental and associated with accelerated ageing, disease and 

death, Suarez er al., (73) identified a decelerated DNA-methylation clock in boys with 

mental health problems following prenatal exposure to maternal anxiety. Indeed, some 

authors suggest that DNA-methylation clock acceleration in childhood implies accelerated 

physical and mental development, with salubrious consequences. Clearly, additional 

empiric information and longitudinal studies are required to address these intriguing 

questions.     
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The majority of studies to date have employed profiles of DNA methylation in samples 

obtained at a single time point. Dunn et al., (118) and Lussier et al. (119) used longitudinal 

approaches, focusing specifically on the timing of and dimension of ELA in influencing 

methylation profiles. The group identified ages 3-5 as putative sensitive period for 

methylation effects of ELA. However, these studies did not assess ELA during the first 

postnatal year. The current longitudinal study suggests that the first year of life may also 

be an important sensitive period for the effects of some dimensions of ELA (e.g., 

unpredictability) on DNA methylation as well as on neurodevelopmental outcomes.        

 

Specifically,  we aimed here to minimize large variances in methylation among individuals, 

account for the change of methylation with age (73,74,82,118,120–122), and avoid dilution 

of the potential effects of neonatal ELA over a lifetime. Therefore. we employed a 

longitudinal, or ‘within subject’ approach (82,120,123–125) and sampled infants at a 

relatively short interval--one year--which mitigated the potential dilution of an epigenomic 

‘signature’ of ELA by subsequent life events. Finally, we examined for the well-established 

effects of age on methylation profiles, employing both Horvath’s DNA methylation (DNAm) 

clock as well as the more recently described Pediatric epigenomic clock (76). We found 

that the change in methylation profile of an individual child between the first month of life 

and one year of age was superior at predicting neurodevelopment at five years compared 

with a methylation profile derived from a single timepoint. 

  

In the current analysis of a cohort of 110 children, we quantified several types of adversity 

during the interval year between the two samples and examined the relative contribution 

of these measures of ELA to both changes in DNA methylation during the first year of life 

and to effortful control at age five years. In addition to poverty (assessed as income-to-

needs ratio), and maternal depressive symptoms and sensitivity, we tested the role of 

unpredictable signals from the mother/caretaker and the household environment. This 

dimension of adversity has emerged in our work (37,39–41,43–45,47,126,127) and 

independently, in work by others (42,128–130) as a contributor to cognitive outcomes 

including effortful control (39–41,131) and emotional (41,44,127,130,132) outcomes in 

children, adolescents and adults. The neurobiological basis for the detrimental effects of 

unpredictable environmental signals on brain development are not fully understood. In 

both humans and experimental models, sensory input from the environment (e.g., light 
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patterns, patterns of tones) are required for appropriate maturation of the respective brain 

circuits. In experimental models, unpredictable patterns of sensory inputs may impact 

brain circuit maturation by disrupting the selective microglial pruning of synapses (30,133). 

 

In the relatively small cohort assessed here, both lesser changes in methylation during the 

first year of life and high levels of maternal unpredictability were predictive of poorer 

effortful control at age five years. In addition, further analyses suggested sex-dependent 

differences. Interactions of methylation changes and unpredictability were observed, but 

only in girls. The discovery of sex effects of ELA on methylation profiles and outcome 

already prior to puberty is intriguing. In adults, but not for children, a more rapid epigenetic 

ageing has been reported in women (134,135), whereas others found a more rapid 

epigenetic ageing in adolescent girls with a history of ELA, but not in boys (136). While 

many sex-differences in post-pubertal individuals are ascribed to sex hormones, the 

effects of sex in both the current study and others (71,73,79), suggest other biological 

differences between males and females that are at play already soon after birth.  

 

The basis of these sex differences remains enigmatic:  Dammering et al., who studied the 

effects of postnatal ELA on DNA methylation in the context of ‘Epigenetic Ageing’ found a 

greater epigenetic ageing in girls than in boys (79). In contrast, looking at the effect of 

prenatal exposure to maternal depression on DNA-methylation age of newborns, Suarez 

et al., identified an effect in boys but not girls (73), and a similar male vulnerability was 

observed by  McGill et al., for maternal anxiety (71), and by work from our group (140). 

Studies of selective vulnerabilities of males to prenatal stress are buttressed by work in 

experimental models demonstrating  similar male vulnerability (137). For postnatal stress, 

both Dammering et al. (79) and our own studies (59) suggest greater vulnerability in girls. 

Together, the combined body of work suggests that sex effects can be detected prior to 

puberty, and that different types of adversity and its timing, i.e., the developmental age in 

which adversity takes place, may influence which sex is more affected.   

Comparing the current work to other studies, we note our use of reduced representation 

bisulfite sequencing (RRBS). Other groups (121,122,124,125) have employed bisulfite 

conversion and genomic DNA methylation profiling using the Illumina 

HumanMethylation450 BeadChip which assesses DNA methylation levels at >480,000 
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CpG sites.  Still others used targeted sequencing of specific sites (123).  All these methods 

have assets and limitations: RRBS only samples ~5% of the genome, but includes ~95% 

of gene-related CpG sites. In our hands, it uncovered methylation at ~1.74 million CpGs, 

well in the range of the Illumina chip approach. In contrast, the use of methylation panels 

allows sequencing assessment of predefined sites, yet does not allow discovery of novel 

sites as markers. Hence, we believe RRBS provides a compromise between targeted 

sequencing and a whole genome approach.  

 

The discovery of a robust association of unpredictability, changes in methylation and 

effortful control in girls led us to probe whether specific differentially methylated sites could 

be used to create an individually predictive impact score. While general recommendations 

in the literature suggest against generating genetic or epigenetic risk scores to cohorts 

smaller than 100 samples (113), these size recommendations are based on the use of 

each subject as a unitary entity within a population. However, here, the ‘delta methylation’ 

approach compares each individual to themselves, reducing the effect of population 

variance on diluting effect sizes, perhaps analogous to the use evoked potentials 

compared with EEG (138,139).  

There are several limitations to the current study, the primary being the cohort size. 

Epigenetic and genetic studies often include tens or hundreds of thousands of subjects, 

providing power that our cohort of 110 infants does not permit. In addition, parsing the 

group by sex further reduces sample size, with a risk of overfitting.  We acknowledge this 

issue and note that studies of similar size can provide important and innovative 

information. For example Jovanovic et al. (74) uncovered an important effect of ELA on 

DNA methylation in a cohort of 101 subjects.  

 

In addition, we aim here to address the cohort size caveat in part by the use of a 

longitudinal within-subject design, enabling assessment of DNA changes within an 

individual over time rather than a cross section comparison of different groups, which is 

more sensitive to random effects and overfitting in small samples. Capitalizing on the 

within subject design, we attempt to generate a polyepigenetic impact score, and note that 

this score has yet to be validated because the size of the current cohort did not permit 

splitting it into training and testing subsets (113). Thus, validation of the current impact 
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score requires larger naïve datasets. Nevertherless, we suggest that the technologies and 

approaches presented here provide valuable insights into the potential of using the 

interaction of early-life adversity and methylation changes across defined epochs as 

potential indicators of the impact (‘epigenetic scar’) of adversity on an individual child, with 

significant predictive promise. 
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Figure legends 

 

Figure 1. Methylation is influenced by age. A) Timeline of sample collection and 

assessments in 110 infants. B) Heatmap depicting distinct patterns of methylation 

distinguishing DNA methylation profiles from newborn and 1-year old children. C) Average 

percentage methylation at selected sites increases with age. D) Using PCA, the first 

principal component, explaining 25% of the variance, accounts for the age of sample 

collection. **p<0.001, bars represent mean, lines represent individual sites. 

 

Figure 2: localization and gene ontology of the sites differentially methylated (DMS) 

between neonatal and one year old samples. (A). Chromosomal distribution of the DMS 

demonstrates that the reside on all autosomes. Numbers on the left denote the percentage 

of the overall DMS that localize to each chromosome. (B) Alignment of the DMS with 

genes and their structures: 13983 of the 14037 DMS localized to within 1000kb of 

transcription a start site (TSS), and these 13983 DMS associated with 2764 unique genes. 

(C) Gene ontology identified developmental processes as the key theme of genes 

associated with DMS between 10-day old and one year old samples of the same child. 

n=110 infants. 

 

Figure 3. Methylation-changes of individual infants between the ages of 10 days and 

one year predict effortful control at 5 years. A) The first component of the principal 

component analysis (PCA) of methylation changes in the ~ 14,000 differentially 

methylated sites reflects the average change in methylation (n=110). B) Average 

methylation change from newborn to one year of age of an individual child predicts effortful 

control performance at five years of age (n=90). C) Average percent methylation in 

newborns does not predict outcome. D) Similarly, average percent methylation at one year 

of age does not predict outcome  Note that analogous results were observed when using 

all 1.74 million methylated sites, as shown in the Supplemental Fig.S-3. Points represent 

individual samples, circles = females, triangles = males. Line represents linear regression. 

 

Figure 4: Unpredictability, assessed using the QUIC, portends functional outcomes 

at 5 years. A) Income / needs ratio (INR) has a weak association with effortful control in 
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our sample of individuals. B) Correlation of maternal depressive symptoms with effort 

control suggests a weak negative association in these individuals. C) Measures of 

maternal sensitivity do not correlate with effortful control at 54 months of age in this 

sample. D) Unpredictability measured using the Questionnaire of Unpredictability in 

Childhood (QUIC) is inversely correlated with effortful control score at 54 months. Points 

represent individual samples, circles = females, triangles = males. Line represents linear 

regression (n=90). 

Figure 5. Unpredictability portends child development and may interact with 

methylation changes over time.  A) Unpredictability assessed using the QUIC predicts 

effortful control at five years of age to a similar degree in both males and females. B) The 

change in methylation over the first year of life also predicts effortful control at the same 

age to the same degree in both sexes. n: females=41, males=49. C) There is an interaction 

between unpredictability and change in methylation in females only: for females who 

experience high unpredictability, the change in methylation over the first year of life 

predicts effortful control. In contrast, there is no such interaction observed in males. n: 

females low=28, females high=13, males low =16, males high=34. Points represent 

individual samples, purple = females, green = males. Line represents linear regression. 

F=females, M=Male. 

 

Figure 6. Impact scores identify individuals vulnerable to poor outcomes following 

the unpredictability dimension of early-life adversity. A) Flow chart of the computation 

method used to select highly contributing sites. The clumping and thresholding method 

identifies sites that appear to have a significant interaction but do not correlate highly with 

other sites that have already been selected. B) Manhattan plot representing the 

differentially methylated sites (blue) and the distribution across the chromosomes and the 

corresponding significance score (-log10p) of each site interacting with QUIC to predict 

effortful control in females. Sites in red are those selected via the clumping and 

thresholding algorithm. Dotted line is at p=0.05. C) The significant interaction of QUIC and 

risk score calculated from top sites according to our model predicts effortful control at 5 

years in females who have experienced more adversity n: low=28, high=13. Line 

represents linear regression. 
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Fig. 2 
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Fig. 3  
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Fig. 5 
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Table 1. Demographic characteristics of sample 
 

 
 
 
 
 
 
 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 F (N = 50) M (N = 60) 
Child Race/Ethnicity (n, %)       
  African American or Black 0 (0) 1 (2) 
  Asian 5 (10) 4 (7) 
  Latinx 23 (45) 27 (44) 
  Multi-Ethnic 13 (25) 12 (20) 
  Non-Hispanic White 10 (20) 17 (28) 
Income Needs Ratio       
   range: 25-1556 15-1641 
   Median:  244 252 
QUIC       
   range: 0-8 0-8 
   Mean (±sd) 1.51 (±1.87) 1.29 (±1.86) 
Maternal Sensitivity       
   range: 7.25-11 7-11 
   mean (±sd) 9.35 (±0.84) 9.28 (±0.99) 
Maternal Depression       
   range: 0-16.67 0.33-15.33 
   Mean (±sd) 5.59 (±3.78) 5.95 (±4.15) 
Age of EC Assessment (months)       
   range: 54-75 54-72 
   mean (±sd) 62.44 (±5.78) 62.48 (±6.22) 
Effortful Control Score       
   range: 3.43-6.19 4.17-6.05 
   mean (±sd) 5.04 (±0.54) 5.16 (±0.51) 

 
Note: Child race/ethnicity determined by parent report. 
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Table 2: Regression models testing associations between unpredictability, 
methylation and effortful control at 5 years of age.  
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Table 3. Top sites contributing to the impact score. 

Gene Site p value R2 

GSE1 chr16:85650857-85650858 1.92E-07 0.49 

UBAC1 chr9:136017659-136017660 2.54E-05 0.34 

C18orf8 chr18:23524804-23524805 1.99E-04 0.27 

ARAP1 chr11:72754843-72754844 2.43E-04 0.27 

SIPA1 chr11:65642488-65642489 3.05E-04 0.25 

MLLT1 chr19:6270257-6270258 3.53E-04 0.28 

MRPL23 chr11:1951274-1951275 3.97E-04 0.24 

TBCD chr17:82795360-82795361 7.34E-04 0.22 

DNAJB8 chr3:128421485-128421486 7.43E-04 0.25 

DNAAF5 chr7:779363-779364 1.52E-03 0.18 

ARHGAP27 chr17:45405991-45405992 2.03E-03 0.18 

CMIP chr16:81431947-81431948 2.44E-03 0.17 

CIDEA chr18:12278873-12278874 2.51E-03 0.16 

LRRC4 chr7:128030495-128030496 2.84E-03 0.16 

MRPL23 chr11:1951752-1951753 4.30E-03 0.20 

TGM1 chr14:24259744-24259745 4.70E-03 0.13 

SLC25A29 chr14:100297661-100297662 4.97E-03 0.13 

OPLAH chr8:144052079-144052080 6.48E-03 0.12 

ADAT3 chr19:1912103-1912104 6.50E-03 0.12 

TTLL10 chr1:1145182-1145183 6.88E-03 0.15 

NFATC1 chr18:79485573-79485574 9.21E-03 0.12 

DLL1 chr6:170227779-170227780 1.15E-02 0.11 

FGFR1 chr8:38554659-38554660 1.38E-02 0.10 

IL2RA chr10:6036875-6036876 1.41E-02 0.09 

TACC2 chr10:122085904-122085905 1.44E-02 0.11 

CARNS1 chr11:67411863-67411864 1.71E-02 0.14 

KIAA1644 chr22:44286585-44286586 1.84E-02 0.07 

MN1 chr22:27797185-27797186 2.22E-02 0.14 

WNT7B chr22:45972341-45972342 2.38E-02 0.10 

PBX1 chr1:164576643-164576644 2.53E-02 0.12 

C1orf174 chr1:4161521-4161522 2.78E-02 0.10 

KCNE1B chr21:8434920-8434921 2.83E-02 0.10 

SLC25A51 chr9:37938671-37938672 2.90E-02 0.08 

CMTM2 chr16:66579316-66579317 3.28E-02 0.05 

PXN chr12:120263326-120263327 3.39E-02 0.09 

NBPF1 chr1:16725298-16725299 3.73E-02 0.18 

ACR chr22:50730818-50730819 3.90E-02 0.09 
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