Neoantigen Cancer Vaccines and Different Immune Checkpoint Therapies Each Utilize Both Converging and Distinct Mechanisms that in Combination Enable Synergistic Therapeutic Efficacy

Running Title: Overlapping and Distinct Mechanisms of Effective Neoantigen Cancer Vaccines and Immune Checkpoint Therapy

Sunita Keshari¹, Alexander S. Shavkunov¹, Qi Miao², Akata Saha¹, Charmelle D. Williams¹, Anna M. Highsmith¹, Josué E. Pineda¹, Elise Alspach³, Kenneth H. Hu^{1,4,5}, Kristen E. Pauken¹, Ken Chen², Matthew M. Gubin^{1,4#}

1. Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

2. Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

3. Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA

4. The Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

5. The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

#Corresponding author:

Matthew M. Gubin, PhD Department of Immunology The University of Texas MD Anderson Cancer Center 7455 Fannin St., Unit 901 Houston, TX 77054 Phone (713) 713-745-9790 Email mgubin@mdanderson.org

Highlights

- NeoAg cancer vaccines utilize distinct mechanisms from αCTLA-4 or αPD-1 ICT
- NeoAg vaccines induce TCF1⁺ stem-like and proliferating NeoAg-specific CD8 T cells
- CD8 TCR clonotype expansion relates to phenotype and functional state associated with immunotherapy
- NeoAg vaccines induce partially distinct macrophage remodeling from ICT
- NeoAg vaccines synergize with ICT, exceeding combination α CTLA-4/ α PD-1 ICT efficacy

SUMMARY

The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to eliminate cancer by expanding and/or sustaining T cells with anti-tumor capabilities. However, whether cancer vaccines and ICT enhance anti-tumor immunity by distinct or overlapping mechanisms remains unclear. Here, we compared effective therapeutic tumor-specific mutant neoantigen (NeoAg) cancer vaccines with anti-CTLA-4 and/or anti-PD-1 ICT in preclinical models. Both NeoAg vaccines and ICT induce expansion of intratumoral NeoAg-specific CD8 T cells, though the degree of expansion and acquisition of effector activity was much more substantial following NeoAg vaccination. Further, we found that NeoAg vaccines are particularly adept at inducing proliferating and stem-like NeoAg-specific CD8 T cells. Single cell T cell receptor (TCR) sequencing revealed that TCR clonotype expansion and diversity of NeoAg-specific CD8 T cells relates to their phenotype and functional state associated with specific immunotherapies employed. Effective NeoAg vaccines and ICT required both CD8 and CD4 T cells. While NeoAg

vaccines and anti-PD-1 affected the CD4 T cell compartment, it was to less of an extent than observed with anti-CTLA-4, which notably induced ICOS⁺Bhlhe40⁺ Th1-like CD4 T cells and, when combined with anti-PD-1, a small subset of Th2-like CD4 T cells. Although effective NeoAg vaccines or ICT expanded intratumoral M1-like iNOS⁺ macrophages, NeoAg vaccines expanded rather than suppressed (as observed with ICT) M2-like CX3CR1⁺CD206⁺ macrophages, associated with the vaccine adjuvant. Further, combining NeoAg vaccination with ICT induced superior efficacy compared to either therapy in isolation, highlighting the utility of combining these modalities to eliminate cancer.

1 INTRODUCTION:

2	For cancer immunotherapies such as immune checkpoint therapy (ICT), T cell
3	recognition of tumor antigens is critical for efficacy ¹⁻⁴ . In contrast to aberrantly expressed non-
4	mutant tumor antigens, tumor-specific neoantigens (NeoAgs) formed from somatic alterations
5	in cancer cells are largely excluded from immune tolerance and are exclusively expressed in
6	cancer cells, making them favorable cancer vaccine targets ²⁻⁴ . Significant progress has been
7	made in the field of NeoAg cancer vaccine development, showing promise in early-phase
8	clinical trials ⁵⁻¹² . Despite this, many fundamental questions regarding NeoAg vaccines remain
9	unclear, including how to best combine therapeutic vaccines with other T cell-directed
10	therapeutic modalities including ICT to promote optimal outcomes in cancer patients.
11	We previously used immunogenomic/mass spectrometry approaches to identify NeoAgs
12	and subsequently demonstrated that therapeutic NeoAg cancer vaccines could provoke tumor
13	rejection in methylcholanthrene (MCA)-induced sarcoma models ¹³ . Others have used similar
14	approaches to identify immunogenic NeoAgs ^{4,6,7,14-17} . We further showed that NeoAgs are
15	major targets of T cells reactivated by ICT and that anti-CTLA-4 and anti-PD-1 ICT induces
16	changes in both CD4 and CD8 T cells within the tumor microenvironment (TME) ^{13,18-21} ,
17	consistent with findings from others ^{22,23} . While both conventional CD4 and CD8 T cells drive
18	immunotherapeutic responses to cancer, CD8 T cells are often the most potent direct inducers
19	of tumor cell death ²⁴ . In both cancer patients and preclinical models, intratumoral CD8 T cells that
20	express activation markers including inhibitory receptors such as PD-1, LAG-3, and TIM-3 often
21	exist in a terminally differentiated state and may display a range of functional capabilities from
22	short-lived cytotoxic and cytokine producing CD8 T effector cells to dysfunctional or exhausted
23	CD8 T cells that exist in a state of limited or restrained functional capabilities ²⁵ . These
24	dysfunctional or exhausted CD8 T cells exist on a spectrum and may progress from intermediate

25	dysfunctional/exhausted to terminal dysfunctional/exhausted CD8 T cells characterized by high,
26	sustained expression of inhibitory receptors, reduced function, and unique transcriptional and
27	epigenetic profiles. These features differentiate dysfunctional/exhausted CD8 T cells from memory
28	T cells and T cells displaying stem-like properties (often referred to as progenitor/precursor
29	exhausted CD8 T cells). These distinct states are driven by key transcription factors, including TCF-
30	1, which promotes stemness or memory-like attributes ^{26,27} , and TOX, which plays a crucial role in
31	establishing terminal dysfunction/exhaustion ²⁸⁻³⁰ . Chronic antigen exposure and/or signals within
32	the TME promote maintenance of NFAT-independent TOX expression and establishment of a fixed
33	epigenetic landscape in terminal dysfunctional/exhausted CD8 T cells ³¹ . The increased presence of
34	PD-1 ^{hi} TOX ⁺ TCF-1 ⁻ CD8 T cells in tumor biopsies correlates with a poorer prognosis in patients
35	treated with ICT and these cells likely lack the ability to gain significant effector function following
36	PD-1/PD-L1 blockade ^{32,33} . Instead, stem-like PD-1 ⁺ Tim-3 ⁻ TCF-1 ⁺ CD8 T cells within tumors and
37	lymph nodes expand and differentiate into PD-1 ⁺ Tim-3 ⁺ CD8 T effector-like cells in response to
38	anti-PD-1/PD-L1 ICT ^{25,34-37} .
39	While T cells are the major target of NeoAg vaccines and ICT, myeloid cells are a critical
40	component of the TME ³⁸ . Macrophages are amongst the most abundant intratumoral myeloid
41	cell population and may comprise both embryonically-derived tissue-resident macrophages and
42	monocyte-derived macrophages, with the latter accounting for a majority of macrophages
43	present at diseased sites ³⁹⁻⁴¹ . We previously observed major complexity in the ICT-induced
44	changes occurring in the intratumoral macrophage compartment, despite T cells being the
45	predominant direct target of ICT ¹⁹⁻²¹ . These changes included remodeling from M2-like

46 CX3CR1⁺CD206⁺ macrophages in progressively growing tumors to M1-like iNOS⁺ macrophages

- 47 in tumors that go on to reject in response to ICT. Further, blockade of TREM2 expressed on
- 48 macrophages induced a decline in CX3CR1⁺CD206⁺ macrophages and promoted macrophages

49	expressing immunostimulatory molecules, with anti-TREM2 monoclonal antibody (mAb)	

- 50 dampening tumor growth and augmenting anti-PD-1 efficacy⁴².
- 51 Tumor immune cell compositions clearly play a major role in response to
- 52 immunotherapy^{43,44}, but the heterogeneity and dynamics of immune infiltrates in response to
- 53 immunotherapies such as NeoAg cancer vaccines is not thoroughly characterized. Further,
- 54 although much progress has been made towards defining the mechanisms behind ICT efficacy,
- 55 our understanding is still incomplete and direct comparisons between cancer vaccines and
- 56 different ICTs used alone or in combination are largely lacking. A more refined understanding of
- 57 how NeoAg vaccines impact the immune TME in comparison to other immunotherapies can
- 58 inform rational use of NeoAg vaccines and combinatorial immunotherapies.
- 59 To address this, we developed preclinical models to interrogate potential synergies
- 60 between the mechanisms underlying NeoAg cancer vaccines and different ICTs. We
- 61 systematically compared different immunotherapies that lead to tumor rejection, including
- 62 NeoAg cancer vaccines, anti-CTLA-4, anti-PD-1, and anti-CTLA-4 + anti-PD-1 ICT using mouse
- 63 melanoma models expressing defined NeoAgs. NeoAg vaccines induced the most robust
- 64 expansion of polyfunctional NeoAg-specific CD8 T cells, including proliferating and stem-like
- 65 CD8 T cells. Further, NeoAg-specific CD8 TCR clonotype expansion and diversity of NeoAg-
- 66 specific CD8 T cells related to their phenotype and functional state associated with specific
- 67 immunotherapies used. Anti-CTLA-4 and/or anti-PD-1 ICT increased the frequency and effector
- 68 function of intratumoral NeoAg-specific CD8 T cells, with anti-CTLA-4 containing treatments
- also dramatically altering the CD4 T cell compartment. Both NeoAg vaccines and ICT resulted in
- 70 an expansion of M1-like iNOS⁺ macrophages and while ICT reduced the frequency of
- 71 intratumoral CX3CR1⁺CD206⁺ M2-like macrophages, CX3CR1⁺CD206⁺ macrophages were largely
- 72 maintained in NeoAg vaccine treated mice. To investigate whether the unique impacts of

- 73 NeoAg vaccines and ICT combine for enhanced tumor control, we tested the efficacy of NeoAg
- 74 vaccination in combination with either anti-CTLA-4 or anti-PD-1 and found that the window of
- 75 therapeutic efficacy was extended by combination treatments, further supporting the rationale
- 76 of combining NeoAg vaccines with ICT.

77 **RESULTS:**

78 NeoAg vaccines and ICT induce T cell-dependent long-term tumor protection

79	For this study, we modified the genetically engineered mouse model (GEMM)-derived
80	<i>Braf^{v600E} Pten^{-/-} Cdkn2a^{-/-}</i> YUMM1.7 mouse melanoma line ⁴⁵ to express different combinations of
81	MHC-I and MHC-II NeoAgs. GEMM tumors are generally poorly immunogenic; however, they can
82	be engineered to express NeoAgs to study tumor-immune interactions ^{20,46-49} . We engineered
83	YUMM1.7 to express known tumor antigens via introduction of minigenes encoding the G1254V
84	mutation in Laminin subunit alpha 4 (mLama4 ^{MHC-I}), the A506T mutation in Alpha-1,3-
85	glucosyltransferase (mAlg8 ^{MHC-I}), and the N710Y mutation in Integrin beta 1 (mItgb1 ^{MHC-II})
86	NeoAgs ^{13,20} in various combinations: mLama4 ^{MHC-I} + mItgb1 ^{MHC-II} (Y1.7LI line) or mAlg8 ^{MHC-I} +
87	mItgb1 ^{MHC-II} (Y1.7AI line) (Figure S1A) . Consistent with prior observations ^{45,50} , the parental
88	YUMM1.7 melanoma line was insensitive to anti-CTLA-4 and/or anti-PD-1 ICT (Figure S1B). In
89	contrast, enforced expression of mLama4 ^{MHC-I} or mAlg8 ^{MHC-I} NeoAg along with mItgb1 ^{MHC-II} NeoAg
90	rendered YUMM1.7 melanoma lines (Y1.7LI and Y1.7AI) sensitive to anti-CTLA-4 ICT (Figure 1A).
91	We next asked whether therapeutic cancer vaccines composed of the synthetic long
92	peptide (SLP) containing the minimal MHC-I NeoAg epitope and the adjuvant poly I:C (pI:C) could
93	induce regression of the Y1.7LI and Y1.7AI NeoAg-expressing lines. Tumor bearing mice treated
94	with pI:C alone displayed outgrowth of Y1.7LI or Y1.7AI melanoma, whereas vaccines comprising
95	relevant NeoAg SLP + pI:C (neo VAX) induced complete rejection or delayed outgrowth of both
96	Y1.7 NeoAg expressing variants (Figure 1B). NeoAg vaccine-induced tumor rejection was
97	dependent upon specific NeoAg expression, as mAlg8 SLP + pI:C did not induce Y1.7LI (mLama4-
98	expressing) tumor rejection and vice versa with Y1.7AI (mAlg8-expressing) (Figure 1B). Mice
99	that rejected Y1.7AI or Y1.7LI tumors upon neo VAX or anti-CTLA-4 were rechallenged in the
100	absence of any additional treatment with the same tumor lines at least 60 days after rejection

101	of primary tumors. Upon secondary challenge, no detectable tumor was observed indicating
102	long-term protection against rechallenge with the same tumor (Figure S1C). In contrast, both
103	Y1.7-NeoAg expressing lines grew out when injected into naïve mice in the absence of
104	treatment, indicating cell line preparations used in rechallenge experiments were capable of
105	tumor formation. When mice that previously rejected Y1.7LI tumors upon were rechallenged
106	with parental YUMM1.7, progressive tumor growth was observed (Figure S1D), indicating
107	immunity was NeoAg-specific.
108	We next used peptide-MHC (pMHC) tetramers to detect intratumoral CD8 T cells
109	recognizing the mLama4 or mAlg8 NeoAg presented on H-2K ^b . Tumors from anti-CTLA-4 treated
110	mice contained greater frequencies of mAlg8- or mLama4-specific CD8 T cells compared to mice
111	receiving control mAb (Figures 1C and S1E). Whereas pI:C alone had little effect on the frequency
112	of NeoAg-specific CD8 T cells, neo VAX induced an over 5-fold or more increase in mAlg8- or
113	mLama4-specific CD8 T cells (Figures 1C and S1E). Neo VAX also significantly increased the
114	frequency of NeoAg-specific CD8 T cells co-expressing the inhibitory receptors PD-1 and TIM-3
115	(Figure S1F), although this does not necessarily indicate reduced function and may instead reflect
116	antigen stimulation and T cell activation state ^{24,51} .
117	To expand on these observations, we focused on the Y1.7LI line and delayed treatment
118	initiation until day 7 post-transplant. Y1.7LI tumor bearing mice treated with control mAb or
119	control VAX (irrelevant mAlg8 SLP + pI:C) starting on day 7 displayed progressive tumor outgrowth
120	(Figure 1D). In contrast, anti-CTLA-4, anti-PD-1, combination anti-CTLA-4 plus anti-PD-1, or neo
121	VAX induced tumor rejection in a majority of mice. ICT- and neo VAX-induced tumor rejection was
122	dependent on both CD4 and CD8 T cells, as mAb depletion of either T cell subset abolished
123	therapeutic efficacy (Figure S2A). Y1.7LI-rechallenged mice that rejected Y1.7LI tumors upon neo

124 VAX or anti-CTLA-4 and/or anti-PD-1 initiated on day 7, but not untreated naïve mice, showed

125 no detectable tumor upon secondary challenge (Figure S2B).

126

127 Tumor microenvironment remodeling induced by NeoAg vaccines and ICT

- 128 We next used an unbiased approach to assess whether effective tumor-specific NeoAg
- 129 vaccines induced TME alterations that are distinct or overlapping with different forms of ICT. Y1.7LI
- 130 tumor bearing mice were treated with (1) control mAb, (2) anti-CTLA-4, (3) anti-PD-1, (4) anti-

131 CTLA-4 + anti-PD-1, (5) control VAX (irrelevant SLP + pI:C), or (6) neo VAX (mLama4 SLP + pI:C)

beginning on day 7 (Figure 2A). Tumors were harvested on day 15 (a critical timepoint prior to

133 tumor rejection during ICT or neo VAX in this model) and live CD45⁺ cells were sorted for

134 scRNAseq. We used unsupervised graph-based clustering to stratify myeloid cells and lymphocytes

135 (Figures 2B and 2C). scRNAseq and flow cytometry both indicated that immunotherapy altered the

136 proportions of different myeloid and lymphoid subsets (Figure S3A).

137 To gain more insights into how the different immunotherapies altered T cells in the TME,

138 we chose clusters containing activated T cells for subclustering and identified multiple clusters of

139 conventional CD4 and CD8 T cells, Foxp3⁺ CD4⁺ T regulatory cells (Tregs), gamma delta T cells ($\gamma\delta$ T),

and innate lymphoid cells (ILCs) (Figures 2D, S3B-S3E, S4, and S5).

While most clusters contained either CD4 or CD8 T cells, cluster Cd4/8_{cycling} contained a mix
 of Tregs, CD4 T cells, and CD8 T cells and displayed a cell proliferation transcriptional signature
 (Figures 2D-2F, S4 and S5). Not only did tumors from neo VAX, anti-CTLA-4, or anti-PD-1 treated
 mice have a greater frequency of cells within Cd4/8_{cycling}, but the ratio of cycling conventional CD4

and CD8 T cells to Tregs was higher as compared to control mAb or control VAX (Figures 2G-2K).

146 Anti-CTLA-4 (+/- anti-PD-1) reduced proliferating Tregs and expanded CD4 T cells within

147 Cd4/8_{Cycling}, while the ratio of proliferating CD8 T cells to Tregs or CD4 T cells was higher with anti-

PD-1. Interestingly, neo VAX contained the greatest ratio of cycling CD8 T cells to other T cells in

149 this cluster (Figures 2H-J).

150	Although this analysis did not distinguish their antigen specificity, we identified 5
151	exclusively CD8 T cell clusters, spanning a range of activation states including proliferating
152	(Cd8 _{cycling}), CD69 ^{hi} IFN stimulated [Cd8 _{isтıм} (<u>i</u> nterferon <u>STIM</u> ulated)], PD-1 ⁺ TCF7 ⁺ plastic/stem-like
153	or progenitor exhausted (Cd8 _{PE}), and PD-1 ⁺ TCF7 [–] terminal effectors or dysfunctional/exhausted
154	CD8 T cells (Cd8 _{Eff/Ex}) (Figures 2D, 2E, S4, S5, and S6A-S6F). Cd8 _{Cycling} exhibited features of
155	proliferation/cycling but was exclusively composed of CD8 T cells which displayed a more activated
156	phenotype compared to Cd4/8 _{cycling} (Figures S4, S5, S6A, and S6B). Whereas the percentage of
157	Cd8 _{cycling} cells increased modestly with anti-CTLA-4 or anti-PD-1, neo VAX drove ~2-fold increase in
158	the frequency of cells within this cluster (Figure S6B), thus indicating that neo VAX more robustly
159	expands subsets of proliferating CD8 T cells.
160	Cluster Cd8 _{Eff/Ex} expressed little detectable <i>Tcf7</i> (encoding TCF-1) and displayed elevated
161	transcript expression of multiple inhibitory receptors (e.g., Pdcd1 (PD-1), Havcr2 (TIM-3), Lag3) and
162	other genes associated with T cell activation, effector function, and also exhaustion/dysfunction
163	including <i>Tox</i> (Figures S5, S6A, and S6C). Cd8 _{PE} expressed <i>Pdcd1</i> , but to less of an extent than
164	Cd8 _{Eff/Ex} , and additionally expressed <i>Slamf6</i> and <i>Tcf7</i> , indicating a phenotype consistent with
165	progenitor/precursor exhausted T cells that display plastic/stem-like properties (Figures S5, S6A,
166	and S6D). neo VAX, anti-CTLA-4, or anti-PD-1 reduced the fraction of cells within $Cd8_{Eff/Ex}$ and
167	Cd8 _{PE} with combination anti-CTLA-4 and anti-PD-1 standing out as the only treatment to not
168	decrease the frequency of Cd8 _{Eff/Ex} (Figures S6C and S6D).
169	Within Cd8 _{Cycling} , Cd8 _{PE} , Cd8 _{iSTIM} , and Cd8 _{Ccr7} , the highest expression of <i>Lag3</i> , <i>Cd39</i> , and
170	<i>Gzmb</i> within each respective cluster was observed with combination anti-CTLA-4 + anti-PD-1 ICT
171	(Figures S5, S6A, S6B, and S6D-S6F). Additionally, Prf1 was most robustly induced by combination

170	available under aCC-DY 4.0 international incense.
172	ICT in all CD8 clusters, except for Cd8 _{ccr7} , where neo VAX induced the highest expression (Figures
173	S5 and S6A-S6F). Further, a pattern emerged within CD8 T cells whereby in each cluster, anti-CTLA-
174	4 (alone or in combination with anti-PD-1), as well as neo VAX to some extent, drove higher
175	expression of Cd226 encoding the co-activating receptor CD226/DNAM-1. CD226 counteracts the
176	actions of the inhibitory receptor TIGIT by competing for binding to ligands such as CD155 ⁵² .
177	Expression of <i>Tigit</i> followed an inverse pattern as <i>Cd226</i> with anti-CTLA-4 containing treatments
178	and neo VAX reducing <i>Tigit</i> expression within clusters expressing the highest levels of <i>Tigit</i>
179	(Cd8 _{Eff/Ex} , Cd8 _{Cycling} , Cd8 _{Ccr7}) (Figures S5, S6A, S6B, S6C, and S6F).
180	
181	Anti-PD-1 expands PD-1 $^+$ TCF7 $^-$ NeoAg-specific Teff/Tex and robustly expands Bhlhe40 ^{hi} PD-1 $^+$
182	TCF7 ⁻ NeoAg-specific Teff/Tex when combined with anti-CTLA-4
183	We and others previously demonstrated that tumor antigen-specific CD8 T cells have unique
184	features as compared to bystander CD8 T cells and that immunotherapy primarily affects tumor
185	antigen-specific versus bulk CD8 T cells ^{13,18,53-55} . Therefore, we monitored CD8 T cells specific
186	for the mLama4 NeoAg in the setting of neo VAX or ICT (Figure 3A). Anti-CTLA-4 and/or anti-PD-
187	1 increased the overall frequency of intratumoral CD8 T cells with anti-CTLA-4 (+/- anti-PD-1)
188	also driving a significant increase in mLama4-specific CD8 T cells as a percent of CD8 T cells or
189	CD45 ⁺ cells and anti-PD-1 significantly increasing mLama4-specific CD8 T cells as a percent of
190	CD45 ⁺ cells (Figures 3B-3D and S7A). Notably, neo VAX drove the greatest increase in mLama4-
191	specific CD8 T cells from less than 2% (control mAb or control VAX) to over 20% of CD8 T cells,
192	which accounted for over 4% of intratumoral CD45 ⁺ cells (Figures 3C, 3D, and S7A).
193	Since our scRNAseq profiling of CD45 ⁺ cells did not distinguish NeoAg-specific CD8 T
194	cells, we profiled NeoAg-specific CD8 T cells by sorting intratumoral mLama4 tetramer positive
195	CD8 T cells from mice under different treatment conditions (Figure 3A). We profiled between 937

196	to 1762 mLama4-specific CD8 T cells for each of the different ICT treatment conditions and 4459,
197	6723, and 7646 mLama4-specific CD8 T cells for control mAb, control VAX, and neo VAX,
198	respectively. The two smallest clusters contained contaminating stromal cells, with the remaining
199	clusters comprising NeoAg-specific CD8 T cells that we annotated based on expression of select
200	transcripts and gene set enrichment patterns (Figures 3E-3G, S7B, S7C, S8, and S9); this enabled us
201	to distinguish additional features that were not evident from profiling bulk CD8 T cells.
202	Clusters nAg.Cd8 _{eff/Ex} and nAg. Bhlhe40^{Hi}Cd8 expressed <i>Pdcd1, Havcr2</i> (TIM-3), <i>Lag3,</i> and
203	Tigit, as well as effector transcripts (e.g., Nkg7, Ccl5, Gzmb, Gzmk, Prf1, Cxcr6). These two clusters
204	also expressed <i>Tox</i> and exhibited little to no detectable expression of <i>Tcf7</i> (Figures 3F, 3G, S7B,
205	and S7C), consistent with effector and/or dysfunctional/exhausted CD8 T cells. neo VAX most
206	notably reduced the proportion of nAg.Cd8 $_{\rm Eff/Ex}$ cells, whereas the proportion of cells in this cluster
207	increased with anti-PD-1 (+/- anti-CTLA-4) (Figure 3H). In nAg.Bhlhe40 ^{Hi} Cd8, the top defining
208	marker of this cluster was Bhlhe40 (Figures 3G and S8), which we previously demonstrated was
209	upregulated in tumor-specific T cells and required for CD4 and/or CD8 T cell effector function and
210	response to ICT ²¹ . In addition to <i>Bhlhe40</i> (as well as <i>Pdcd1, Havcr2,</i> and <i>Lag3</i>), this cluster also
211	expressed other transcripts induced by TCR activation, including Ctla4, Cd69, Nr4a1 (Nur77), and
212	Nr4a3 and also displayed high expression of Tbx21 (T-bet) and Ifng (Figures 3G and S7B). As
213	compared to control mAb treatment where nAg. Bhlhe40^{Hi}Cd8 represented ~2.4% of mLama4-
214	specific CD8 T cells, a small increase in frequency was observed with anti-CTLA-4, control VAX, or
215	neo VAX, and a more substantial ~2.6-fold increase occurred with anti-PD-1 (Figure 3H). Strikingly,
216	anti-CTLA-4 and anti-PD-1 combination ICT increased this cluster to over 28% of mLama4-specific
217	CD8 T cells.
218	In addition to increasing the frequency of cells within PD-1 ⁺ TCF7 ⁻ Teff/Tex clusters

219 (nAg.Cd8_{Eff/Ex} and nAg.**Bhlhe40**^{Hi}Cd8), combination ICT increased expression of *Bhlhe40, Fasl, II7r,*

220	Icos, and Cd28, while decreasing Tox, Pdcd1, Lag3, Entpd1, and Tigit expression within both
221	clusters (Figures S7B and S7C). Further, combination ICT decreased Havcr2 and increased Cd69
222	expression in cluster nAg. Bhlhe40 ^{Hi} Cd8. The decrease in <i>Tox, Pdcd1, Lag3, Entpd1,</i> and <i>Tigit</i> (and
223	Havcr2 in nAg. Bhlhe40 ^{Hi} Cd8) was also observed with anti-CTLA-4 (but not with anti-PD-1) (Figures
224	S7B and S7C), suggesting that these changes induced by combination therapy were primarily
225	driven by anti-CTLA-4. In contrast, increased Bhlhe40 expression was most prominent in the
226	presence of anti-PD-1. Other features (e.g., increased Icos, Cd28, and Fasl) were unique to anti-
227	CTLA-4 and anti-PD-1 combination ICT treatment (Figure S7B).
228	
229	NeoAg vaccination preferentially increases PD-1 ⁺ TCF7 ⁺ stem-like as well as proliferating NeoAg-
230	specific CD8 T cells
231	Amongst the most prominent NeoAg vaccine-driven changes, NeoAg vaccines drove an
232	over 3-fold increase in the frequency of mLama4-specific CD8 T cells within cluster nAg.PD-
233	1 ⁺ TCF7 ⁺ Cd8 as compared to control mAb and over 8-fold increase as compared to control VAX
234	(Figure 3H). Cluster nAg.PD-1 ⁺ TCF7 ⁺ Cd8 displayed high expression of <i>Pdcd1</i> ; low to moderate
235	expression of Ifng, Gzmk, and Prf1; and little to no detectable expression of Havcr2 or Entpd1
236	(Figures 3G and S7B). nAg.PD-1 ⁺ TCF7 ⁺ Cd8 also expressed transcripts encoding molecules related
237	to T cell homing such as <i>Ccr7</i> , as well as <i>Bach2⁵⁶, Slamf6</i> , and <i>Tcf7</i> , consistent with CD8 T cells with
238	plastic or stem-like properties seen in progenitor exhausted CD8 T cells (Figures 3G, S7B and S8).
239	While NeoAg vaccines promoted this population, the proportion of NeoAg-specific CD8 T cells
240	within this cluster was largely unchanged with anti-CTLA-4, reduced slightly with anti-PD-1, and
241	even further reduced with combination anti-CTLA-4 and anti-PD-1 (Figure 3H). Anti-CTLA-4
242	containing treatments displayed decreased expression of Pdcd1, Lag3, Tigit and increased

243	expression of transcripts encoding molecules related to	T cell quiescence and homing such as
-----	---	--------------------------------------

244 S1pr1, Sell (Cd62l), and Klf2, as well as Il7r (Figures S7B and S7C).

245	We annotated 5 clusters of "cycling" NeoAg-specific CD8 T cells displaying a range of
246	activation states and proliferation signatures (Figures S7B and S8). NeoAg vaccination and control
247	VAX increased the frequency of cells each of the 5 cycling NeoAg-specific CD8 T cell clusters,
248	although to differing degrees (Figure 3I). This suggests that although far more NeoAg-specific CD8
249	T cells are observed within tumors treated with neo VAX as compared to control VAX (Figures 3C
250	and 3D), within NeoAg-specific CD8 T cells, both control VAX and neo VAX promotes cycling
251	tumor-specific CD8 T cells. Together, these 5 cycling clusters represented 20.9% of all mLama4-
252	specific CD8 T cells under control mAb treatment, 54.1% under control VAX treatment, and
253	61.3% under neo VAX treatment (Figure 3I). The frequency of total cells within cycling clusters
254	was modestly increased by anti-CTLA-4 or anti-PD-1 ICT, whereas anti-CTLA-4 plus anti-PD-1
255	combination ICT decreased the frequency by almost half. Within nAg.Cd8 _{Cycling_} 1,
256	nAg.Cd8 _{cycling_} 3 , and nAg.Cd8 _{cycling_} 4 , either control VAX or neo VAX increased the frequency of
257	NeoAg-specific CD8 T cells to about the same level (Figure 3H). In contrast, nAg.Cd8 _{Cycling_} 2
258	represented 10.6% of NeoAg-specific CD8 T cells under control VAX conditions, whereas under
259	neo VAX conditions, the frequency of cells within this cluster increased to 19.2% of NeoAg-
260	specific CD8 T cells (Figure 3H). As compared to the other cycling clusters, nAg.Cd8 _{cycling_} 2
261	expressed higher Xcl1, Tnfrsf4 (OX40), Tnfrsf9 (4-1BB), Prf1, and Ifng (Figures S7B and S9).
262	
263	TCR repertoire clonality is associated with different NeoAg-specific CD8 T cell states
264	We next assessed the relationship between TCR clonality and phenotype of mLama4
265	NeoAg-specific CD8 T cells. A total of 15,668 clonotypes expressing both TCR alpha and beta
266	chains (Figures 4A-4C) and 17,492 NeoAg-specific CD8 T cells with at least one productive TCR

267	alpha or beta chain or both (Figures S10A-S10C) were analyzed separately and primarily
268	focused our analyses on clonotypes expression both TCR alpha and beta. Amongst NeoAg-
269	specific CD8 T cells with both TCR alpha and beta with an activated phenotype, the 5 cycling
270	NeoAg-specific CD8 T cell clusters display highest overlapping TCR clonotypes with each other
271	and nAg. Bhlhe40^{Hi}Cd8 (Figures 4A and 4B) . nAg.Cd8 _{Eff/Ex} also displayed overlap with
272	nAg. Bhlhe40^{Hi}Cd8 and cycling CD8 T cell clusters. Although nAg. PD-1⁺TCF7 ⁺ Cd8 contained far
273	fewer overlapping TCR clonotypes, nAg. PD-1⁺TCF7 ⁺ Cd8 with TCR expressing both alpha and beta
274	chain, shared the largest frequency of clonotypes with nAg.Cd8 _13 , followed by nAg.Cd8 _{ізтім} ,
275	nAg.Cd8_12 and nAg.Cd8 _{Eff/Ex} (Figure 4B).
276	Shannon Diversity Index suggested a lower TCR diversity in the cycling clusters,
277	nAg. Bhlhe40^{Hi}Cd8 , and nAg.Cd8 _{Eff/Ex} with nAg.Cd8 _{isTIM} displaying greater diversity (Figure 4C) .
278	nAg. PD-1⁺TCF7 ⁺ Cd8 and nAg.Cd8_13 displayed greater diversity, with nAg.Cd8_12 displaying the
279	highest Shannon Diversity Index score. Comparing treatment groups, the largest putative increase
280	in NeoAg-specific CD8 T cell TCR diversity with TCR alpha and beta pair occurred with either anti-
281	PD-1 or anti-CTLA-4 ICT followed by anti-CTLA-4 and anti-PD-1 combination ICT, with all ICT
282	treatment groups displaying a higher Shannon Diversity Index score than control mAb and neo
283	VAX, which had a similar diversity score (Figure 4C). Amongst NeoAg-specific CD8 T cells with one
284	or both TCR alpha or beta chain, anti-CTLA-4 exhibited the highest Shannon TCR Diversity Score,
285	followed by anti-PD-1, anti-CTLA-4 and anti-PD-1 combination ICT, control mAb, and neo VAX
286	(Figure S10C). Control VAX displayed by far the least TCR diversity or highest clonality of NeoAg-
287	specific CD8 T cells among all treatment conditions (Figures 4C and S10C).
288	Thus, while ICT increase TCR diversity amongst mLama4 NeoAg-specific CD8 T cells, NeoAg
289	vaccines induce mLama4 NeoAg-specific CD8 T cells with more expanded clonotypes and less
290	diversity compared to ICT.

291 NeoAg vaccines induce robust expansion of NeoAg-specific IFN- γ^+ CD8 T cells expressing PD-1

and LAG-3 and/or TIM-3

293	Since we noted that mice treated with neo VAX displayed a greater frequency of PD-1 $^{\scriptscriptstyle +}$
294	TIM-3 ⁺ NeoAg-specific CD8 T cells as compared to other conditions when treatment was initiated
295	on d. 3 post-tumor transplant (Figure S1F), we assessed surface expression of PD-1, TIM-3, and
296	LAG-3 on intratumoral mLama4 NeoAg-specific CD8 T cells from mice when treatment initiation
297	occurred on d. 7 (as in our scRNAseq experiments). As expected, a majority of NeoAg-specific CD8
298	T cells expressed PD-1, with similar frequencies of PD-1 ⁺ TIM-3 ⁺ or PD-1 ⁺ LAG-3 ⁺ NeoAg-specific
299	CD8 T cells observed between control mAb, control VAX, and the different ICT treatment
300	conditions (Figures 4D and S7D). However, expression of PD-1 on a per cell basis was lower in ICT
301	treated groups. In contrast, a dramatic increase in the percentage of PD-1 ⁺ TIM-3 ⁺ or PD-1 ⁺ LAG-3 ⁺
302	NeoAg-specific CD8 T cells was observed in mice treated with neo VAX and amongst PD-1 ⁺ , TIM-3 ⁺ ,
303	or LAG-3 ⁺ NeoAg-specific CD8 T cells, PD-1, TIM-3, and LAG-3, respectively, was expressed higher
304	in the neo VAX treated group (Figure 4D). Intracellular cytokine staining (ICS) on isolated
305	intratumoral CD8 T cells restimulated with the mLama4 NeoAg peptide revealed that anti-CTLA-4
306	increased the frequency of IFN- γ^+ or TNF $lpha^+$ CD8 T cells, while neo VAX induced the greatest
307	expansion (> 5-fold) of IFN- γ^+ or TNF α^+ CD8 T cells (Figure 4E) . Amongst mLama4 NeoAg-
308	stimulated IFN- γ^+ CD8 T cells, expression of IFN- γ increased significantly with anti-CTLA-4 and/or
309	anti-PD-1, with neo VAX prompting the most robust increase (Figure 4E).
310	
311	Anti-CTLA-4 promotes Th1-like CD4 T cells expressing ICOS and Bhlhe40, while combination anti-

312 CTLA-4 and anti-PD-1 ICT induces a small subset of Th2-like CD4 T cells

313 Since effective neo VAX or anti-CTLA-4/anti-PD-1 ICT require not only CD8 T cells, but also 314 CD4 T cells (Figure S2A), we examined CD4 T cells from our scRNAseq performed on sorted CD45⁺

315	cells (Figure 2A). Anti-CTLA-4 prominently induced a higher frequency of conventional CD4 T cells
316	and reduced the percentage of Tregs as assessed by both scRNAseq and flow cytometry (Figures
317	2G-2I, 2K, S3A, and S3B). Notably, anti-CTLA-4 (+/- anti-PD-1) induced subpopulations of Th1-like
318	cells expressing <i>Ifng</i> and <i>Bhlhe40</i> , including cluster ICOS^{hi}Bhlhe40 ^{hi} CD4 _{Th1} that also highly
319	expressed Icos, Pdcd1, Ctla4, Cxcr6, Csf2 (GM-CSF), Fasl, Furin (encoding a TCR/IL-12-STAT4-
320	induced proprotein convertase), and <i>Tnfaip3</i> (encoding the A20 protein that regulates TCR/CD28-
321	mediated NF-κB activation and TCR-mediated survival) (Figures 2E, 5A, 5B, S5 and S11A).
322	ICOS ^{hi} Bhlhe40 ^{hi} CD4 _{Th1} displayed enrichment in IL-2 STAT5 and IL-6 JAK STAT3 signaling, TNFa
323	signaling via NF- κ B, and IFN- γ response gene sets amongst others (Figure S11A). neo VAX also
324	exhibited a greater frequency of cells within this cluster as compared to control VAX (Figure 5B).
325	Cd4 _{Th1_} A also expressed <i>lcos</i> and <i>Bhlhe40</i> , but to less of an extent than ICOS^{hi}Bhlhe40^{hi} CD4 _{Th1}
326	(Figures 5A and S5). Cd4 _{Th1} _A was further distinguished from ICOS ^{hi} Bhlhe40 ^{hi} CD4 _{Th1} by lower
327	Furin, Cxcr6, Runx3, Tnfaip3, Pdcd1, Havcr2, and Lag3 expression and higher Tbx21 (Tbet) and II7r
328	expression. Although both clusters expressed glycolytic enzyme transcripts, greater expression of
329	several of these transcripts was seen in ICOS ^{hi} Bhlhe40 ^{hi} CD4 _{Th1} , while Cd4 _{Th1} _A displayed gene set
330	enrichment in Fatty Acid Metabolism (Figures S5, S11A, and S11B). Additionally, both clusters
331	displayed significant enrichment in TGF beta signaling gene sets (Figures S11A and S11B). Anti-
332	CTLA-4 dramatically increased the frequency of Bhlhe40 ⁺ CD4 _{Th1} A, with anti-PD-1, and to less of
333	an extent neo VAX, also increasing cells within this cluster (Figure 5B). CD4 _{Th1} B was the smallest
334	cluster of Th1-like cells and exhibited high Ifng, Pdcd1, Havcr2, and Tigit expression (Figures 5A,
335	S5, and S11C). This cluster also expressed the highest level of Lag3 and Tox amongst all CD4
336	clusters (Figures 2E, 5A and S5). Only subtle changes to the frequency of cells within this cluster
337	were seen with treatments apart from control VAX and combination anti-CTLA-4 and anti-PD-1,

338	with the latter displaying the highest frequency of cells within this cluster amongst all conditions
-----	--

339 (Figure 5B).

340	The increase in IFN- γ expressing Th1-like cells most prominently induced by anti-CTLA-4
341	was reflected by ICS on isolated intratumoral CD4 T cells restimulated <i>ex vivo</i> with the mltgb1
342	MHC-II NeoAg peptide. Anti-CTLA-4 +/- anti-PD-1 induced the strongest increase in the overall
343	frequency of conventional CD4 T cells, with anti-CTLA-4 and/or anti-PD-1 increasing the frequency
344	of IFN- γ^+ CD4 T cells upon restimulation with mItgb1 peptide (Figures 5C and 5D). This is in
345	contrast to neo VAX, where only subtle changes were observed. Altogether, these findings indicate
346	that while mice treated with anti-CTLA-4, alone or in combination with anti-PD-1, display the most
347	dramatic increase in IFN- γ -producing Th1-like CD4 T cells within the tumor, anti-PD-1 also incites
348	IFN- γ^+ CD4 T cells (Figure 5D). This is also supported by comparing the expression of <i>Ifng</i> transcript
349	within <i>Ifng</i> ⁺ CD4 T cell clusters, where anti-PD-1 induced increased <i>Ifng</i> expression, even in clusters
350	whose frequency was unaltered by anti-PD-1 (Figures 5A, S5, and S11A-S11D).
351	Interestingly, combination ICT induced expansion of $Cd4_{Th2}$, a small cluster that express
352	Icos and Bhlhe40, as well as Furin, Tnfaip3, Cd28, and II7r. Unlike the other ICOS ⁺ Bhlhe40 ⁺ clusters,
353	Ifng, Havcr2, and Lag3 were barely detectable and instead, Cd4 _{Th2} expressed Gata3, II4, II5, and
354	II13, indicative of Th2-like CD4 T cells (Figures 5A, S5, S11E, and S11F).
355	To gain insight into the temporal dynamics of the observed changes in CD4 T cells, we used
356	Monocle to analyze scRNAseq data ⁵⁷ . Monocle suggested that the starting point for conventional
357	CD4 T cells corresponds to cells within either the Cd4 _{Naive/Mem} cluster (expressing <i>Tcf7, Il7r,</i> and
358	<i>S1pr1</i>) or CD4 T cells within the Cd4/8 _{Cycling} cluster (Figure 5E) with Cd4 _{Tfh} (displaying T follicular
359	helper-like transcriptional features) connecting Cd4/8 _{Cycling} CD4 T cells to the main trajectory
360	towards $Cd4_{Naive/Mem}$ and the branch to more activated, polarized CD4 T cells. Notably, a
361	pseudotime trajectory branch point occurs whereby activated CD4 T cells occupy Th1-like

362	ICOS ^{hi} Bhlhe40 ^{hi} Cd4 _{Th1} driven by anti-CTLA-4 (+/- anti-PD-1) (and to a lesser extent by neo VAX) or
363	encounter another branch whereby they assume one of two fates: they either become Th1-like
364	CD4 T cells within Cd4 _{Th1} _A or become Th2-like Cd4 _{Th2} , with Cd4 _{Th1} _A being induced by anti-CTLA-
365	4 and/or anti-PD-1 or neo VAX and Cd4 _{Th2} primarily being driven by combination anti-CTLA-4 and
366	anti-PD-1 (Figure 5E) .
367	
368	Features of intratumoral Treg subpopulations during NeoAg vaccine or ICT treatment
369	We also identified three CD4 Foxp3 ⁺ Treg clusters (Figures S3B) . Treg_1 and Treg_3
370	appeared to be the most activated with Treg_3 expressing the highest level of Ctla4, Havcr2, and
371	Klrg1 (Figure S5). Mice treated with anti-CTLA-4 alone or in combination with anti-PD-1
372	experienced a decrease in frequency of Treg_1 and Treg_3 (Figures S3B), which is consistent with
373	previous results that the anti-CTLA-4 mAb we used (mouse IgG2b; clone 9D9) partially depletes
374	Tregs, especially those highly expressing CTLA-4 ^{19,21-23,58-60} . Treg_2 expressed lower amounts of
375	Ctla4, Havcr2, Tigit, and Klrg1 with the frequency of these Tregs not being affected by anti-CTLA-4,
376	whereas anti-PD-1 with or without anti-CTLA-4, control VAX, or neo VAX displaying a greater
377	frequency of cells in this cluster (Figure S3B). As compared to control VAX, the cellular density of
378	Treg_1 and Treg_2 decreased in tumors from mice treated with neo VAX (Figures S3B). Further,
379	transcript expression of <i>Foxp3</i> in Treg_2 was lower in the neo VAX group. These alterations to the
380	overall frequency of Tregs most prominently observed in the presence of anti-CTLA-4 were also
381	corroborated by flow cytometry analysis (Figure S3A).
382	
383	Intratumoral myeloid cell compartment during NeoAg vaccines or ICT treatment
384	To characterize intratumoral monocytes/macrophages and DCs, we subclustered myeloid
385	cells excluding the single cluster of neutrophils (Figures 2B, 2C, S3A, and S12A). In addition to a

386	cluster of plasmacytoid DCs (pDCs), four other DC clusters were identified (Figures S12A-S12E).
387	Cluster CD103 ⁺ cDC1 expressed multiple classical DC (cDC) 1 transcripts including <i>Itgae</i> (<i>Cd103</i>),
388	Xcr1, and Clec9a (Figures S12B and S12E). CD63 ⁺ Ccr7 ⁺ cDC and Ccr7 ⁺ cDC expressed Ccr7, Cd1d1,
389	Cd200, Fscn1, Cd274 (PD-L1), and Pdcd1lg2 (PD-L2). As compared to Ccr7 ⁺ cDC, CD63 ⁺ Ccr7 ⁺ cDC
390	expressed higher Cd63, Cd40, Btla, and Cd70 (Figures S12D and S12E). These two migratory cDC
391	clusters are consistent with mregDCs, a term describing a maturation state of cDC1s and cDC2s
392	upon uptake of tumor antigen and although they express immunoregulatory molecules, they are
393	not necessarily immunosuppressive ^{61,62} .
394	
395	Distinct Macrophage Remodeling Induced by NeoAg Vaccines and ICT
396	Overall, monocytes/macrophages represented a plurality of intratumoral CD45 ⁺ cells and
397	displayed a range of phenotypic states ^{63,64} (Figures 6A, S3A, and S13). Ccr2 ⁺ M_c1 displayed
398	transcripts consistent with monocytes, including Ccr2 and Chil3, and the frequency of cells within
399	this cluster increased slightly with anti-PD-1 or neo VAX (Figures 6A, 6B, and S13C) . While <i>Chil3</i> ⁺
400	monocytes were previously shown to be reduced by a NeoAg vaccine in preclinical models ⁶⁵ , the
401	NeoAg vaccine and adjuvant used in that setting differed from ours.
402	We previously demonstrated that anti-CTLA-4 and/or anti-PD-1 induces macrophage TME
403	remodeling characterized by a reduction in M2-like macrophages co-expressing the fractalkine
404	receptor (CX3CR1) and CD206 and an increase in M1-like iNOS⁺ macrophages in mouse MCA
405	sarcoma models ^{19,21} . We noted a similar ICT-induced remodeling trend in the Y1.7LI melanoma
406	model. Whereas a slight decrease in the frequency of CX3CR1 ⁺ CD206 ^{hi} M_c2 cells expressing high
407	levels of Cx3cr1, Mrc1 (Cd206), Trem2, Vcam1, Cd63, Cd81, and Cd72 was observed with anti-
408	CTLA-4 +/- anti-PD-1 ICT, expression of <i>Cx3cr1</i> and the frequency of <i>Cx3cr1</i> ⁺ macrophages within
409	this cluster was decreased under all ICT treatment conditions or with neo VAX (Figures 6A-6C,

410	S13A, and S13C) . CX3CR1 ⁺ CD206 ⁺ M_c3 also expressed <i>Cx3cr1</i> , as well as <i>Mrc1</i> , <i>Trem2</i> , <i>Vcam1</i> ,
411	and <i>Cd72</i> with the latter transcripts being expressed less than in CX3CR1 ⁺ CD206 ^{hi} M_ c2 (Figure
412	6A) . CX3CR1 ⁺ CD206 ⁺ M_ c3 also displayed high expression of <i>Mki67</i> and exhibited lower <i>Mertk</i>
413	expression as compared to CX3CR1 ⁺ CD206 ^{hi} M_ c2 . Anti-CTLA-4 reduced the frequency of
414	CX3CR1 ⁺ CD206 ⁺ M_c3 (Figures 6B and S13A). Although the aforementioned two clusters
415	expressed the highest levels of <i>Cx3cr1</i> and <i>Mrc1</i> , M_ c8 macrophages also expressed <i>Cx3cr1</i> and
416	<i>Mrc1</i> under control mAb conditions with ICT reducing expression of <i>Cx3cr1</i> within these clusters
417	(Figures 6C and S13A). Comparable expression levels of <i>Cx3cr1</i> was observed in M_c8 under
418	control VAX and neo VAX conditions, with neo VAX increasing the frequency of cells within this
419	cluster (Figures 6B, 6C, and S13A). Under control VAX conditions, a proportion of cells in cluster
420	M_c10 expressed Cx3cr1 and Mrc1, and under either control VAX or neo VAX conditions,
421	macrophages within cluster M_c11 expressed both Cx3cr1 and Mrc1. The frequency of cells within
422	M_ c11 increased in mice treated with either control VAX or neo VAX, with ICT reducing this
423	population (Figures 6B and S13A). Overall, monocytes/macrophages from mice treated with
424	control VAX and neo VAX displayed higher average expression of <i>Cx3cr1</i> as compared to ICT
425	groups, with neo VAX also displaying similar expression of <i>Mrc1</i> as control mAb (Figure 6D).
426	Several monocyte/macrophage clusters expressed high levels of Nos2 (iNOS); other
427	clusters expressed varying levels of Nos2, with expression of Nos2 being highly correlated with ICT
428	treatment, as well as neo VAX to some extent (Figures 6C and S13B). Further, expression of Cd274
429	also correlated with expression of <i>Nos2</i> within macrophage clusters, in particular under ICT
430	treatment conditions (Figure S13C). While the overall frequency of these iNOS ⁺ M1-like clusters
431	only modestly increased with ICT, the frequency of cells within these clusters expressing Nos2
432	and/or Nos2 expression on a per cell basis dramatically increased under all ICT conditions (Figures
433	6B, 6C, and S13B). Nos2 ^{hi} M_c4 and Nos2 ^{hi} M_c6 both manifested high expression of <i>Nos2, Il1a,</i>

434	II1b, Cxcl2, Inhba, and Nfkb1, signatures of inflammatory macrophages (Figures 6A and S13C).
435	While Nos2 ^{hi} M_ c4 displayed classic features of M1-like macrophages including low <i>Mrc1</i>
436	expression, Nos2 ^{hi} M_c6 moderately expressed <i>Mrc1</i> and exhibited higher <i>F13a1</i> , <i>Trem2</i> , and <i>Il1a</i> ,
437	along with lower <i>II1r2</i> expression compared to Nos2 ^{hi} M_c4 (Figures 6A and S13C). Nos2 ^{hi} M_c4
438	displayed high expression of Cxcl9 and Spp1, with expression of the latter diminished with ICT or
439	neo VAX (Figure S13C). Higher CXCL9 and lower SPP1 expression was recently found to be
440	correlated with a macrophage prognostic score in cancer patients ⁶⁶ . Nos2 ^{hi} M_ c5 highly
441	expressed Nos2 in the presence of ICT, with ICT also increasing the frequency of macrophages
442	within this cluster (Figures 6B, 6C, and S13B). This cluster also expressed moderate levels of Mki67
443	and other cell cycle related transcripts, indicative of iNOS ⁺ macrophages with proliferative
444	capabilities (Figure 6A). Nos2 ^{hi} M_c7 was the smallest iNOS ⁺ macrophage cluster and in addition to
445	<i>Nos2</i> expression under ICT conditions, Nos2 ^{hi} M_ c7 highly expressed interferon-stimulated genes
116	
446	(15GS) (Figures 6A, 513B and 513C) .
446 447	(ISGS) (Figures 6A, SI3B and SI3C). These same overall patterns were manifested at the protein level where in anti-CTLA-4
446 447 448	(ISGS) (Figures 6A, SI3B and SI3C). These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages
446 447 448 449	(ISGS) (Figures 6A, SI3B and SI3C). These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast,
 446 447 448 449 450 	(ISGS) (Figures 6A, SI3B and SI3C). These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast, while neo VAX treated mice also displayed a greater frequency of iNOS ⁺ macrophages,
 446 447 448 449 450 451 	(ISGS) (Figures 6A, SI3B and SI3C). These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast, while neo VAX treated mice also displayed a greater frequency of iNOS ⁺ macrophages, CX3CR1 ⁺ CD206 ⁺ macrophages were only slightly reduced by neo VAX as compared to control VAX,
 446 447 448 449 450 451 452 	(ISGS) (Figures 6A, S13B and S13C). These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast, while neo VAX treated mice also displayed a greater frequency of iNOS ⁺ macrophages, CX3CR1 ⁺ CD206 ⁺ macrophages were only slightly reduced by neo VAX as compared to control VAX, but were maintained at a similar frequency as seen in control mAb treated mice (Figures 6E and
 446 447 448 449 450 451 452 453 	(ISGS) (Figures 6A, S13B and S13C). These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast, while neo VAX treated mice also displayed a greater frequency of iNOS ⁺ macrophages, CX3CR1 ⁺ CD206 ⁺ macrophages were only slightly reduced by neo VAX as compared to control VAX, but were maintained at a similar frequency as seen in control mAb treated mice (Figures 6E and 6F). These results reveal that despite a relatively a similar abundance of CX3CR1 ⁺ CD206 ⁺
 446 447 448 449 450 451 452 453 454 	These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast, while neo VAX treated mice also displayed a greater frequency of iNOS ⁺ macrophages, CX3CR1 ⁺ CD206 ⁺ macrophages were only slightly reduced by neo VAX as compared to control VAX, but were maintained at a similar frequency as seen in control mAb treated mice (Figures 6E and 6F). These results reveal that despite a relatively a similar abundance of CX3CR1 ⁺ CD206 ⁺ macrophages that were previously associated with progressively growing tumors in untreated or
 446 447 448 449 450 451 452 453 454 455 	These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast, while neo VAX treated mice also displayed a greater frequency of iNOS ⁺ macrophages, CX3CR1 ⁺ CD206 ⁺ macrophages were only slightly reduced by neo VAX as compared to control VAX, but were maintained at a similar frequency as seen in control mAb treated mice (Figures 6E and 6F). These results reveal that despite a relatively a similar abundance of CX3CR1 ⁺ CD206 ⁺ macrophages that were previously associated with progressively growing tumors in untreated or control mAb treated mice ^{19,21} , neo VAX induces tumor regression equivalent to ICT.
 446 447 448 449 450 451 452 453 454 455 456 	These same overall patterns were manifested at the protein level where in anti-CTLA-4 and/or anti-PD-1 treated mice, the frequency of intratumoral CX3CR1 ⁺ CD206 ⁺ macrophages decreased with a concomitant increase in iNOS ⁺ macrophages (Figures 6E and 6F). In contrast, while neo VAX treated mice also displayed a greater frequency of iNOS ⁺ macrophages, CX3CR1 ⁺ CD206 ⁺ macrophages were only slightly reduced by neo VAX as compared to control VAX, but were maintained at a similar frequency as seen in control mAb treated mice (Figures 6E and 6F). These results reveal that despite a relatively a similar abundance of CX3CR1 ⁺ CD206 ⁺ macrophages that were previously associated with progressively growing tumors in untreated or control mAb treated mice ^{19,21} , neo VAX induces tumor regression equivalent to ICT.

458 ICT Broadens Therapeutic Window for Neoantigen Vaccines

459	We noted changes that were not only shared between treatment conditions, but also
460	distinct depending upon which treatment strategy was employed, which was further illustrated
461	by Principle Component Analysis (PCA) (Figure S14). This, together with our findings that neo
462	VAX induces robust expansion of IFN- γ -producing NeoAg-specific CD8 T cells that highly express
463	PD-1 (Figures 3C, 3D, 4D, 4E, and S7A), prompted us to asked whether neo VAX could synergize
464	with ICT. While neo VAX or ICT led to robust rejection of Y1.7LI when initiated on d. 7 post-
465	transplant, a majority of tumor bearing mice displayed tumor outgrowth when treatment with
466	anti-CTLA-4, anti-PD-1, or neo VAX was initiated on d. 12 post-transplant. We therefore used a
467	d. 12 treatment start timepoint to assess whether combining neo VAX with anti-CTLA-4 or anti-
468	PD-1 improved efficacy (Figure 7A). Mice treated with neo VAX in combination with anti-CTLA-4
469	or anti-PD-1 displayed enhanced tumor control as compared to control VAX (irrelevant SLP +
470	pI:C) + anti-PD-1 or control VAX + anti-CTLA-4 (Figure 7A). Further, neo VAX used in
471	combination with anti-CTLA-4 or anti-PD-1 provided superior tumor growth inhibition
472	compared to combination anti-CTLA-4 and anti-PD-1 ICT. To extend our findings to a distinct
473	tumor model, we assessed our vaccine protocol and combination treatment using the MC38
474	tumor model, which has several known endogenous MHC-I tumor NeoAgs ^{17,67,68} . We previously
475	confirmed in our MC38 line the presence of point mutations that form NeoAgs (mAdpgk,
476	mRpl18, and mDpagt1) ^{17,67} . We assessed combinatorial treatments in MC38 tumor bearing
477	mice by choosing an injection dose of cells and treatment schedule where monotherapy with
478	anti-CTLA-4, anti-PD-1, or neo VAX alone is largely ineffective (Figure 7B). PBS, control VAX, or
479	neo VAX was administered to MC38 tumor bearing mice on d. 12 and 19 post-transplant with or
480	without anti-CTLA-4 or anti-PD-1 given on d. 12, 15, 18, and 22. Similar to results in the Y1.7LI
481	model, neo VAX in combination with anti-CTLA-4 or anti-PD-1 provided superior protection

versus monotherapy (Figure 7B). These findings in two distinct models complement ongoing
NeoAg vaccine clinical trials and further support the rationale for combination NeoAg-based
therapies.

485

486 **Discussion**

487 In this study, we compared different immunotherapies that lead to tumor rejection and pertinent control treatments where tumor progression occurs using mouse melanoma models 488 489 with relevant gain- and loss-of-function genetic perturbations⁴⁵ and defined NeoAgs. Although 490 prior studies have examined NeoAg vaccines^{13,15,17,65,69-71}, few (if any) studies have performed 491 extensive comparisons between NeoAg vaccines, anti-CTLA-4, anti-PD-1, and combination ICT in 492 the same robust experimental system. While most prior studies involving ICT or NeoAg vaccines 493 focused on either lymphoid or myeloid cells^{22,69,70,72}, our work has provided insights into both 494 categories of cells and how different immunotherapies differentially affect these cells. Our 495 treatment schedule and analyses were initially performed so that the NeoAg cancer vaccines or 496 ICT we used lead to complete tumor rejection in a majority of mice; thus, we could compare and 497 contrast the molecular and cellular changes that occur as a consequence of NeoAg vaccines or 498 different forms of ICT and link them to outcomes. We specifically chose to study an SLP NeoAg 499 vaccine to complement ongoing clinical trials employing SLPs usually in combination with the 500 adjuvant polyIC:LC^{7,10,73}.

501 The current study makes several key observations. First, NeoAg vaccines and ICT work by 502 several overlapping mechanisms related to the CD8 T cell response, with key differences in the 503 overall magnitude of the response and phenotype of NeoAg-specific CD8 T cells observed. NeoAg 504 vaccines induce the greatest expansion of functional intratumoral NeoAg-specific CD8 T cells 505 including proliferating T cells and PD-1⁺ TCF-1⁺ stem-like CD8 T cells^{69,74}. However, anti-CTLA-4

506	and/or anti-PD-1 also increased the frequency of intratumoral CD8 T cells, including NeoAg-specific
507	CD8 T cells with enhanced production of IFN- γ . Anti-PD-1 alone, or most dramatically when
508	administered in combination with anti-CTLA-4 ICT, induced a subset of Bhlhe40 ^{hi} NeoAg-specific
509	CD8 T cells also display high expression of <i>Tbx21</i> and <i>Ifng</i> . We previously documented that ICT
510	promotes Bhlhe40 upregulation in NeoAg tumor-specific T cells and that expression of Bhlhe40 in
511	CD4 and/or CD8 T cells is paramount for effective ICT ²¹ . A more recent study identified Bhlhe40 as
512	modulating a key differentiation point between progenitor and intermediate subsets of exhausted
513	T cells in an in vitro exhaustion model and chronic LCMV infection ⁷⁵ . Additionally, Bhlhe40 ^{hi}
514	NeoAg-specific CD8 T cells expressed Ctla4, Cd69, as well as Nr4a1 and Nr4a3, which suggest
515	recent activation and/or TCR stimulation due to their known pattern of rapid and transient
516	expression following T cell stimulation. While some of the alterations in cellular subpopulations
517	and gene/protein expression observed with combination ICT were distinct from either anti-CTLA-4
518	or anti-PD-1, certain features were also observed with anti-CTLA-4 ICT, whereas other changes
519	were more akin to those observed with anti-PD-1. These findings add to the accumulating
520	evidence that the enhanced anti-tumor activity of combination anti-CTLA-4 and anti-PD-1 ICT is
521	likely mediated by not only additive effects, but also through mechanisms distinct from the
522	monotherapies ^{19,23} .
523	Amongst mLama4 NeoAg-specific CD8 T cells with an activated phenotype,
524	cycling/proliferating CD8 T cells displayed a high degree of overlapping TCR clonotypes with each
525	of the cycling clusters, as well as with nAg. Bhlhe40^{Hi}Cd8. nAg.Cd8 _{Eff/Ex} also displayed overlap with
526	nAg. Bhlhe40^{Hi}Cd8 and cycling CD8 T cell clusters. A similar observation was made in human non-
527	small cell lung cancers (NSCLC) patients, where the TCRs in CD8 T cells recognizing NeoAgs or non-
528	mutant tumor antigens that expressed markers of exhaustion overlapped to large extent with
529	proliferating CD8 T cells ⁷⁶ . Shannon Diversity Index suggested a lower TCR diversity in the cycling

530	clusters, nAg.Cd8 _{Eff/Ex} , and nAg. Bhlhe40^{Hi}Cd8 . The lower diversity and high clonotype expansion
531	seen in nAg.Cd8 _{Eff/Ex} and nAg. Bhlhe40^{Hi}Cd8 are consistent with observations made in human
532	melanoma patients, where it was shown that highly expanded clonotype families were
533	predominantly comprising CD8 T cells expressing markers of exhaustion ⁵³ . Cluster nAg. PD-
534	1 ⁺ TCF7 ⁺ Cd8 with a stem-like/progenitor exhausted phenotype displayed greater TCR diversity than
535	cycling clusters, nAg.Cd8 _{eff/ex} , nAg. Bhlhe40^{Hi}Cd 8, and nAg.Cd8 _{isтим} . We also found that compared
536	to control mAb, a higher Shannon Diversity Index score was observed with any of the ICT
537	treatment conditions assessed, with anti-CTLA-4 promoting the largest putative increase in NeoAg-
538	specific CD8 TCR diversity. NeoAg-specific CD8 TCR from NeoAg vaccine treated mice displayed
539	less diversity, suggesting that NeoAg vaccines promote expansion of NeoAg-specific CD8 T cells
540	with a more restricted TCR repertoire while under control VAX treatment conditions, NeoAg-
541	specific CD8 T cells are highly clonal.
542	In addition to modulating the CD8 T cell compartment, ICT notably impacted the CD4 T cell
543	compartment as well. Anti-CTLA-4 reduced the frequency of Tregs as expected ^{19,21,22,58-60} and
544	induced ICOS ⁺ Th1-like conventional CD4 T cells displaying high expression of Bhlhe40 ²¹ .
545	Interestingly, subsets of Th1-like CD4 T cells with high expression of Bhlhe40 were previously
546	found to be enriched in patients with microsatellite instability colorectal cancer, who display
547	favorable outcomes in response to anti-CTLA-4 ⁷⁷ . Further, studies in both preclinical models and
548	human melanoma patients have revealed that anti-CTLA-4 induces ICOS ⁺ CD4 T cells expressing
549	IFN- $\gamma^{78,79}$. Anti-PD-1 also increased the frequency of overall IFN- γ^+ Th1-like CD4 T cells, but to less
550	of an extent as compared to anti-CTLA-4. Combination anti-CTLA-4 and anti-PD-1 ICT induced a
551	small, but significant subpopulation of Th2-like CD4 T cells (Cd4 _{Th2}).
552	While vaccines targeting MHC-I NeoAgs predominately altered CD8 T cells, we found that

553 these MHC-I NeoAg vaccines require CD4 T cells for efficacy. The detailed mechanisms regarding

554	the contribution of CD4 T cells in NeoAg vaccines targeting MHC-I NeoAgs remains to be fully
555	elucidated. Although CD4 T cells and MHC-II NeoAgs are critical components of anti-tumor
556	immunity ^{20,48,80-86} , we specifically chose to utilize an SLP vaccine against a single MHC-I NeoAg to
557	definitively link the MHC-I NeoAg vaccine response to a specific defined NeoAg. Further, since
558	MHC-II NeoAgs are more difficult to predict than MHC-I NeoAgs, we wanted to study the effects of
559	an MHC-I NeoAg vaccine and whether this NeoAg vaccine approach in combination with anti-
560	CTLA-4 or anti-PD-1 ICT could provoke rejection of larger, established tumors. While SLPs offer
561	several advantages over short peptides including the potential to provoke both CD4 and CD8 T
562	cells responses ^{87,88} ; the NeoAg SLPs we used (mAlg8 or mLama4) provoke only NeoAg-specific CD8
563	T cell responses ¹³ . Nevertheless, determining whether incorporating an MHC-II NeoAg such as
564	mItgb1 or even a shared, non-mutant antigen will enhance the efficacy of NeoAg vaccines in our
565	models is of future interest.
566	Beyond the T cell compartment, we noted a divergent impact of NeoAg vaccines on the
5(7	
307	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺
568	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and
568 569	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just
568 569 570	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just pI:C by itself, likely contributes to some of the changes observed in the macrophage compartment,
568 569 570 571	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just pI:C by itself, likely contributes to some of the changes observed in the macrophage compartment, consistent with observations that peptide vaccine-induced CD8 T cells modify the intratumoral
 567 568 569 570 571 572 	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just pI:C by itself, likely contributes to some of the changes observed in the macrophage compartment, consistent with observations that peptide vaccine-induced CD8 T cells modify the intratumoral macrophage compartment ⁸⁹ . ICT reduced the frequency of intratumoral M2-like CX3CR1 ⁺ CD206 ⁺
 567 568 569 570 571 572 573 	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just pI:C by itself, likely contributes to some of the changes observed in the macrophage compartment, consistent with observations that peptide vaccine-induced CD8 T cells modify the intratumoral macrophage compartment ⁸⁹ . ICT reduced the frequency of intratumoral M2-like CX3CR1 ⁺ CD206 ⁺ macrophages whereas neo VAX (NeoAg SLP + pI:C) treated mice displayed a greater frequency of
 567 568 569 570 571 572 573 574 	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just pI:C by itself, likely contributes to some of the changes observed in the macrophage compartment, consistent with observations that peptide vaccine-induced CD8 T cells modify the intratumoral macrophage compartment ⁸⁹ . ICT reduced the frequency of intratumoral M2-like CX3CR1 ⁺ CD206 ⁺ macrophages whereas neo VAX (NeoAg SLP + pI:C) treated mice displayed a greater frequency of CX3CR1 ⁺ CD206 ⁺ macrophages, albeit less than with control VAX (irrelevant SLP + pI:C), as
 567 568 569 570 571 572 573 574 575 	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just pI:C by itself, likely contributes to some of the changes observed in the macrophage compartment, consistent with observations that peptide vaccine-induced CD8 T cells modify the intratumoral macrophage compartment ⁸⁹ . ICT reduced the frequency of intratumoral M2-like CX3CR1 ⁺ CD206 ⁺ macrophages whereas neo VAX (NeoAg SLP + pI:C) treated mice displayed a greater frequency of CX3CR1 ⁺ CD206 ⁺ macrophages, albeit less than with control VAX (irrelevant SLP + pI:C), as compared to control mAb or ICT treated mice. Therefore, NeoAg vaccines to provoke tumor
 567 568 569 570 571 572 573 574 575 576 	myeloid compartment compared to ICT. Both ICT and neo VAX increased M1-like iNOS ⁺ macrophages to levels higher than with control mAb or control VAX. Since both control VAX and neo VAX contained pI:C, the induction of NeoAg-specific CD8 T cells by the neo VAX, and not just pI:C by itself, likely contributes to some of the changes observed in the macrophage compartment, consistent with observations that peptide vaccine-induced CD8 T cells modify the intratumoral macrophage compartment ⁸⁹ . ICT reduced the frequency of intratumoral M2-like CX3CR1 ⁺ CD206 ⁺ macrophages whereas neo VAX (NeoAg SLP + pI:C) treated mice displayed a greater frequency of CX3CR1 ⁺ CD206 ⁺ macrophages, albeit less than with control VAX (irrelevant SLP + pI:C), as compared to control mAb or ICT treated mice. Therefore, NeoAg vaccines to provoke tumor regression in a TME that is partially distinct from that of ICT. In MCA sarcoma models, we found

578	depletion of CX3CR1 ⁺ CD206 ⁺ macrophages was partially independent of IFN- γ^{19} . In our vaccine
579	setting, we hypothesize that favors the induction of T cell-derived IFN- γ and other signals that
580	drives monocyte polarization to iNOS ⁺ macrophages upon entering the tumor, but other signals
581	promote maintenance, expansion, or induction of CX3CR1 ⁺ CD206 ⁺ macrophages as well. These
582	signals are yet unknown but are likely induced by the pI:C (contained in both the control VAX
583	and neo VAX), which acts as a TLR3 agonist in the endosome to potently induce a type I IFN
584	response and can also activate RIG-I/MDA-5 in the cytosol to promote IL-12 production ^{90,91} .
585	Although we use "M1-like" and "M2-like", our current study further supports the concept that
586	intratumoral macrophages display a spectrum of activation states and do not fit exclusively into
587	"M1" or "M2" states ⁶³ . While CX3CR1 ⁺ CD206 ⁺ macrophages display expression patterns
588	consistent with immunosuppressive macrophages, transcriptional profiling and select
589	phenotype marker expression may not distinguish macrophages as immunosuppressive.
590	Nevertheless, it is tempting to speculate that combining NeoAg vaccines that maintain or
591	promote CX3CR1 ⁺ CD206 ⁺ macrophages expressing high levels of <i>Trem2</i> with treatments
592	targeting this macrophage population ^{42,92} might enhance the efficacy of NeoAg vaccines.
593	The unique features induced by each immunotherapy condition prompted us to assess
594	combining NeoAg vaccines with anti-CTLA-4 or anti-PD-1 ICT. In both the Y1.7LI melanoma model
595	and MC38 model, NeoAg vaccines combined with either anti-CTLA-4 or anti-PD-1 leads to equal or
596	even better anti-tumor immune responses than even combination anti-CTLA-4 and anti-PD-1.
597	While up to 20-30% of patients treated with anti-CTLA-4 or anti-PD-1 may experience durable
598	cancer control, ~50% of metastatic melanoma patients treated with the combination of anti-
599	CTLA-4 plus anti-PD-1 experience durable cancer control; however, immune related adverse
600	events remain a problem ^{93,94} . As NeoAg vaccines have demonstrated favorable safety
601	profiles ^{6,7} , combining NeoAg vaccines with single agent ICT may yield robust anti-tumor

602	immunity with less toxicity than anti-CTLA-4 and anti-PD-1 combination ICT ⁶⁹⁻⁷² . While we find
603	that anti-CTLA-4 or anti-PD-1 can synergize with neo VAX in different tumor models when we
604	give the first NeoAg vaccine and ICT mAb at the same time, the timing of treatment may impact
605	the response in certain situations, as observed in other models and vaccine settings ⁹⁵ . Although
606	our approach targeting a single NeoAg in the Y1.7 model and three NeoAgs in the MC38 model
607	was efficacious, it is likely that targeting multiple NeoAgs and possibly even shared, non-mutant
608	antigens will be required in patients due to tumor heterogeneity and therapy induced-
609	immunoediting, with at least some of the antigens targeted by the vaccine needing to be clonal
610	NeoAgs ^{96,97} .
611	This study provides key insights into the transcriptional, molecular, and functional
612	changes that occur within major immune cell populations within the TME following different
613	forms of cancer immunotherapy and compliments ongoing human clinical studies of NeoAg
614	vaccines. Although we did not fully elaborate on every specific immune cell population we
615	profiled, our analyses were designed to interrogate the entire immune TME, and thus our study
616	should additionally provide an important resource. The myeloid and lymphoid cell subsets and
617	potential biomarkers we have described herein should inform the development of improved
618	personalized NeoAg vaccines and combinatorial therapies in human patients.
619	
620	
621	
622	
673	
045	

625 STAR★Methods

- 626 Key resources Table S1
- 627
- 628 **Mice**
- 629 All mice used were on a C57BL/6 background. Wildtype (WT) C57BL/6J mice were purchased
- 630 from Jackson Labs. All in vivo experiments used 8- to 12-week-old male or female mice (to
- 631 match the sex and strain of the tumors). All mice were housed in a specific pathogen-free
- 632 animal facility. All animal studies were performed in accordance with, and with the approval of
- 633 the Institutional Animal Care and Use Committee (IACUC) of The University of Texas MD
- 634 Anderson Cancer Center (Houston, TX).
- 635
- 636 Plasmids
- 637 Gene blocks for mAlg8, mItgb1, or mLama4 were purchased from Integrated DNA Technologies.
- 638 Minigene constructs were cloned into the BgIII site of pMSCV-IRES GFP (mAlg8 and mItgb1) or
- 639 pMSCV (mLama4 and mItgb1) using the Gibson Assembly method (New England Biolabs). To
- 640 generate neoantigen-expressing Y1.7 melanoma cell lines, constructs were transiently
- transfected into Phoenix Eco cells using Fugene (Promega). After 48 hours, viral
- 642 supernatants were filtered and subsequently used for transfection of Y1.7 melanoma cell line.
- 643 Y1.7 mLama4 ^{MHC-I}.mltgb1 ^{MHC-II} (Y1.7LI) and Y1.7 mAlg8 ^{MHC-I}.mltgb1 ^{MHC-II} (Y1.7AI) were sorted
- based on GFP positivity and clones were verified for neoantigen expression.

645

646 **Tumor cell lines**

647 The *Braf^{V600E} Cdkn2a^{-/-} Pten^{-/-}* YUMM1.7 parental line was originally generated in a male GEMM 648 on the C57BL/6 background as described⁴⁵. Parental YUMM1.7 was purchased from ATCC (CRL-

- 649 3362) and was modified to generate NeoAg-expressing Y1.7 lines. The MC38 line was obtained
- 650 from B. Schreiber (Washington University in St. Louis School of Medicine). All tumor cell lines
- 651 were found to be free of common mouse pathogens and Mycoplasma as assessed by IDEXX
- 652 IMPACT I mouse pathogen testing [PCR evaluation for: Corynebacterium bovis,
- 653 Corynebacterium sp. (HAC2), Ectromelia, EDIM, Hantaan, K virus, LCMV, LDEV, MAV1, MAV2,
- 654 mCMV, MHV, MNV, MPV, MTV, MVM, Mycoplasma pulmonis, Mycoplasma sp., Polyoma, PVM,
- 655 REO3, Sendai, TMEV] in December 2023. Tumor cell lines from the same cryopreserved stocks
- 656 that were used in this study tested negative for Mycoplasma and were authenticated and found
- to be free of non-mouse cells as assessed by mouse cell STR profiling (IDEXX CellCheck mouse
- 658 19 plus Mycoplasma spp. testing) in December 2023.
- 659

660 **Tumor transplantation**

661 The Braf^{v600E} Cdkn2a^{-/-} Pten^{-/-} YUMM1.7 parental melanoma line, Y1.7LI or Y1.7AI melanoma line,

and the MC38 colorectal cancer line cells were propagated in R-10 plus BME media [RPMI media

- 663 (HyClone) supplemented with 1% l-glutamine, 1% penicillin–streptomycin, 1% sodium pyruvate,
- 664 0.5% sodium bicarbonate, 0.1% 2-mercaptoethanol, and 10% heat-inactivated fetal calf serum
- 665 (FCS) (HyClone) upon thawing, tumor lines were passaged 3 to 6 times before experimental use.
- Prior to injection, cells were washed extensively, resuspended at a concentration of 0.5×10^6 cells
- (for YUMM1.7, Y1.7LI, and Y1.7AI) or 1.5 x 10^6 cells (for MC38) in 150 µL of endotoxin-free PBS and
- 668 150 μL was injected subcutaneously into the flanks of recipient mice. Tumor cells were >90%
- viable at the time of injection as assessed by Trypan blue exclusion. Tumor growth was quantified

670 by caliper measurements and expressed as the average of two perpendicular diameters. Lack of

- 671 survival was defined as mouse death or mean tumor diameter size of 15 mm.
- 672

673 Tumor rechallenge

674	For tumor rechallenge, mice that rejected primary tumors after treatment with anti-CTLA-4, anti-
675	PD-1, anti-CTLA-4 + anti-PD-1, or NeoAg vaccines were then rechallenged with same number of
676	cells used in primary challenge with either the same tumor line used in the primary tumor
677	challenge or a different tumor line as indicated at least 60 days after complete rejection of the
678	primary tumor.
679	
680	In vivo antibody treatments
681	For ICT treatment, YUMM1.7 parental, Y1.7LI, or Y1.7AI tumor-bearing mice were treated
682	intraperitoneally with 200 μg of anti-CTLA-4 and/or anti-PD-1 on d. 3, 6, 9, 12, 18, and 22 or d. 7,
683	10, 13, 16, 22, and 28; or d. 12, 15, 18, 21, 27 and 33 post-tumor transplant. For controls, mice
684	were injected with 200 μg of IgG2a isotype control antibodies. MC38 tumor-bearing mice were
685	treated intraperitoneally with 200 μg of anti-CTLA-4 and/or anti-PD-1 on d. 12, 15, 18, and 22 post-
686	transplant. For antibody depletion studies, 250 μg of control mAb, anti-CD4, or anti-CD8 $lpha$ was
687	injected intraperitoneally into mice at d. –1 and every 7 days thereafter until day 20. CD4 and CD8
688	depletion was verified by flow cytometry analysis of surface-stained peripheral blood monocytes
689	(PBMC) and intratumoral immune cells. For in vivo experiments, "In vivo Platinum"-grade
690	antibodies that were verified to be free of mouse pathogens (IDEXX IMPACT I mouse pathogen
691	testing) were purchased from Leinco Technologies: anti-PD-1 (rat IgG2a clone RMP1–14), anti-
692	CTLA-4 (murine IgG2b clone 9D9), anti-CD4 (rat IgG2b clone GK1.5), anti-CD8 $lpha$ (rat IgG2b clone
693	YTS169.4), and isotype controls (rat IgG2a clone 1–1, mouse IgG2a clone OKT3, or rat IgG2b clone
694	1–2).
695	

696 Peptides

697 Mutant Lama4 8-mer (VGFNFRTL), mutant Lama4 SLP (QKISFFDGFEVGFNFRTLQPNGLLFYYT), 698 mutant Adpgk SLP (HLELASMTNMELMSSIVHQ), mutant Rpl18 SLP (KAGGKILTFDRLALESPK), mutant 699 Dpagt1 SLP (EAGQSLVISASIIVFNLLELEGDYR), mutant Alg8 8-mer (ITYTWTRL), OVA-I257-264 700 (SIINFEKL), mutant ltgb1 SLP (DDCWFYFTYSVNGYNEAIVHVVETPDCP), and OVA-II323-339 701 (ISQAVHAAHAEINEAGR) peptides were custom ordered from Peptide 2.0. All peptides were HPLC 702 purified to >95% purity. 703 704 Vaccination 705 Y1.7Ll or Y1.7Al tumor bearing male mice were vaccinated subcutaneously with 10 µg mLama4 or 706 mAlg8 synthetic long peptide (SLP) in combination with 50 µg of VacciGrade[™] high molecular 707 weight Polyinosinic-polycytidylic acid (pI:C) (InvivoGen) in a total volume of 150 µL diluted in 708 endotoxin-free PBS on d. 3, 9, and 15 or d. 7, 13, and 19 or on d. 12, 18, and 24 post tumor 709 transplant. MC38 tumor bearing female mice were vaccinated subcutaneously with 20 µg of 710 mAdpgk SLP plus 20 µg of mRp118 SLP plus 20 µg of mDpagt1 plus 50 µg pl:C adjuvant or control 711 vaccine composed of 40 μ g of irrelevant HPV SLP + 50 μ g of pI:C on d. 12 and 19 post-tumor 712 transplant. For SLP, peptide sequence used for mLama4; QKISFFDGFEVGFNFRTLQPNGLLFYYT 713 (epitope underlined), for mAlg8; AVGITYTWTRLYASVLTGSLV (epitope underlined), for mAdpgk; 714 HLELASMTNMELMSSIVHQ, for mRp118; KAGGKILTFD**R**LALESPK and for mDpagt1; 715 EAGQSLVISASIIVFNLLELEGDYR. mLama4 SLP served as a relevant SLP for the Y1.7LI line and an 716 irrelevant SLP for the Y1.7AI line. mAlg8 served as a relevant SLP for the Y1.7AI line and an 717 irrelevant SLP for the Y1.7LI tumor. 718

719 Tetramers

- 720 OVA-I (SIINFEKL)-H-2K^b (irrelevant control tetramer), mutant Alg8-H-2K^b, and mutant Lama4-H-2K^b
- tetramers conjugated to PE or APC fluorophores, were obtained from the Baylor College of
- 722 Medicine MHC Tetramer Production Facility.
- 723

724 Tumor and spleen harvest

- 725 Established tumors were excised from mice, minced, and treated with 1 mg/mL type IA
- collagenase (Sigma-Aldrich) in HBSS (Hyclone) for 45 minutes at 37°C. Cells were washed thrice.
- 727 Red blood cells were lysed using ACK lysis buffer (Gibco). To remove aggregates and clumps, cells
- 728 were passed through a 40-μm strainer. Spleens were harvested, crushed, and vigorously
- resuspended to make single-cell suspensions. To remove aggregates and clumps, cells were passed
- through a 70-μm strainer and subsequently through a 40-μm strainer.
- 731

732 TIL peptide restimulation

- 733 For peptide and PMA/ionomycin T-cell stimulation, cells from tumors, isolated as described above
- 734 (see tumor and spleen harvest section), stained, and CD4 and CD8 T cells were sorted. For sorting
- 735 CD4 and CD8 T cells, tumor cells were stained for 5 min at room temperature with 500 ng of Fc
- block (anti-CD16/32) and then stained with antibodies to CD45, CD3 ϵ , CD4 or CD8 α and Zombie
- 737 NIR Viability dye in 100 μl of staining buffer. Cells were incubated for 30 minutes at 4°C. Live
- 738 CD45⁺Cd3 ϵ ⁺CD4⁺ and live CD45⁺Cd3 ϵ ⁺CD8 α ⁺ were then sorted on a BD FACSAria II (BD
- 739 Biosciences). Splenocytes harvested from naive mice and 100,000 splenocytes were then pulsed
- 740 with 1 μM of various 8- or 9- or 17- or 28-mer peptides or simulated with 10 ng/mL of PMA
- 741 (MilliporeSigma) and 1 µg/mL of ionomycin (Fisher) and 100,000 CD4 or CD8 TIL were
- subsequently added and incubated at 37 °C. Naive splenocytes added with or without CD4 or CD8

- 743 TIL, was included as control. After 1 h, BD GolgiPlug (BD Bioscience) was added in, and cells were
- 744 incubated for an additional 5 h at 37 °C.
- 745

746 **Tetramer staining**

- 747 For tetramer staining, cells were stained for 5 min at room temperature with 500 ng of Fc block
- 748 (anti-CD16/32). H-2K^b tetramers conjugated to PE (1:50) or APC (1:100) for mutated Alg8, mutated
- Lama4, or SIINFEKL were added to cells and incubated for 20 min at 37°C. Tetramer-stained cells
- 750 were further stained with surface antibody for anti-CD45, anti-Thy1.2, anti-CD8 α , anti-CD4, anti-
- 751 PD-1, anti-TIM-3, and anti-LAG-3 antibody for 20 min at 4 °C.
- 752

753 Flow cytometry

- For flow cytometry, cells were stained for 5 minutes at room temperature with rat anti-mouse
- 755 CD16/32 (mouse BD Fc Block; clone 2.4G2, BD Biosciences) at 1 µg/million cells and then surface
- 756 stained with flow antibodies for 20 minutes at 4°C. Surface antibodies were diluted in FACS
- 757 staining buffer (PBS with 2% FCS, 2 mmol/L EDTA, and 0.05% NaN3; Sigma). Anti-mouse CD45-
- 758 BV605, CD90.2/Thy1.2-PE-Cy7, anti-mouse CD8α-BV786, anti-mouse CD4-BV711, anti-mouse
- 759 CD19-BV650, anti-mouse CD20-BV421, anti-mouse CD45R/B220-BUV395, anti-mouse
- 760 Nkp46/CD335-FITC, anti-mouse γδ TCR-PE-Cy7, anti-mouse PD-1-BV421, anti-mouse TIM-3, anti-
- 761 mouse LAG-3-PerCP-Cy5.5, anti-mouse CD3ɛ-APC, anti-mouse CD64-BV421, anti-mouse Ly6G-
- 762 Alexa Fluor 700, anti-mouse CX3CR1-FITC, anti-mouse I-A/I-E-BV650, anti-mouse CD103-BV421,
- 763 anti-mouse CD24-BV711, anti-mouse CD11c-BV786, anti-mouse CD11b-APC, anti-mouse F4/80-
- 764 BUV395, anti-mouse CD64-APC, CD117-FITC, anti-mouse CD11b- PerCP-Cy5.5, anti-mouse PDCA-
- 765 1/BST-2 BV650, anti-mouse CD172a APC, anti-mouse PDL1-PE, anti-mouse FccRI-PE-Cy7 were

used for surface staining at the indicated dilutions. Zombie NIR Viability dye was added at 1:500

767 during surface staining.

768	For intracellular staining	. surface-stained cel	lls were fixed and	permeabilized with
100				

769 Fixation/Permeabilization Solution Kit (BD Bioscience). Fixed and permeabilized cells were then

- stained with anti-mouse CD206-PE-Cy7 and anti-mouse iNOS/NOS2-PE for 30 minutes at 4°C.
- 771 For FOXP3 staining, surface-stained cells were fixed and permeabilized using the
- eBioscience FOXP3/Transcription Factor Staining Buffer Set. Fixed and permeabilized cells were
- then stained with anti-mouse FOXP3-FITC for 30 minutes at 4°C.
- 774 For intracellular cytokine staining of lymphocytes, tumor cells were isolated and CD4 and
- 775 CD8 T cells were sorted and added to peptide pulsed or PMA+Ionomycin stimulated splenocytes

and incubated at 37°C for 6 hours with GolgiStop (BD Bioscience). Cells were then washed and

stained for 5 minutes at room temperature with Fc block at 1 µg/million cells and then surface

stained for 30 minutes at 4°C, and then fixed and permeabilized with BD Fixation and

- 779 Permeabilization Kit. Fixed and permeabilized cells were then stained with anti-mouse IFN-γ-APC
- and anti-mouse TNF-PE-Cy7 for 30 minutes at 4°C. All flow cytometry was performed on an BD

781 Fortessa X-20, BD LSR, BD Fortessa, and analyzed using FlowJo software. Gating strategy used is

782 depicted in **Figure S15**.

783

784 scRNAseq

785 Antibody hashing for multiplexing

Antibody hashing and multiplexing was utilized for scRNAseq/scTCRseq of NeoAg-specific CD8 T
 cells. For CD45⁺ scRNAseq experiments, antibody hashing and multiplexing was not performed.
 For analysis of NeoAg-specific CD8 T cells, cell and nuclei labeling were performed according to
 an adapted BioLegend cell hashing protocol (TotalSeq[™]-C Antibodies and Cell Hashing with 10x

790	Single Cell 5' Reagent Kit v1.1 Protocol, BioLegend). Single cell suspensions of harvested tumors
791	from treated mice were resuspended in BioLegend Cell Staining Buffer containing Fc receptor
792	block and stained with mLama4 PE and APC labelled tetramers for 20 min at 37°C. Tetramer-
793	stained cells from control mAb, control VAX, and neo VAX treatment conditions were
794	immediately surface stained by adding anti-CD90.2/Thy1.2-PE-Cy7 and anti-CD8 $lpha$ -BV786
795	antibodies and incubated for 20 min at 4°C. Tetramer-stained samples from anti-CTLA-4, anti-PD-1,
796	and anti-CTLA-4 plus anti-PD-1 treated groups were incubated with mixture of surface stain (anti-
797	CD90.2/Thy1.2-PE-Cy7 and anti-CD8 $lpha$ -BV786 antibodies) and barcoded antibodies with unique
798	hashtags for each treatment condition [anti-CTLA-4: Hashtag 1 Total Seq™-C0301 anti-mouse
799	Hashtag 1 Antibody; anti-PD-1: Hashtag 2 (Total Seq™-C0302 anti-mouse Hashtag 2 Antibody);
800	anti-CTLA-4 + anti-PD-1 combination: Hashtag 3 (Total Seq™-C0303 anti-mouse Hashtag 3
801	Antibody)]. Hashtag antibodies were used at a concentration of 1 μ g per 2 million cells. Staining
802	with surface antibodies and hashtag antibodies was done for 30 min at 4°C. Cells were then
803	washed 3X with BioLegend Cell Staining Buffer. Sorted mLama4 tetramer-specific CD8 T cells
804	with unique hashtags (anti-CTLA-4, anti-PD-1, and anti-CTLA-4 + anti-PD-1 samples) were pooled
805	for single-cell library generation and CITE-seq (cellular indexing of transcriptomes and epitopes
806	by sequencing) through multiplexing. Separate libraries were generated for control mAb, control
807	VAX, and neo VAX samples and, thus, these were not multiplexed.
808	

809 scRNAseq with TCR and FBC sample Processing

810 For TCRseq of NeoAg-specific CD8 T cells, samples were hash tagged and processed as

811 described in "antibody hashing" section above. Cells were counted on a Countess 3 FL

812 automated cell counter (Life Technologies) and viabilities were determined using trypan blue

813 exclusion. Cell capture processing and gene expression, TCR, and feature barcode library

814	preparations were performed following 10X Genomics' guidelines for 5' scRNAseq which
815	included TCR and cell surface marker detection [CG000330_Chromium Next GEM Single Cell 5'
816	v2 (Dual Index) with Feature Barcode technology-Rev F]. QC steps after cDNA amplification and
817	library preparation steps were carried out by running ThermoFisher Qubit HS dsDNA Assay
818	along with Agilent (Santa Clara, CA) HS DNA Bioanalyzer for concentration and quality
819	assessments, respectively. Library sample concentrations were verified using qPCR using a KAPA
820	Biosystems KAPA Library Quantification Kit prior to pooling. Libraries were normalized to 5 nM
821	for pooling. The gene expression, TCR, and FBC libraries were pooled in a ratio 5:1:1 (where
822	applicable-one sample out of four). The pool was sequenced using a NovaSeq6000 S4-XP,200-
823	cycle flow cell lane. The run parameters used were 26 cycles for read 1, 90 cycles for read2, 10
824	cycles for index1, and 10 cycles for index2 as stipulated in the protocol mentioned above. Raw
825	sequencing data (fastq file) was demultiplexed and analyzed using 10X Genomics Cell Ranger
826	v.7.1.0 software utilizing standard default settings and the cellranger count command to
827	generate html QC metrics and coupé/vloupe files for each sample.
828	
829	CD45 ⁺ scRNAseq library generation
830	Droplet-based 5' end massively parallel scRNAseq was performed by encapsulating sorted live
831	CD45 ⁺ tumor-infiltrating cells into droplets and libraries were prepared using Chromium Next GEM
832	Single-cell 5' Reagent Kit v2 (10x Genomics) according to manufacturer's protocol. The generated

833 scRNAseq libraries were sequenced using an Illumina NovaSeq6000 S2 flow cell.

834

835 scRNAseq alignment, barcode assignment, and unique molecular identifier counting

836 The Cell Ranger Single-Cell Software Suite available at https://support.10xgenomics.com/single-

837 cell-gene-expression/software/overview/welcome was used to perform sample demultiplexing,

838	barcode processing, and single-cell 5' counting. Cellranger mkfastq was used to demultiplex raw
839	base call files from the NovaSeq6000 sequencer, into sample-specific fastq files. Files were
840	demultiplexed with 81.9% to 97.1% perfect barcode match, and 90%+ q30 reads. Afterward, fastq
841	files for each sample were processed with Cellranger count, which was used to align samples to
842	mm10 genome, filtered, and quantified. For each sample, the recovered cells' parameter was
843	specified as 10,000 cells that we expected to recover for each individual library.
844	
845	Preprocessing analysis with Seurat package
846	The Seurat pipeline was applied to each dataset following tutorial specifications from
847	https://satijalab.org/seurat/articles/archive; version 4.3 and https://hbctraining.github.io/scRNA-
848	seq_online/. Data from all groups were merged into a single Seurat object, and integration was
849	performed using the reciprocal principal component analysis (PCA) workflow to identify
850	integration anchors. After integration, genes that were expressed in fewer than 3 cells and cells
851	that contained fewer than 500 transcripts (unique molecular identifiers; UMI) were excluded. Cells
852	with more than 10% of mitochondrial transcripts were also excluded from analysis. The cutoffs
853	used were set based on the characteristics of the cell population in each dataset. Data were
854	normalized using LogNormalize method (counts for each cell divided by the total counts for that
855	cell, multiplied by the scale factor of 10^4 and natural-log transformed using log1p). PCA was
856	performed on about 2,000 genes with PCA function. A uniform manifold approximation and
857	projection (UMAP) dimensional reduction was performed on the scaled matrix (with most variable
858	genes only) using the first 40 or 50 principal components (PCA) for mLama4 neoAg-specific CD8 T
859	cells and CD45 ⁺ cells, respectively, to obtain a two-dimensional representation of the cell states.
860	For clustering, we used the function FindClusters that implements SNN (shared nearest neighbor)
861	modularity optimization-based clustering algorithm on 30 PCA components, leading to 33 clusters.

862	
863	Identification of cluster-specific genes and marker-based classification
864	To identify marker genes, the FindAllMarkers function was used with likelihood-ratio test for
865	single-cell gene expression. To characterize clusters, we used ImmGen database. For heat map
866	representation, mean expression of markers inside each cluster was used. To compare gene
867	expression for the clusters inside cohorts (e.g., T cells, macrophages) we used FindMarkers
868	function to calculate average log2 fold change and identify differentially expressed genes between
869	each pair of experimental conditions using a Wilcoxon rank-sum test for calculating P values and
870	Bonferroni correction for Padj values.
871	
872	T cell population analysis
873	To gain more insights into different immunotherapies-induced T cells remodeling in the TME, we
874	subclustered activated T cells (excluding quiescent T cell clusters 10 and 12). Identification of most
875	variable genes, PCA, UMAP, clustering, and marker selection analysis were performed as described
876	above.
877	
878	Gene set enrichment analysis (GSEA)
879	To identify if MSigDB hallmark gene sets are up-regulated or down-regulated between clusters
880	and treatments, we performed gene set enrichment analysis. Fold-changes of gene expression
881	between comparisons were calculated using Seurat R package v.4.3.0.1, and normalized
882	enrichment scores as well as p-values of given gene sets were then estimated using the gage R
883	package v.2.46.1.
884	

885 **Pseudo time trajectory analysis**

- 886 To determine the potential lineage differentiation within CD4 T cell subpopulations, we used the
- 887 Monocle3 R package to construct CD4 differentiation trajectories after specifying the
- 888 corresponding cells as root nodes. Subsequently, graph test was used to find the pseudo time
- trajectory difference genes, and the obtained genes were used to plot the heat map.
- 890

891 scTCRseq Analysis

- 892 scTCRseq data for mLama4 NeoAg-specific CD8 T cells for each sample were processed by
- 893 CellRanger. For TCR selection a meta data .csv was exported after initial QC and imported into R
- and TCR clones were further analyzed in combination with the corresponding scRNAseq data
- using the R packages scRepertoire v.2.0.0 and Seurat v.4.3.0.1. mLama4 NeoAg-specific CD8 T
- cells with at least one productive TCR alpha or beta chain or both and separately, with paired
- 897 TCR alpha beta chains were considered for precise identification of TCRs. The total number of
- this NeoAg-specific CD8 T cells with TCR alpha and beta pair set was 15,668 from 17,492 total
- TCR (TCR with single alpha or beta or both alpha and beta pair) [control mAb: 3,118 from 3,539
- 900 total TCR; anti-CTLA-4: 1,208 from 1,394; anti-PD-1: 1,162 from 1,283; anti-CTLA-4 plus anti-PD-
- 901 1: 657 from 790; control VAX: 4,986 from 5,622; neo VAX: 4,537 from 4,864]. The Shannon
- 902 Index of diversity was calculated with the R package scRepertoire (V.2.0.0)
- 903 (https://www.borch.dev/uploads/screpertoire/articles/clonal_diversity). Downsampling to the
- 904 smallest repertoire size and bootstrapping to return the mean diversity estimates was
- 905 performed with the number of calculations set to the default of 100.
- 906

907 Statistical analysis

- 908 Samples were compared using an unpaired, two-tailed Student t test, two-way ANOVA, or log-rank
- 909 (Mantel–Cox) test unless specified otherwise.

910

911 Data and software availability

- 912 Data files for the sequencing data reported in this article will be deposited in the Gene Expression
- 913 Omnibus (GEO) database and made publicly available at the time of publication. Software used in
- 914 this study is available online: current version of Cell Ranger: <u>https://support.10xgenomics.com/</u>
- 915 <u>single-cell-gene-expression/software/downloads/latest;</u> Seurat 4. 3.0.1:
- 916 https://satijalab.org/seurat/; ggplot2 3.3.3: https://ggplot2.tidy verse.org/index.html; scRepertoire
- 917 2.0.0: https://www.borch.dev/uploads/screpertoire/; and ImmGen: https://www.immgen.org. All
- 918 other data generated in this study are available within the article and its Supplementary Data files,
- 919 will be provided upon request at the time of publication, and/or will made publicly available at the
- 920 time of publication via deposition in appropriate databases.
- 921

922 Authors' Contributions

- 923 S. Keshari: Conceptualization, data curation, investigation, visualization, methodology, data
- 924 analysis, writing-original draft, writing-review and editing. A.S. Shavkunov: Conceptualization,
- 925 data curation, investigation, data analysis, writing-review and editing. Q. Miao: Conceptualization,
- 926 data curation, investigation, visualization, data analysis, writing-review and editing. A. Saha: Data
- 927 curation, investigation, visualization, writing-review and editing. C.D. Williams: data curation,
- 928 investigation, visualization, writing-review and editing. A.M. Highsmith: data curation,
- 929 investigation, visualization, writing-review and editing. J.E. Pineda: data curation, investigation,
- 930 visualization, writing-review and editing. E. Alspach: Resources, formal analysis, investigation,
- 931 visualization, writing-review and editing. K. Hu: Formal analysis, investigation, visualization,
- 932 writing-review and editing. K.E. Pauken: Formal analysis, investigation, visualization, writing-
- 933 review and editing. K. Chen: Resources, formal analysis, investigation, visualization, writing–review

934 and editing. M.M. Gubin: Conceptualization, resources, data curation, formal analysis, supervision,

935 validation, investigation, methodology, writing–original draft, writing–review and editing.

936

937 Acknowledgements

- 938 S. Keshari was a Balzan Postdoctoral Research Fellow supported by The International Balzan Prize
- 939 Foundation. M.M. Gubin is a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar in
- 940 Cancer Research and an Andrew Sabin Family Fellow. This work was supported by CPRIT
- 941 (Recruitment of First-Time Tenure-Track Faculty Members; RR190017), an Andrew Sabin Family
- 942 Foundation Fellowship, Parker Institute for Cancer Immunotherapy (PICI) Bridge Scholar Award,
- 943 University of Texas (UT) Rising Stars Award, and the University of Texas MD Anderson Cancer
- 944 Center (MDACC) Support Grant (CCSG) New Faculty Award supported by the National Institutes of
- 945 Health (NIH)/National Cancer Institute (NCI) (P30CA016672) to M.M. Gubin; and NIH/NCI
- 946 U01CA247760 to K. Chen. K.H. Hu is a CPRIT Scholar in Cancer Research and a PICI and V
- 947 Foundation Bridge Scholar. K.E. Pauken is supported by an Andrew Sabin Family Foundation
- 948 Fellowship, a Melanoma SPORE Developmental Research Program Grant, and a UT Rising STARs
- 949 Award. The Flow Cytometry and Cellular Imaging Core Facility was supported in part by MDACC
- 950 and NIH/NCI Core grant P30CA016672. scRNAseq was performed by the MDACC Advanced
- 951 Technology Genomics Core (ATGC) Facility supported by an NCI Core grant [CA016672 (ATGC)]. We
- 952 would like to thank David Pollock at MDACC ATGC Facility for assistance with scRNAseq. We would
- 953 like to thank the Baylor College of Medicine MHC Tetramer Core and thank the core director, X.
- 954 Lily Wang for production of MHC tetramers used in this study. We would like to thank Prachi Sao
- 955 (MDACC) for assistance with deconvolution of multiplexed hashtagged scRNAseq samples. We
- 956 would like to thank Mehdi Chaib, (MDACC) for providing feedback to the manuscript. The
- authors thank all members of the Gubin lab for helpful discussions and technical support.

958 **Declaration of interests**

- 959 M.M. Gubin reports a personal honorarium of \$1000.00 USD per year from Springer Nature Ltd for
- 960 his role as an Associate Editor for the journal Nature Precision Oncology. No disclosures were
- 961 reported by the other authors.

References

- 1. Coulie, P.G., Van den Eynde, B.J., van der Bruggen, P., and Boon, T. (2014). Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer *14*, 135-146. 10.1038/nrc3670.
- 2. Heemskerk, B., Kvistborg, P., and Schumacher, T.N. (2013). The cancer antigenome. The EMBO journal *32*, 194-203. 10.1038/emboj.2012.333.
- 3. Schumacher, T.N., and Schreiber, R.D. (2015). Neoantigens in cancer immunotherapy. Science *348*, 69-74. 10.1126/science.aaa4971.
- 4. Gubin, M.M., Artyomov, M.N., Mardis, E.R., and Schreiber, R.D. (2015). Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125, 3413-3421. 10.1172/JCI80008.
- Carreno, B.M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A.A., Ly, A., Lie, W.R., Hildebrand, W.H., Mardis, E.R., and Linette, G.P. (2015). A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 10.1126/science.aaa3828.
- Sahin, U., Derhovanessian, E., Miller, M., Kloke, B.P., Simon, P., Lower, M., Bukur, V., Tadmor, A.D., Luxemburger, U., Schrors, B., et al. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222-226. 10.1038/nature23003.
- 7. Ott, P.A., Hu, Z., Keskin, D.B., Shukla, S.A., Sun, J., Bozym, D.J., Zhang, W., Luoma, A., Giobbie-Hurder, A., Peter, L., et al. (2017). An immunogenic personal neoantigen vaccine for patients with melanoma. Nature *547*, 217-221. 10.1038/nature22991.
- Keskin, D.B., Anandappa, A.J., Sun, J., Tirosh, I., Mathewson, N.D., Li, S., Oliveira, G., Giobbie-Hurder, A., Felt, K., Gjini, E., et al. (2019). Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234-239. 10.1038/s41586-018-0792-9.
- Sahin, U., Oehm, P., Derhovanessian, E., Jabulowsky, R.A., Vormehr, M., Gold, M., Maurus, D., Schwarck-Kokarakis, D., Kuhn, A.N., Omokoko, T., et al. (2020). An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107-112. 10.1038/s41586-020-2537-9.
- Ott, P.A., Hu-Lieskovan, S., Chmielowski, B., Govindan, R., Naing, A., Bhardwaj, N., Margolin, K., Awad, M.M., Hellmann, M.D., Lin, J.J., et al. (2020). A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell *183*, 347-362 e324. 10.1016/j.cell.2020.08.053.
- 11. Blass, E., and Ott, P.A. (2021). Advances in the development of personalized neoantigenbased therapeutic cancer vaccines. Nat Rev Clin Oncol *18*, 215-229. 10.1038/s41571-020-00460-2.

- 12. Rojas, L.A., Sethna, Z., Soares, K.C., Olcese, C., Pang, N., Patterson, E., Lihm, J., Ceglia, N., Guasp, P., Chu, A., et al. (2023). Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature *618*, 144-150. 10.1038/s41586-023-06063-y.
- Gubin, M.M., Zhang, X., Schuster, H., Caron, E., Ward, J.P., Noguchi, T., Ivanova, Y., Hundal, J., Arthur, C.D., Krebber, W.J., et al. (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature *515*, 577-581. 10.1038/nature13988.
- 14. Matsushita, H., Vesely, M.D., Koboldt, D.C., Rickert, C.G., Uppaluri, R., Magrini, V.J., Arthur, C.D., White, J.M., Chen, Y.S., Shea, L.K., et al. (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature *482*, 400-404. 10.1038/nature10755.
- Castle, J.C., Kreiter, S., Diekmann, J., Lower, M., van de Roemer, N., de Graaf, J., Selmi,
 A., Diken, M., Boegel, S., Paret, C., et al. (2012). Exploiting the mutanome for tumor
 vaccination. Cancer research 72, 1081-1091. 10.1158/0008-5472.CAN-11-3722.
- 16. Robbins, P.F., Lu, Y.C., El-Gamil, M., Li, Y.F., Gross, C., Gartner, J., Lin, J.C., Teer, J.K., Cliften, P., Tycksen, E., et al. (2013). Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med *19*, 747-752. 10.1038/nm.3161.
- Yadav, M., Jhunjhunwala, S., Phung, Q.T., Lupardus, P., Tanguay, J., Bumbaca, S., Franci, C., Cheung, T.K., Fritsche, J., Weinschenk, T., et al. (2014). Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature *515*, 572-576. 10.1038/nature14001.
- Fehlings, M., Simoni, Y., Penny, H.L., Becht, E., Loh, C.Y., Gubin, M.M., Ward, J.P., Wong, S.C., Schreiber, R.D., and Newell, E.W. (2017). Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8(+) T cells. Nat Commun *8*, 562. 10.1038/s41467-017-00627-z.
- Gubin, M.M., Esaulova, E., Ward, J.P., Malkova, O.N., Runci, D., Wong, P., Noguchi, T., Arthur, C.D., Meng, W., Alspach, E., et al. (2018). High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell *175*, 1014-1030 e1019. 10.1016/j.cell.2018.09.030.
- 20. Alspach, E., Lussier, D.M., Miceli, A.P., Kizhvatov, I., DuPage, M., Luoma, A.M., Meng, W., Lichti, C.F., Esaulova, E., Vomund, A.N., et al. (2019). MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature *574*, 696-701. 10.1038/s41586-019-1671-8.
- Salmon, A.J., Shavkunov, A.S., Miao, Q., Jarjour, N.N., Keshari, S., Esaulova, E., Williams, C.D., Ward, J.P., Highsmith, A.M., Pineda, J.E., et al. (2022). BHLHE40 Regulates the T-Cell Effector Function Required for Tumor Microenvironment Remodeling and Immune Checkpoint Therapy Efficacy. Cancer Immunol Res *10*, 597-611. 10.1158/2326-6066.CIR-21-0129.

- Wei, S.C., Levine, J.H., Cogdill, A.P., Zhao, Y., Anang, N.A.S., Andrews, M.C., Sharma, P., Wang, J., Wargo, J.A., Pe'er, D., and Allison, J.P. (2017). Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell *170*, 1120-1133 e1117. 10.1016/j.cell.2017.07.024.
- Wei, S.C., Anang, N.A.S., Sharma, R., Andrews, M.C., Reuben, A., Levine, J.H., Cogdill, A.P., Mancuso, J.J., Wargo, J.A., Pe'er, D., and Allison, J.P. (2019). Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci U S A *116*, 22699-22709. 10.1073/pnas.1821218116.
- 24. Giles, J.R., Globig, A.M., Kaech, S.M., and Wherry, E.J. (2023). CD8(+) T cells in the cancer-immunity cycle. Immunity *56*, 2231-2253. 10.1016/j.immuni.2023.09.005.
- Miller, B.C., Sen, D.R., Al Abosy, R., Bi, K., Virkud, Y.V., LaFleur, M.W., Yates, K.B., Lako, A., Felt, K., Naik, G.S., et al. (2019). Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 20, 326-336. 10.1038/s41590-019-0312-6.
- Chen, Z., Ji, Z., Ngiow, S.F., Manne, S., Cai, Z., Huang, A.C., Johnson, J., Staupe, R.P., Bengsch, B., Xu, C., et al. (2019). TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity *51*, 840-855 e845. 10.1016/j.immuni.2019.09.013.
- Kurtulus, S., Madi, A., Escobar, G., Klapholz, M., Nyman, J., Christian, E., Pawlak, M., Dionne, D., Xia, J., Rozenblatt-Rosen, O., et al. (2019). Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1(-)CD8(+) Tumor-Infiltrating T Cells. Immunity 50, 181-194 e186. 10.1016/j.immuni.2018.11.014.
- Khan, O., Giles, J.R., McDonald, S., Manne, S., Ngiow, S.F., Patel, K.P., Werner, M.T., Huang, A.C., Alexander, K.A., Wu, J.E., et al. (2019). TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature *571*, 211-218. 10.1038/s41586-019-1325-x.
- Scott, A.C., Dundar, F., Zumbo, P., Chandran, S.S., Klebanoff, C.A., Shakiba, M., Trivedi,
 P., Menocal, L., Appleby, H., Camara, S., et al. (2019). TOX is a critical regulator of
 tumour-specific T cell differentiation. Nature *571*, 270-274. 10.1038/s41586-019-1324-y.
- 30. Philip, M., and Schietinger, A. (2022). CD8(+) T cell differentiation and dysfunction in cancer. Nat Rev Immunol *22*, 209-223. 10.1038/s41577-021-00574-3.
- Martinez, G.J., Pereira, R.M., Aijo, T., Kim, E.Y., Marangoni, F., Pipkin, M.E., Togher, S., Heissmeyer, V., Zhang, Y.C., Crotty, S., et al. (2015). The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells. Immunity *42*, 265-278. 10.1016/j.immuni.2015.01.006.
- 32. Sade-Feldman, M., Yizhak, K., Bjorgaard, S.L., Ray, J.P., de Boer, C.G., Jenkins, R.W., Lieb, D.J., Chen, J.H., Frederick, D.T., Barzily-Rokni, M., et al. (2018). Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell *175*, 998-1013 e1020. 10.1016/j.cell.2018.10.038.

- Li, H., van der Leun, A.M., Yofe, I., Lubling, Y., Gelbard-Solodkin, D., van Akkooi, A.C.J., van den Braber, M., Rozeman, E.A., Haanen, J., Blank, C.U., et al. (2019). Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell *176*, 775-789 e718. 10.1016/j.cell.2018.11.043.
- Jansen, C.S., Prokhnevska, N., Master, V.A., Sanda, M.G., Carlisle, J.W., Bilen, M.A., Cardenas, M., Wilkinson, S., Lake, R., Sowalsky, A.G., et al. (2019). An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature *576*, 465-470. 10.1038/s41586-019-1836-5.
- 35. Yost, K.E., Satpathy, A.T., Wells, D.K., Qi, Y., Wang, C., Kageyama, R., McNamara, K.L., Granja, J.M., Sarin, K.Y., Brown, R.A., et al. (2019). Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med *25*, 1251-1259. 10.1038/s41591-019-0522-3.
- Pai, J.A., Hellmann, M.D., Sauter, J.L., Mattar, M., Rizvi, H., Woo, H.J., Shah, N., Nguyen, E.M., Uddin, F.Z., Quintanal-Villalonga, A., et al. (2023). Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. Cancer Cell *41*, 776-790 e777. 10.1016/j.ccell.2023.03.009.
- van der Leun, A.M., Thommen, D.S., and Schumacher, T.N. (2020). CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer 20, 218-232. 10.1038/s41568-019-0235-4.
- 38. Goswami, S., Anandhan, S., Raychaudhuri, D., and Sharma, P. (2023). Myeloid celltargeted therapies for solid tumours. Nat Rev Immunol *23*, 106-120. 10.1038/s41577-022-00737-w.
- 39. Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol *12*, 253-268. 10.1038/nri3175.
- 40. DeNardo, D.G., and Ruffell, B. (2019). Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol *19*, 369-382. 10.1038/s41577-019-0127-6.
- 41. Cassetta, L., and Pollard, J.W. (2023). A timeline of tumour-associated macrophage biology. Nat Rev Cancer *23*, 238-257. 10.1038/s41568-022-00547-1.
- Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., Brioschi, S., Bugatti, M., Omodei, A.S., Ricci, B., et al. (2020). TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell *182*, 886-900 e817. 10.1016/j.cell.2020.07.013.
- Cassetta, L., Fragkogianni, S., Sims, A.H., Swierczak, A., Forrester, L.M., Zhang, H., Soong, D.Y.H., Cotechini, T., Anur, P., Lin, E.Y., et al. (2019). Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 35, 588-602 e510. 10.1016/j.ccell.2019.02.009.
- 44. Allen, B.M., Hiam, K.J., Burnett, C.E., Venida, A., DeBarge, R., Tenvooren, I., Marquez, D.M., Cho, N.W., Carmi, Y., and Spitzer, M.H. (2020). Systemic dysfunction and plasticity

of the immune macroenvironment in cancer models. Nat Med *26*, 1125-1134. 10.1038/s41591-020-0892-6.

- 45. Meeth, K., Wang, J.X., Micevic, G., Damsky, W., and Bosenberg, M.W. (2016). The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res *29*, 590-597. 10.1111/pcmr.12498.
- 46. DuPage, M., Cheung, A.F., Mazumdar, C., Winslow, M.M., Bronson, R., Schmidt, L.M., Crowley, D., Chen, J., and Jacks, T. (2011). Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell *19*, 72-85. 10.1016/j.ccr.2010.11.011.
- 47. Spranger, S., Bao, R., and Gajewski, T.F. (2015). Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature *523*, 231-235. 10.1038/nature14404.
- 48. Cui, C., Wang, J., Fagerberg, E., Chen, P.M., Connolly, K.A., Damo, M., Cheung, J.F., Mao, T., Askari, A.S., Chen, S., et al. (2021). Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell *184*, 6101-6118 e6113. 10.1016/j.cell.2021.11.007.
- 49. Burger, M.L., Cruz, A.M., Crossland, G.E., Gaglia, G., Ritch, C.C., Blatt, S.E., Bhutkar, A., Canner, D., Kienka, T., Tavana, S.Z., et al. (2021). Antigen dominance hierarchies shape TCF1(+) progenitor CD8 T cell phenotypes in tumors. Cell *184*, 4996-5014 e4926. 10.1016/j.cell.2021.08.020.
- 50. Wang, J., Perry, C.J., Meeth, K., Thakral, D., Damsky, W., Micevic, G., Kaech, S., Blenman, K., and Bosenberg, M. (2017). UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment Cell Melanoma Res *30*, 428-435. 10.1111/pcmr.12591.
- Speiser, D.E., Utzschneider, D.T., Oberle, S.G., Munz, C., Romero, P., and Zehn, D. (2014). T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat Rev Immunol *14*, 768-774. 10.1038/nri3740.
- 52. Chiang, E.Y., and Mellman, I. (2022). TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer *10*. 10.1136/jitc-2022-004711.
- 53. Oliveira, G., Stromhaug, K., Klaeger, S., Kula, T., Frederick, D.T., Le, P.M., Forman, J., Huang, T., Li, S., Zhang, W., et al. (2021). Phenotype, specificity and avidity of antitumour CD8(+) T cells in melanoma. Nature *596*, 119-125. 10.1038/s41586-021-03704-y.
- Pauken, K.E., Shahid, O., Lagattuta, K.A., Mahuron, K.M., Luber, J.M., Lowe, M.M., Huang, L., Delaney, C., Long, J.M., Fung, M.E., et al. (2021). Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment. J Exp Med 218. 10.1084/jem.20200920.
- 55. Lowery, F.J., Krishna, S., Yossef, R., Parikh, N.B., Chatani, P.D., Zacharakis, N., Parkhurst, M.R., Levin, N., Sindiri, S., Sachs, A., et al. (2022). Molecular signatures of antitumor

neoantigen-reactive T cells from metastatic human cancers. Science *375*, 877-884. 10.1126/science.abl5447.

- Yao, C., Lou, G., Sun, H.W., Zhu, Z., Sun, Y., Chen, Z., Chauss, D., Moseman, E.A., Cheng, J., D'Antonio, M.A., et al. (2021). BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8(+) T cells. Nat Immunol 22, 370-380. 10.1038/s41590-021-00868-7.
- 57. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol *32*, 381-386. 10.1038/nbt.2859.
- Peggs, K.S., Quezada, S.A., Chambers, C.A., Korman, A.J., and Allison, J.P. (2009). Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206, 1717-1725. 10.1084/jem.20082492.
- Simpson, T.R., Li, F., Montalvo-Ortiz, W., Sepulveda, M.A., Bergerhoff, K., Arce, F., Roddie, C., Henry, J.Y., Yagita, H., Wolchok, J.D., et al. (2013). Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med *210*, 1695-1710. 10.1084/jem.20130579.
- 60. Selby, M.J., Engelhardt, J.J., Quigley, M., Henning, K.A., Chen, T., Srinivasan, M., and Korman, A.J. (2013). Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res *1*, 32-42. 10.1158/2326-6066.CIR-13-0013.
- 61. Maier, B., Leader, A.M., Chen, S.T., Tung, N., Chang, C., LeBerichel, J., Chudnovskiy, A., Maskey, S., Walker, L., Finnigan, J.P., et al. (2020). A conserved dendritic-cell regulatory program limits antitumour immunity. Nature *580*, 257-262. 10.1038/s41586-020-2134y.
- Di Pilato, M., Kfuri-Rubens, R., Pruessmann, J.N., Ozga, A.J., Messemaker, M., Cadilha, B.L., Sivakumar, R., Cianciaruso, C., Warner, R.D., Marangoni, F., et al. (2021). CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell *184*, 4512-4530 e4522. 10.1016/j.cell.2021.07.015.
- 63. Ma, R.Y., Black, A., and Qian, B.Z. (2022). Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol *43*, 546-563. 10.1016/j.it.2022.04.008.
- Mujal, A.M., Combes, A.J., Rao, A.A., Binnewies, M., Samad, B., Tsui, J., Boissonnas, A., Pollack, J.L., Arguello, R.J., Meng, M.V., et al. (2022). Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer. Cancer Immunol Res *10*, 403-419. 10.1158/2326-6066.CIR-21-0588.
- Baharom, F., Ramirez-Valdez, R.A., Khalilnezhad, A., Khalilnezhad, S., Dillon, M., Hermans, D., Fussell, S., Tobin, K.K.S., Dutertre, C.A., Lynn, G.M., et al. (2022). Systemic vaccination induces CD8(+) T cells and remodels the tumor microenvironment. Cell *185*, 4317-4332 e4315. 10.1016/j.cell.2022.10.006.

- Bill, R., Wirapati, P., Messemaker, M., Roh, W., Zitti, B., Duval, F., Kiss, M., Park, J.C., Saal, T.M., Hoelzl, J., et al. (2023). CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science *381*, 515-524. 10.1126/science.ade2292.
- 67. Hos, B.J., Camps, M.G.M., van den Bulk, J., Tondini, E., van den Ende, T.C., Ruano, D., Franken, K., Janssen, G.M.C., Ru, A., Filippov, D.V., et al. (2019). Identification of a neoepitope dominating endogenous CD8 T cell responses to MC-38 colorectal cancer. Oncoimmunology *9*, 1673125. 10.1080/2162402X.2019.1673125.
- Schrors, B., Hos, B.J., Yildiz, I.G., Lower, M., Lang, F., Holtstrater, C., Becker, J., Vormehr, M., Sahin, U., Ossendorp, F., and Diken, M. (2023). MC38 colorectal tumor cell lines from two different sources display substantial differences in transcriptome, mutanome and neoantigen expression. Front Immunol *14*, 1102282. 10.3389/fimmu.2023.1102282.
- Baharom, F., Ramirez-Valdez, R.A., Tobin, K.K.S., Yamane, H., Dutertre, C.A.,
 Khalilnezhad, A., Reynoso, G.V., Coble, V.L., Lynn, G.M., Mule, M.P., et al. (2021).
 Intravenous nanoparticle vaccination generates stem-like TCF1(+) neoantigen-specific
 CD8(+) T cells. Nat Immunol 22, 41-52. 10.1038/s41590-020-00810-3.
- Liu, L., Chen, J., Zhang, H., Ye, J., Moore, C., Lu, C., Fang, Y., Fu, Y.X., and Li, B. (2022). Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enhance neoantigen vaccine-generated antitumor immunity. Nat Cancer *3*, 437-452. 10.1038/s43018-022-00352-7.
- 71. Dolina, J.S., Lee, J., Brightman, S.E., McArdle, S., Hall, S.M., Thota, R.R., Zavala, K.S., Lanka, M., Ramamoorthy Premlal, A.L., Greenbaum, J.A., et al. (2023). Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. J Clin Invest *133*. 10.1172/JCl164258.
- 72. D'Alise, A.M., Leoni, G., Cotugno, G., Troise, F., Langone, F., Fichera, I., De Lucia, M., Avalle, L., Vitale, R., Leuzzi, A., et al. (2019). Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade. Nat Commun *10*, 2688. 10.1038/s41467-019-10594-2.
- Hu, Z., Leet, D.E., Allesoe, R.L., Oliveira, G., Li, S., Luoma, A.M., Liu, J., Forman, J., Huang, T., Iorgulescu, J.B., et al. (2021). Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med 27, 515-525. 10.1038/s41591-020-01206-4.
- Siddiqui, I., Schaeuble, K., Chennupati, V., Fuertes Marraco, S.A., Calderon-Copete, S., Pais Ferreira, D., Carmona, S.J., Scarpellino, L., Gfeller, D., Pradervand, S., et al. (2019). Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity 50, 195-211 e110. 10.1016/j.immuni.2018.12.021.
- 75. Wu, J.E., Manne, S., Ngiow, S.F., Baxter, A.E., Huang, H., Freilich, E., Clark, M.L., Lee, J.H., Chen, Z., Khan, O., et al. (2023). In vitro modeling of CD8(+) T cell exhaustion enables

CRISPR screening to reveal a role for BHLHE40. Sci Immunol *8*, eade3369. 10.1126/sciimmunol.ade3369.

- Komuro, H., Shinohara, S., Fukushima, Y., Demachi-Okamura, A., Muraoka, D., Masago, K., Matsui, T., Sugita, Y., Takahashi, Y., Nishida, R., et al. (2023). Single-cell sequencing on CD8(+) TILs revealed the nature of exhausted T cells recognizing neoantigen and cancer/testis antigen in non-small cell lung cancer. J Immunother Cancer 11. 10.1136/jitc-2023-007180.
- 77. Zhang, L., Yu, X., Zheng, L., Zhang, Y., Li, Y., Fang, Q., Gao, R., Kang, B., Zhang, Q., Huang, J.Y., et al. (2018). Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature *564*, 268-272. 10.1038/s41586-018-0694-x.
- 78. Chen, H., Liakou, C.I., Kamat, A., Pettaway, C., Ward, J.F., Tang, D.N., Sun, J., Jungbluth, A.A., Troncoso, P., Logothetis, C., and Sharma, P. (2009). Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci U S A *106*, 2729-2734. 10.1073/pnas.0813175106.
- Ng Tang, D., Shen, Y., Sun, J., Wen, S., Wolchok, J.D., Yuan, J., Allison, J.P., and Sharma, P. (2013). Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol Res *1*, 229-234. 10.1158/2326-6066.CIR-13-0020.
- 80. Kreiter, S., Vormehr, M., van de Roemer, N., Diken, M., Lower, M., Diekmann, J., Boegel, S., Schrors, B., Vascotto, F., Castle, J.C., et al. (2015). Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature *520*, 692-696. 10.1038/nature14426.
- Borst, J., Ahrends, T., Babala, N., Melief, C.J.M., and Kastenmuller, W. (2018). CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol *18*, 635-647. 10.1038/s41577-018-0044-0.
- Haabeth, O.A.W., Fauskanger, M., Manzke, M., Lundin, K.U., Corthay, A., Bogen, B., and Tveita, A.A. (2018). CD4(+) T-cell-Mediated Rejection of MHC Class II-Positive Tumor Cells Is Dependent on Antigen Secretion and Indirect Presentation on Host APCs. Cancer research 78, 4573-4585. 10.1158/0008-5472.CAN-17-2426.
- Ferris, S.T., Durai, V., Wu, R., Theisen, D.J., Ward, J.P., Bern, M.D., Davidson, J.T.t.,
 Bagadia, P., Liu, T., Briseno, C.G., et al. (2020). cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity. Nature *584*, 624-629. 10.1038/s41586-020-2611-3.
- 84. Oh, D.Y., and Fong, L. (2021). Cytotoxic CD4(+) T cells in cancer: Expanding the immune effector toolbox. Immunity *54*, 2701-2711. 10.1016/j.immuni.2021.11.015.
- 85. Wu, R., Ohara, R.A., Jo, S., Liu, T.T., Ferris, S.T., Ou, F., Kim, S., Theisen, D.J., Anderson, D.A., 3rd, Wong, B.W., et al. (2022). Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat Immunol *23*, 1536-1550. 10.1038/s41590-022-01324-w.

- Kruse, B., Buzzai, A.C., Shridhar, N., Braun, A.D., Gellert, S., Knauth, K., Pozniak, J., Peters, J., Dittmann, P., Mengoni, M., et al. (2023). CD4(+) T cell-induced inflammatory cell death controls immune-evasive tumours. Nature *618*, 1033-1040. 10.1038/s41586-023-06199-x.
- 87. Melief, C.J., van Hall, T., Arens, R., Ossendorp, F., and van der Burg, S.H. (2015). Therapeutic cancer vaccines. J Clin Invest *125*, 3401-3412. 10.1172/JCI80009.
- 88. Saxena, M., van der Burg, S.H., Melief, C.J.M., and Bhardwaj, N. (2021). Therapeutic cancer vaccines. Nat Rev Cancer *21*, 360-378. 10.1038/s41568-021-00346-0.
- van der Sluis, T.C., Sluijter, M., van Duikeren, S., West, B.L., Melief, C.J., Arens, R., van der Burg, S.H., and van Hall, T. (2015). Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression. Cancer Immunol Res 3, 1042-1051. 10.1158/2326-6066.CIR-15-0052.
- Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature *413*, 732-738. 10.1038/35099560.
- 91. Sultan, H., Salazar, A.M., and Celis, E. (2020). Poly-ICLC, a multi-functional immune modulator for treating cancer. Semin Immunol *49*, 101414. 10.1016/j.smim.2020.101414.
- 92. Park, M.D., Reyes-Torres, I., LeBerichel, J., Hamon, P., LaMarche, N.M., Hegde, S., Belabed, M., Troncoso, L., Grout, J.A., Magen, A., et al. (2023). TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat Immunol *24*, 792-801. 10.1038/s41590-023-01475-4.
- 93. Sharma, P., Siddiqui, B.A., Anandhan, S., Yadav, S.S., Subudhi, S.K., Gao, J., Goswami, S., and Allison, J.P. (2021). The Next Decade of Immune Checkpoint Therapy. Cancer Discov *11*, 838-857. 10.1158/2159-8290.CD-20-1680.
- Wolchok, J.D., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Rutkowski, P., Lao, C.D.,
 Cowey, C.L., Schadendorf, D., Wagstaff, J., Dummer, R., et al. (2022). Long-Term
 Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in
 Patients With Advanced Melanoma. J Clin Oncol 40, 127-137. 10.1200/JCO.21.02229.
- 95. Verma, V., Shrimali, R.K., Ahmad, S., Dai, W., Wang, H., Lu, S., Nandre, R., Gaur, P., Lopez, J., Sade-Feldman, M., et al. (2019). PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1(+)CD38(hi) cells and anti-PD-1 resistance. Nat Immunol 20, 1231-1243. 10.1038/s41590-019-0441-y.
- 96. McGranahan, N., Furness, A.J., Rosenthal, R., Ramskov, S., Lyngaa, R., Saini, S.K., Jamal-Hanjani, M., Wilson, G.A., Birkbak, N.J., Hiley, C.T., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463-1469. 10.1126/science.aaf1490.
- 97. Gubin, M.M., and Vesely, M.D. (2022). Cancer Immunoediting in the Era of Immunooncology. Clin Cancer Res *28*, 3917-3928. 10.1158/1078-0432.CCR-21-1804.

Figure 1. Therapeutic NeoAg vaccines or ICT inhibit NeoAg-expressing *Braf^{V600E} Pten^{-/-} Cdkn2a⁻* ^{/-} melanoma growth.

(A) Tumor growth and percent tumor rejection in wildtype (WT) C57BL/6J mice transplanted with Y1.7 mA^{MHC-I}.mI^{MHC-II} (Y1.7AI) and Y1.7 mL^{MHC-II}.mI^{MHC-II} (Y1.7LI) melanoma cells and treated with control mAb or anti-CTLA-4 immune checkpoint therapy (ICT) starting on d. 3 post tumor-transplant, and subsequently on d. 6, 9, 12, 18, 24.

(B) Tumor growth, cumulative mouse survival, and percent tumor rejection in WT C57BL/6J mice transplanted with Y1.7AI and Y1.7LI melanoma cells and treated with mAlg8 or mLama4 NeoAg synthetic long peptide (SLP) plus poly I:C (pI:C) vaccines or pI:C alone starting on d. 3 post tumor-transplant and given every 6 days for 3 total doses.

(C) Bar graphs displaying mAlg8 or mLama4 tetramer-specific CD8 T cells in Y1.7AI and Y1.7LI tumors treated with control mAb, anti-CTLA-4, pI:C, mAlg8 SLP + pI:C NeoAg vaccine (for Y1.7AI) or mLama4 SLP + pI:C NeoAg vaccine (for Y1.7LI) as in **(A)** and **(B)** and harvested on d. 16 post-tumor transplant. SIINFEKL-H2-K^b tetramer served as irrelevant control.

(D) Tumor growth, cumulative mouse survival, and percent tumor rejection in WT C57BL/6J mice transplanted with Y1.7LI melanoma cells and treated with control mAb, anti-CTLA-4, anti-PD-1, anti-CTLA-4 + anti-PD-1, irrelevant (for Y1.7LI) mAlg8 SLP + pI:C (control VAX), or relevant mLama4 SLP + pI:C (neo VAX) starting on d. 7 post tumor-transplant, and subsequently on d. 10, 13, 16, 22, 28 for ICT and d. 13, 19 for NeoAg vaccines.

Tumor growth data in (A), (B), and (D) are presented as individual mouse tumor growth as mean tumor diameter and are representative of (A) five, (B) three, or (D) four independent experiments. Tumor rejection graphs display cumulative percentage of mice with complete tumor rejection from independent experiments. Cumulative survival curves and tumor rejection graphs include mice from three independent experiments (**P < 0.01, ***P < 0.001, log-rank (Mantel–Cox) test). Bar graphs in (C), display mean ± SEM and are representative of at least three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.005, NS, not significant; unpaired, two-tailed Student's *t* test).

See also Figure S1.

Figure 2. scRNAseq of intratumoral immune cells from Y1.7LI tumor bearing mice treated with NeoAg vaccines or ICT.

(A) Experimental setup for (B)-(K). WT C57BL/6J mice were injected with Y1.7LI melanoma cells and subsequently treated beginning on d. 7 with control mAb, anti-CTLA-4, anti-PD-1, anti-CTLA-4 + anti-PD-1, irrelevant (for Y1.7LI) mAlg8 SLP + pI:C (control VAX), or relevant mLama4 SLP + pI:C (neo VAX) and harvested on d. 15 post-tumor transplant. Intratumoral live CD45⁺ cells were sorted and analyzed by scRNAseq.

(B) UMAP plot from scRNAseq of intratumoral CD45⁺ cells with annotated cell types.

(C) Feature plot showing lineage-specific transcripts defining lymphoid and myeloid cell types.

(D) Feature plots displaying subclustering of activated T cell-containing clusters, subclustered T cell/ILC cluster annotations (middle plot), and *Cd4* and *Cd8* expression (bottom plot).

(E) Heat map displaying average expression of select transcripts by cluster.

(F) Gene set enrichment analysis (GSEA) displaying significantly enriched gene sets in cluster Cd4/8_{Cycling}.

(G) Proliferating T cells in cluster Cd4/ $8_{Cycling}$ by treatment condition represented as percentage of subclustered T cells.

(H) Dot plot depicting expression level and percent of cells expressing *Foxp3*, *Cd4*, *Cd8*, *Ifng* in Cd4/8_{Cycling} by treatment condition.

(I) Percentage of Foxp3⁺ Tregs, conventional CD4 T cells, or CD8 T cells in Cd4/8_{Cycling} by treatment condition.

(J) Graph displaying CD8 T cells from cluster Cd4/8_{Cycling} represented as percentage of total subclustered T cells.

(K) Graph displaying conventional CD4 T cells from cluster Cd4/8_{Cycling} represented as percentage of total subclustered T cells.

See also Figures S4 and S5.

Figure 3

Figure 3. NeoAg vaccines and ICT induce shared and distinct alterations to NeoAg-specific CD8 T cells.

(A) Experimental setup for (B)-(I). WT C57BL/6J mice were injected with Y1.7LI melanoma cells and subsequently treated beginning on d. 7 with control mAb, anti-CTLA-4, anti-PD-1, anti-CTLA-4 + anti-PD-1, irrelevant (for Y1.7LI) mAlg8 SLP + pI:C (control VAX), or relevant mLama4 SLP + pI:C (neo VAX) and harvested on d. 15 post-tumor transplant. Single cell suspensions of harvested tumors were stained with SIINFEKL- or mLama4-H2-K^b PE and APC labelled tetramers and surface stained with flow antibodies for analysis or sorting of mLama4 tetramer positive CD8 T cells for scRNAseq.

(B) Graph displaying CD8 T cells as a percentage of intratumoral live CD45⁺ cells in Y1.7LI tumors under different treatment conditions.

(C) and (D) Graph displaying mLama4 tetramer-positive CD8 T cells as a percentage of (C) CD8 T cells and (D) CD45⁺ cells in Y1.7LI tumors under different treatment conditions.

(E) UMAP plot from scRNAseq of mLama4 NeoAg-specific CD8 T cells. Cell types were annotated based on transcriptional states of NeoAg-specific CD8 T cells.

(F) Feature plots displaying expression of select phenotype and lineage transcripts.

(G) Heat map displaying average expression of select transcripts by cluster.

(H) Bar graph displaying frequency of mLama4 NeoAg-specific CD8 T cells within each cluster by treatment condition.

(I) Frequency of total mLama4 NeoAg-specific CD8 T cells within the 5 cycling clusters combined by treatment condition.

See also Figures S7 and S8.

Figure 4

Figure 4. NeoAg-specific alpha-beta TCR clonotype expansion and diversity relates to phenotype and functional state of T cells associated with different immunotherapies.

(A) Chord diagram displaying overlapping TCR clonotypes of mLama4 NeoAg-specific CD8 T cells by cluster.

(B) Morisita index values depicting overlapping TCR clonotypes of mLama4 NeoAg-specific CD8 T cells by cluster.

(C) Shannon TCR diversity index by clusters and treatment groups.

(D) Graphs displaying percent of PD-1⁺ TIM-3⁺/LAG-3⁺ or MFI of PD-1, TIM-3, or LAG-3 on PD-1⁺, TIM-3⁺, or LAG-3⁺ mLama4-specific CD8 T cells in Y1.7LI tumors under different treatment conditions and harvested on d. 15 post-tumor transplant.

(E) Graph displaying IFN- γ^+ or TNF- α^+ CD8 T cells and IFN- γ or TNF- α MFI as assessed by intracellular cytokine staining of mLama4 peptide restimulated CD8 T cells isolated from Y1.7LI tumors under different treatment conditions and harvested on d. 15 post-tumor transplant.

Bar graphs in **(D)** and **(E)** display mean \pm SEM and are representative of at least three independent experiments (**P* < 0.05, ***P* < 0.01, ****P* < 0.005, **** *P* < 0.0001; NS, not significant, unpaired t test).

See also Figure S10.

Figure 5. Anti-CTLA-4 induces an ICOS⁺ Bhlhe40⁺ Th1-Like subpopulation of CD4 T cells and a small Th2-Like subpopulation when combined with anti-PD-1.

(A) Heat map displaying normalized expression of select genes in each CD4 T cell cluster by treatment condition.

(B) Bar graphs depicting frequency of CD4 T cells within each cluster by treatment condition.

(C) Graph displaying CD4 T cells as a percentage of intratumoral live CD45⁺ cells as determined by flow cytometry in Y1.7LI tumors under different treatment conditions and harvested on d. 15 post-tumor transplant.

(D) Graph displaying IFNγ⁺ CD4 T cells as assessed by intracellular cytokine staining on CD4 T cells isolated from Y1.7LI tumors under different treatment conditions and harvested on d. 15 post-tumor transplant.

(E) Monocle 3-Guided Cell Trajectory of CD4 T Cell Clusters. UMAP plot displaying exclusively CD4 T cell-containing clusters (left) of all experimental conditions, CD4 T cell trajectory graph overlaid on UMAP (middle) where the origin of the inferred pseudotime is indicated by the red arrow and assigned with pseudotime score 0, and geodesic distances and pseudotime score among other CD4 T cells are calculated from there based on transcripts associated cell states. CD4 T cell clusters overlaid on Monocle3 pseudotime plot (right).

Bar graphs in (C) and (D) display mean \pm SEM and are representative of at least three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.0001, NS, not significant, unpaired t test).

See also Figure S11.

Figure 6. NeoAg vaccines promote partially distinct macrophage remodeling from ICT.

(A) UMAP displaying sub-clustering of select myeloid clusters from CD45⁺ scRNAseq analysis (See Figure 2A) and heat map displaying normalized expression of select genes in each monocyte/macrophage cluster.

(B) Percent monocytes/macrophages in each cluster by condition and treatment represented as percent of live CD45⁺ cells.

(C) Heat map displaying normalized expression of *Mrc1* (CD206), *Cx3cr1*, and *Nos2* (iNOS) in each monocyte/macrophage cluster by treatment condition.

(D) scRNAseq dot plot depicting expression level/percent of cells expressing *Mrc1* and *Cx3cr1* within all monocytes/macrophages clusters by treatment condition.

(E) Representative flow cytometry plots and graph displaying CX3CR1⁺CD206⁺ macrophages in Y1.7LI tumors under different treatment conditions and harvested on d. 15 post-tumor transplant.

(F) Representative flow cytometry plots and graph displaying iNOS⁺ macrophages in Y1.7LI tumors under different treatment conditions and harvested on d. 15 post-tumor transplant.

For flow cytometry analysis in (E) and (F), dot plot displaying CX3CR1⁺CD206⁺ and iNOS⁺ macrophages are gated on macrophages using a gating strategy previously described⁹⁷. Bar graphs in (E) and (F) display mean \pm SEM and are representative of at least three independent experiments (***P* < 0.01, *****P* < 0.0001, NS, not significant, unpaired *t* test).

See also Figures S12 and S13.

Figure 7. NeoAg vaccines broaden the therapeutic window for anti-CTLA-4 or anti-PD-1 ICT when used in combination.

(A) Tumor growth and cumulative survival of WT C57BL/6J mice transplanted with Y1.7LI melanoma cells on d. 0 and treated beginning on d. 12 with different monotherapies: control mAb, anti-CTLA-4, anti-PD-1, irrelevant SLP + pI:C (Control VAX), or relevant mLama4 SLP + pI:C (neo VAX); or combination therapies: anti-CTLA-4 + anti-PD-1 combination ICT, anti-CTLA-4 + control VAX, anti-CTLA-4 + neo VAX, anti-PD-1 + control VAX, or anti-PD-1 + neo VAX.

(B) Tumor growth and cumulative survival of WT C57BL/6J mice transplanted with MC38 cells on d. 0 and treated beginning on d. 12 with different monotherapies: control mAb, anti-CTLA-4, anti-PD-1, irrelevant HPV SLP + pI:C (Control VAX), or relevant mAdpgk SLP + mRpl18 SLP + mDpagt1 SLP + pI:C (neo VAX); or combination therapies: anti-CTLA-4 + anti-PD-1 combination ICT, anti-CTLA-4 + control VAX, anti-CTLA-4 + neo VAX, anti-PD-1 + control VAX, or anti-PD-1 + neo VAX.

Tumor growth data in (A) and (B) are presented as individual mouse tumor growth as mean tumor diameter with fraction indicating (# of mice rejecting tumor)/(# of mice used in experiment) and are representative of three independent experiments. Cumulative survival curves in (A) and (B) include mice from three independent experiments (*P < 0.01, **P < 0.05, ***P < 0.001, log-rank (Mantel–Cox) test).