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Abstract1

The human gut microbiome is composed of a highly diverse consortia of species which are2

continually evolving within and across hosts. The ability to identify adaptations common to many3

human gut microbiomes would not only reveal shared selection pressures across hosts, but also key4

drivers of functional differentiation of the microbiome that may affect community structure and host5

traits. However, to date there has not been a systematic scan for adaptations that have spread across6

human gut microbiomes. Here, we develop a novel selection scan statistic named the integrated7

Linkage Disequilibrium Score (iLDS) that can detect the spread of adaptive haplotypes across host8

microbiomes via migration and horizontal gene transfer. Specifically, iLDS leverages signals of9

hitchhiking of deleterious variants with the beneficial variant. Application of the statistic to ∼30 of10

the most prevalent commensal gut species from 24 populations around the world revealed more than11

300 selective sweeps across species. We find an enrichment for selective sweeps at loci involved in12

carbohydrate metabolism—potentially indicative of adaptation to features of host diet—and we find13

that the targets of selection significantly differ between Westernized and non-Westernized popula-14

tions. Underscoring the potential role of diet in driving selection, we find a selective sweep absent15

from non-Westernized populations but ubiquitous in Westernized populations at a locus known16

to be involved in the metabolism of maltodextrin, a synthetic starch that has recently become a17

widespread component of Western diets. In summary, we demonstrate that selective sweeps across18

host microbiomes are a common feature of the evolution of the human gut microbiome, and that19

targets of selection may be strongly impacted by host diet.20
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Introduction21

The diverse species that compose the human gut microbiome continually evolve throughout22

a host’s lifetime. Recent work has shown that rapid adaptation is a hallmark of evolution in the23

human microbiome, as novel mutations often arise and sweep to high frequency within healthy24

hosts on timescales of days to months [1, 2, 3, 4, 5, 6, 7]. These evolutionary dynamics can have25

functional consequences for the host, as microbial genetic variants are associated with numerous26

traits including metabolic capacity, disease susceptibility, and digestion of food [8, 9, 10, 11].27

A novel adaptation which appears initially in one host microbiome may spread across host28

microbiomes through strain or phage transmission and subsequent horizontal gene transfer (HGT).29

The human gut microbiome is known to be a hotspot for HGT [12, 13, 14], allowing adaptive alleles30

to be easily recombined onto new genetic backgrounds. While it has been shown that HGT plays31

a crucial role in transmission of some genes, such as antibiotic resistance genes, especially across32

species boundaries, the extent to which HGT facilitates the spread of adaptive alleles across strains33

of the same species among commensal gut microbiota is at present unclear.34

Should an adaptive allele spread between microbiomes in a "gene-specific" selective sweep, the35

same genomic sequence, or haplotype, surrounding the adaptive allele will appear in many oth-36

erwise distantly related strains present in different host microbiomes [12, 15, 16]. Such locally37

shared haplotypes will result in distinct signatures of elevated linkage disequilibrium (LD), or, cor-38

relations among variants that have “hitchhiked” to high frequency with the adaptive allele in the39

vicinity of the adaptive locus, but not in the surrounding genomic region. While elevations in LD40

have long been leveraged as a signature of selection in eukaryotes [17, 18, 19, 20, 21, 22], to date41

LD-based scans for selection in bacteria have been limited [23] and instead HGT-mediated sweeps42

have largely been discovered on a case-by-case basis [15, 24] rather than by systematic application43

of established statistics, such as iHS [20]. One reason could be that other evolutionary forces in-44

cluding demographic contractions and reduced recombination rates also result in elevations in LD45

confounding its use in the discovery of adaptation in bacteria [25, 26, 27, 28].46

One way to control for these non-selective forces is to compare LD among synonymous and47

non-synonymous variants. While both types of variants are subject to the same non-selective forces,48

synonymous variants are far more likely to be neutral. The vast majority of non-synonymous muta-49

tions, by contrast, are deleterious in any population [29], and are always found to be preferentially50

rare [30, 31]. Hitchhikers that are rare prior to the sweep will exhibit high LD with the adaptive51

mutation during the sweep as they will typically be found only on haplotypes bearing the adap-52

tive mutation. Therefore, we expect non-synonymous variants to have higher LD than synonymous53

variants in the vicinity of adaptive loci that have swept to high frequency (Figure 1A).54

In this work, we first confirm our hypothesis that deleterious hitchhiking drives an increase55

in LD among non-synonymous relative to synonymous variants in simulations. We further find56

that this signal does not manifest under neutrality, as a result of purifying selection alone, or due57

to low recombination rates or demographic contractions. Next, in a panel of 32 prevalent and58

abundant gut microbiome species, we find that elevations of LD among non-synonymous variants59
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are common at the whole genome level, suggesting that positive selection is widespread. Lastly,60

we develop a novel statistic leveraging these insights (iLDS, the integrated Linkage Disequilibrium61

Score) to detect specific loci under selection in these gut microbial species. Application of iLDS to62

human metagenomic data from 24 populations around the world reveals more than 300 instances of63

adaptations that have spread across hosts, as well as differences in the targets of selection between64

Westernized and non-Westernized microbiomes.65

Results66

Positive selection generates elevated linkage disequilibrium among common67

non-synonymous variants compared to synonymous variants68

We first test whether positive selection can drive an excess of LD between pairs of non-synonymous69

variants (r2N ) versus pairs of synonymous variants (r2S) when deleterious variants hitchhike with a70

positively selected variant. To do so, we performed forward population genetic simulations of se-71

lective sweeps in SLiM 4.0 [32] (Supplementary Section 2). While the beneficial variant and any72

hitchhikers may be expected to become common in the population, deleterious variants not linked73

to the adaptive variant should remain rare. Assuming all non-synonymous sites are either subject74

to purifying selection or are adaptive, we expect non-synonymous variants that become common to75

either be adaptive or to have hitchhiked with and therefore be tightly linked to an adaptive variant.76

As a result, we expect that r2N will be elevated relative to r2S specifically among common variants77

(Figure 1A).78

To examine the potential effects of purifying and positive selection on patterns of LD, we an-79

alyzed LD among variants that are either rare (minor allele frequency MAF ≤ 0.05) or common80

(MAF ≥ 0.2) in the broader population, respectively. To quantify whether r2N is significantly ele-81

vated over r2S , we computed the difference in area under their respective LD distance decay curves82

(AUC) (Figure 1C). This test statistic, which we refer to as AUC(r2N − r2S), allows us to assess dif-83

ferences in total levels of r2N and r2S in a manner that controls for genomic distance (and therefore84

effective recombination rates) between pairs of alleles (Supplementary Section 1.2).85

Before assessing if selective sweeps generate excess LD among common non-synonymous ver-86

sus synonymous variants, we first determined if this pattern can arise under scenarios of neutrality,87

purifying selection, or demographic contractions. As expected, under neutrality, we observed that88

AUC(r2N − r2S) was not significantly different from zero for either common or rare variants (Figure89

1B and S1 - S6). Similarly, we found that in populations evolving under purifying selection, in90

which new non-synonymous mutations experienced purifying selection of strength (sD) varying91

from −10−5 to −10−1 (encompassing a value weaker than the effect of drift ( |NesD|< 1) to very92

strong selection (|NesD|≫ 1)), common variants failed to produce AUC(r2N − r2S) > 0, irrespective93

of the recombination rate. However, in these scenarios of purifying selection rare variants showed a94

depression in r2N versus r2S (Figures S4 - S6), consistent with both Hill-Robertson interference [33]95

or epistasis between deleterious variants, as previously observed by [34, 35, 36, 37, 38]. Finally,96
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Figure 1: Linkage disequilibrium among common non-synonymous versus synonymous vari-
ants during a selective sweep. (A) Genomic fragment bearing adaptive variant sweeping across
host microbiomes. Each horizontal line represents a bacterial haplotype from a different host’s
microbiome. The yellow region of each haplotype represents a fragment that bears an adaptive
allele that has recombined onto different lineages’ backgrounds. (B) r2N and r2S among common
variants under neutrality. (C) AUC(r2N − r2S) among common variants where sD = −10−3 and
sB = −10−2. (D) AUC(r2N − r2S) is expected to be greater than zero when sB > sD and both sD

and sB are stronger than the effects of drift ( 1
Ne

, dashed lines). In this schematic and in all simula-
tions (prior to a demographic contraction), Ne = 104. See Figures S1 - S3 for r2N and r2S measured
across a comprehensive set of simulated evolutionary scenarios.
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given that demographic contractions are known to affect patterns of diversity and linkage disequi-97

librium in ways that closely resemble sweeps [25, 26, 27], we tested if a population bottleneck98

could lead to a stochastic increase in the frequency of haplotypes bearing particular combinations99

of linked deleterious variants, and therefore potentially to an elevation of r2N versus r2S among com-100

mon variants. However, in two demographic scenarios tested, AUC(r2N − r2S) was not significantly101

different from zero (Figures S1 - S3), irrespective of the recombination rate.102

Next, we tested whether selective sweeps could induce AUC(r2N − r2S) > 0 among common103

variants. To do so, we introduced a novel, beneficial mutation to a population already evolving104

under purifying selection, and allowed it to rise to intermediate (50%) frequency. The strength105

of beneficial selection (sB) ranged from nearly-neutral (10−5) to strongly beneficial (10−1). First,106

regardless of sD, r2N and r2S among common variants generally increased monotonically with sB,107

reflecting the decrease in the expected time for the sweeping variant to reach intermediate frequency108

relative to neutrality. Second, we found that selective sweeps can in fact produce AUC(r2N−r2S) > 0;109

however, this pattern only manifests under particular combinations of sB and sD. Specifically, the110

strength of purifying selection must exceed drift (i.e. sD > 1/Ne), and the strength of positive111

selection must exceed that of purifying selection (sB > sD) (Figure 1D). Additionally, AUC(r2N −112

r2S) increased with the strength of sB and sD, as well as with the rate of recombination (Figures113

S1 - S3). Moreover, r2S remained elevated over r2N among rare variants during the selective sweep,114

provided purifying selection exceeded drift (Figures S4 - S6). Thus, when a population experiences115

both purifying and positive selection, we expect to see differences between synonymous and non-116

synonymous LD among both rare and common variants.117

Elevation of LD among non-synonymous variants in gut commensal species118

Having established in simulations that LD between common non-synonymous variants can be119

elevated relative to synonymous variants primarily due to selective sweeps, we next quantified r2N120

and r2S across human gut microbiomes to assess if this signature of positive selection is observed121

at a genome-wide scale in gut microbiome species. To do so, we analyzed data from metagenomic122

samples of 693 individuals from North America, Europe, and China [39, 40, 41, 42]. To identify sin-123

gle nucleotide polymorphisms (SNPs) from these samples, we aligned shotgun reads to a database124

of reference genomes using MIDAS [43] (Supplementary Section 3). We showed previously that125

samples in which a single dominant strain of a species is present can be confidently ‘quasi-phased’126

such that pairs of alleles can be assigned to the same haplotype with low probability of error, and127

that subsequently LD can be computed between these pairs of alleles [1]. With this quasi-phasing128

approach, we extracted 3316 haplotypes belonging to 32 species across the 693 individuals we ex-129

amined. Some of the species examined exhibit considerable population structure, with strong gene130

flow boundaries between clades, so we focused our analyses only on haplotypes belonging to the131

largest clade of each species (Supplementary Section 3.6) [1, 12].132

First, we examined the dependence of AUC(r2N − r2S) on allele frequency. As purifying se-133

lection drives deleterious variants to low frequencies and positive selection tends to elevate allele134
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Figure 2: r2N and r2S measured in prevalent commensal gut microbiota. (A) Decay in LD
among common (MAF ≥ 0.2) (top) and rare (MAF ≤ 0.05) (bottom) variants for the species
Ruminococcus bromii and Prevotella copri. Both species show significant differences between r2N
and r2S for common and rare variants, as denoted by the orange star. (B) AUC(r2N − r2S) among rare
(orange) and common (green) alleles for 32 prevalent gut commensal bacteria species. Among rare
variants, AUC(r2N − r2S) is significantly negative for all but two species (yellow stars, at bottom).
Among common variants, AUC(r2N − r2S) is significantly positive in 26/32 of species (yellow stars,
at top).

frequencies, we expect to observe a generally positive relationship between allele frequency (f ) and135

AUC(r2N − r2S) if both purifying and positive selection affect these populations. In Figure S17,136

we see that AUC(r2N − r2S) universally increases with allele frequency, as expected. Additionally,137

we see that AUC(r2N − r2S) flips from negative to positive when f ≥ 0.05 in most species. It is138

possible that the majority of non-synonymous variants with allele frequencies below this threshold139

are deleterious, while those with allele frequencies above this threshold are more likely to be either140

beneficial themselves or tightly linked to a beneficial variant.141

Shown in Figure 2A are examples of genome-wide r2N and r2S for the species Ruminococcus142

bromii and Prevotella copri. Among both rare (f ≤ 0.05) and common (f ≥ 0.2) variants, r2S143

and r2N decay with increasing distance between pairs of genomic loci, as expected for recombining144

species. The rate of decay differs among species; however, for all species, LD appears to eventually145

saturate to some roughly constant value. In R. bromii, for instance, both rare and common variant146

LD appear to saturate around ∼10Kb. In Supplementary Section 5.1, we show how the initial decay147

and eventual saturation of LD can be related to an underlying model of recombination, which in148

turn can be used to infer the mean tract length of horizontally transferred segments for each species.149
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For both species in Figure 2A, AUC(r2N − r2S) is significantly greater than zero among common150

variants and less than zero among rare variants. More broadly, across the 32 species analyzed,151

AUC(r2N − r2S) is significantly greater than zero among common variants in 26/32 species. Among152

rare variants, AUC(r2N − r2S) was significantly less than zero for all but two species (Figure 2B).153

Together, these patterns of LD among synonymous and non-synonymous variants are consistent154

with widespread purifying and positive selection acting on non-synonymous sites in these species.155

Detecting HGT-mediated selective sweeps with iLDS156

Genome-wide patterns of LD among synonymous and non-synonymous variants indicate that157

selection—both positive and purifying—is pervasive at the nucleotide level in gut microbiome158

species. While only a minority of intermediate frequency non-synonymous sites are likely adap-159

tive, positive selection at these sites is evidently strong enough to create highly significant genome-160

wide linkage patterns. To identify these specific adaptive loci, we developed a novel statistic—the161

integrated Linkage Disequilibrium Score (iLDS)—which detects genomic regions exhibiting both162

AUC(r2N − r2S) > 0 and elevated LD relative to the genomic background. By combining these163

sources of information, we identify regions which have elevated LD due to positive selection and164

not other non-selective forces.165

To detect specific genomic regions under selection, iLDS is calculated in sliding windows across166

a genome. To calculate iLDS in a genomic window, we first determine AUC(r2N − r2S) among167

common SNVs (MAF ≥ 0.2) within the window. Next, to augment our ability to detect selection,168

we also identify windows with elevated LD overall, which is expected for selective sweeps. To do169

so, we compute the difference in the area under the LD curve between all intermediate frequency170

variants in the same window (i.e. AUC(r2local)), irrespective of whether they are synonymous or171

non-synonymous, and the area under the average genome-wide LD curve over the same distance172

defined by the window (AUC(r2genome-wide)). The two components of iLDS are therefore:173

r2∆NS = AUC(r2N − r2S) and r2∆LG = AUC(r2local − r2genome-wide)

Next, each component is standardized by its mean and standard deviation across all windows174

along the genome:175

r̄2∆NS =
r2∆NS − E[r2∆NS]

std(r2∆NS)
and r̄2∆LG =

r2∆LG − E[r2∆LG]

std(r2∆LG)

Finally, the statistic is defined as:176

iLDS =
(
r̄2∆NS

)2
+
(
r̄2∆LG

)2 (1)

In essence, r̄2∆LG quantifies the increase in total LD within the window relative to the expected177

level of LD across the whole genomic background for a region of the same size, while r̄2∆NS quan-178

tifies the local extent of elevation in LD among non-synonymous variants relative to synonymous179
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variants. Both of these terms are expected to be elevated during a sweep; however, iLDS should not180

be elevated in regions where r2local is high due to non-selective factors, as AUC(r2N −r2S) will remain181

near zero in such regions.182

In order for a window to be called as significant, three criteria must be met. First, iLDS must183

exceed some critical value. In simulations, we found that r̄2∆(NS) and r̄2∆(LG) each had approximately184

standard normal distributions in the absence of positive selection (Figure S19). Therefore, iLDS185

should approximately follow a χ2 distribution with two degrees of freedom. Sweeps, by contrast,186

produce iLDS values falling in the upper tail of the χ2 distribution (Figure S18). Thus, we set the187

critical value of iLDS to be the upper alpha percentile point of the χ2 distribution (in this work,188

we employ an α = 0.05). If iLDS exceeds this critical threshold, we additionally require that189

AUC(r2N − r2S) > 0 and AUC(r2local − r2genome-wide) > 0. Together, these criteria ensure that LD190

patterns within windows called as significant are consistent with selection.191

We tested iLDS’s ability to correctly detect selective sweeps, as well as its potential for mis-192

classifying genomic regions with elevated LD arising from demographic contractions as selective193

sweeps (Supplementary Section 5.3). We found that iLDS is powerful in detecting recent and strong194

selective sweeps (Figures S7 - S9). Further, we found that demographic contractions do not sub-195

stantially elevate the false positive rate or false discovery rate of iLDS. Finally, we find that in196

most scenarios where iLDS has strong ability to detect selection, the false discovery rate rarely197

surpasses 10% (Figures S10 - S12). These simulation results indicate that overall, iLDS is capable198

of correctly identifying sweeps when sB is sufficiently strong and rarely identifies non-sweeps as199

sweeps.200

iLDS reveals pervasive selective sweeps in gut bacteria201

We next applied iLDS to gut bacteria. To do so, it is first necessary to define genomic windows202

to calculate iLDS in. The window size should ideally be large enough that genome-wide LD can be203

expected to fully decay by the edges of the window, but not so large that the footprint of the sweep is204

very small relative to the size of the window. To determine this species-specific window size in the205

bacteria examined here, we estimated a typical upper bound on the size of a horizontally transferred206

tract lDD under an idealized model of HGT (Supplementary Section 5.1). LD should fully decay at207

approximately lDD as linkage between fragments separated by greater than this distance is always208

broken by recombination, while variants which are closer may be transferred together horizontally.209

By visual inspection, we found that the inferred value of lDD did in fact correspond to the point at210

which LD fully decayed among common synonymous variants in the data (Supplementary Section211

5.1, Figure S26, Table S3). To ensure that each window contains both an adequate and comparable212

number of synonymous and non-synonymous variants with which to calculate r2N and r2S curves, we213

employed a SNP based windowing approach as opposed to a base-pair defined window. Specifically,214

we defined each window to consist of the average number (for that species) of consecutive non-215

synonymous, intermediate frequency SNPs (MAF ≥ 0.2) spanning lDD (Table S3).216

To assess the ability of iLDS to detect known instances of positive selection in a natural popu-217
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Figure 3: Recombinant selective sweeps in gut bacteria. (A) iLDS scan in C. difficile. Each point
corresponds to an iLDS value for a given genomic window centered around a single intermediate
frequency non-synonymous SNP. Significant windows are colored orange, while non-significant
windows are colored green. The locations of peaks are shown as orange bars below the scan.
Highlighted in blue are the locations of the genes predicted to be virulence factors (Methods [44]).
iLDS scans for (B) E. siraeum and (C) R. bromii, respectively. Both species exhibit a peak at the
genes mdxEF, highlighted in yellow, as well as nine other loci in E. siraeum and five other loci in
R. bromii. (D) Number of selective sweeps detected per species.
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lation, we applied iLDS to a set of 132 isolates of Clostridiodes difficile (Figure 3A, Methods), an218

enteric pathogen that has experienced a recombination mediated selective sweep at the tcdB locus,219

which encodes the toxin B virulence factor [45, 46]. In the majority of windows, iLDS remains220

close to zero, as expected in the absence of positive selection. However, the value of the statistic221

peaks sharply in several regions across the genome. Many of these peaked regions contain large222

numbers of significant iLDS values in consecutive windows. Since consecutive windows may be-223

long to the same selective event, we clustered groups of significant windows into a peak if the SNPs224

they were centered around were both physically close and tightly linked to one another, as would225

be expected following a selective sweep (Methods). In total, we identified seven putative selective226

sweeps in C. difficile. One of these peaks overlaps tcdB, confirming that iLDS can indeed recover227

known instances of positive selection (Figure 3A).228

Beyond tcdB, we find a striking correspondence between the locations of the putative sweeps229

and known virulence factors in the C. difficile genome (Figure 3A, blue bars—see Supplementary230

Section 4.1). For instance, one peak overlaps the fli operon, a virulence factor involved in flagellar231

biosynthesis, which has been previously hypothesized to be under positive selection [47]. In total,232

out of the seven regions annotated to have virulence factors, four overlap or are near iLDS peaks,233

potentially indicating that selection on virulence-associated traits is an important component of C.234

difficile evolution.235

Finally, once again confirming the ability of iLDS to recover known positive controls, in the236

recombinant pathogen Helicobacter pylori, iLDS generate a significant peak at the vacA virulence237

factor gene (encoding the vacuolating cytotoxin) (Figure S23), which was previously shown to238

experience positive selection [48, 49]. Overall, we find evidence that virulence factors may be239

positively selected in these pathogens.240

Next, we applied the scan to the 32 gut microbiome species analyzed in Figure 2B. We identified241

a total of 155 unique peaks across all species, with a median of four peaks per species (Figure242

3D). In total, these peaks spanned 452 genes (Supplementary Table S4). While these genes were243

functionally diverse, we found certain classes of genes repeatedly under selection. For example,244

we identified five instances in five unique species of peaks spanning susC/susD starch utilization245

system genes, which have previously been found to be under selection within multiple, independent246

hosts over weeks to months [2, 7]. Among all 452 genes overlapping iLDS peaks, we observed247

an enrichment for carbohydrate transport and metabolism genes overall (COG category G [50];248

adjusted p-value < 5 × 10−7; Methods) and specific classes of enzymes involved in carbohydrate249

metabolism—particularly glycoside hydrolases (EC number 3.2.1 [51]; adjusted p-value = 0.02).250

These enrichment results provide evidence that genes related to the breakdown and transport of251

carbohydrates are frequently targeted by selection in the gut microbiome (Figure S22).252

One particular class of carbohydrate metabolism genes repeatedly detected as under selection253

were mdxE and mdxF, ABC transporters capable of metabolizing maltodextrin [52], a starch deriva-254

tive commonly used as an emulsifier and textural component of ultra-processed foods [53, 54]. The255

genes mdxEF are present in only four unique species in our dataset, and are identified as under se-256

lection by iLDS in two of these species: R. bromii and E. siraeum (Figure 3B and 3C), both known257
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Figure 4: Selective sweeps across continents and lifestyles. (A) Numbers of bacterial genomes
analyzed per continent for Westernized vs non-Westernized populations, as indicated by circle size.
(B) Overlap in the locations of peaks between Westernized and non-Westernized populations, as de-
termined by the Jaccard index (Methods) (C) Selective sweeps in R. bromii in two non-Westernized
populations and four Westernized populations from around the world. The mdxEF genes are high-
lighted in gold. For the full set of scans across all 16 populations analyzed, see Figure S31.

to metabolize starches in the colon [55, 56]. Indeed, mdxEF are overrepresented among targets of258

selection relative to their genomic frequency (Benjamini-Hochberg adjusted p-value = 0.054). By259

inspecting the haplotypes at and surrounding mdxEF, we see that this putatively adaptive region260

exhibits evidence of extensive, recent horizontal gene transfer (Figure S25).261

Selective sweeps across continents and lifestyles262

The shift from traditional to Westernized lifestyle has reshaped the gut microbiome, alter-263

ing its ecological composition and causing an overall reduction in diversity [57]. Previous work264

has demonstrated that the shift to Westernization has also altered evolutionary trajectories within265

species, with Westernization driving elevated rates of HGT [14] as well as differentiation in the266

pool of mobile genetic elements [58]. We hypothesized that the targets of adaptation in Westernized267

and non-Westernized microbiota are distinct, as a consequence of selective pressures specific to268

each group. To test this hypothesis, we performed iLDS scans in metagenome assembled genomes269

from the Unified Human Gastrointestinal Genome catalog [59] for 16 species present in healthy270

hosts from both Westernized populations in Europe, Asia, and North America, as well as non-271

Westernized populations from Fiji [58] Tanzania [60, 61], Madagascar [62], Peru [63], El Salvador272
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[64], and Mongolia [65] (Figure 4A). In total, we analyzed 24 populations around the world (19273

Westernized, five non-Westernized).274

We found first that many selective sweeps have spread between countries and across conti-275

nents. Across the 24 populations and 16 species studied, we detected a total of 309 unique selective276

sweeps. While the majority of sweeps were unique to a single population, 35% were shared across277

populations, with 108 sweeps found in more than one country, and 83 found on multiple continents278

(Figure S29). Some sweeps were extremely broadly distributed, with 26 sweeps present in 50% or279

more of populations and eight present in 80% or more.280

Next, we assessed whether sweeps were more commonly shared between Westernized popu-281

lations. To do so, we calculated a Jaccard index (J) to quantify the proportion of sweeps shared282

between populations (Methods). Consistent with our hypothesis, we found that Westernized popula-283

tions share sweeps with one another at more than double the frequency (J = 0.21, p-value = 0.047,284

permutation test, Methods) than they do non-Westernized populations (J = 0.11, p-value < 10−4)285

(Figure 4B, Figure S30). Similarly, non-Westernized populations also shared sweeps with one an-286

other (J = 0.18, p-value = 0.67) at greater frequency than with Westernized populations, though287

this elevated sharing was not statistically significant. Together, these results indicate that there288

are shared selection pressures experienced across Westernized populations that drive evolutionary289

differentiation from non-Westernized populations.290

Beyond the evident aggregate difference in sweeps between Westernized and non-Westernized291

populations, we also identified specific selective sweeps which were unique to one group or the292

other. In total, we identified 32 sweeps present in 50% or more of populations of one type (i.e.293

Westernized or non-Westernized) but absent in populations of the other type. Of these, 24 were294

unique to Westernized populations and eight to non-Westernized populations. By contrast, only295

three sweeps were found to be present in ≥ 50% of both Westernized and non-Westernized popula-296

tions, underscoring the lack of shared selective pressures between these populations.297

The R. bromii mdxEF locus, discussed in the preceding section (Figure 3C), was among the298

sweeps which exhibited the strongest pattern of differential selection between Westernized and non-299

Westernized populations. Indeed, mdxEF was found to be under selection in all fourteen Western-300

ized populations but neither non-Westernized population in which the species was present (Fiji and301

El Salvador) (Figure 4C), suggesting that this species may be adapting specifically to Westernized302

lifestyles. Furthermore, this locus had the largest value of iLDS for this species in six out of 14303

Westernized populations (in addition to being the highest peak in Figure 3C), indicating that these304

genes may be under particularly strong selection.305

While some targets of selection may differ between Westernized and non-Westernized micro-306

biota, we also found that the total number of selective sweeps per population were similar, in-307

dicating the gut microbiota of non-Westernized populations may be adapting at a similar rate308

to those of Westernized populations. In particular, we found Westernized populations tended to309

harbor slightly more sweeps (3.46 sweeps/population) than non-Westernized populations (3.25310

sweeps/population); however, this difference was not statistically significant (permutation test, p-311

value = 0.6). We note that the non-Westernized populations studied here are heterogeneous in312
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lifestyle—including pastoralist (Mongolia) and agrarian (Fiji) populations—and may also differ in313

both the extent of their contact with Westernized populations as well as their adoption of Western-314

ized dietary and lifestyle practices.315

Discussion316

In this paper we perform the first comprehensive scan for adaptive fragments that have swept317

across human gut microbiomes via horizontal gene transfer. To do so, we develop a novel selection318

scan statistic, iLDS, that is sensitive to elevations in LD between pairs of common nonsynony-319

mous SNPs vs pairs of common synonymous SNPs. We show in simulations that this signature320

is expected when deleterious variants hitchhike to high frequency along with beneficial variants.321

Application of iLDS to metagenomic data from 24 populations around the world revealed more322

than 300 candidate selective sweeps across more than 30 bacterial species. Among these sweeps,323

we find a strong enrichment of loci involved in carbohydrate transport and metabolism, suggesting324

that host diet may play an outsize role in driving adaptive evolution in these species. Additionally,325

present in all Westernized populations and absent from all non-Westernized populations analyzed326

is a selective sweep at a locus potentially involved in the metabolism of a synthetic starch added327

to highly processed foods. Taken together, our results indicate that recombination between strains328

fuels pervasive adaptive evolution among human gut commensal bacteria, and strongly implicate329

host diet as a critical selection pressure for these species.330

Our work adds to a growing literature suggesting that host diet not only changes the species331

composition of the microbiome, but also selects for specific genetic variants within species. Indeed,332

human populations consuming diets that are rich in seaweed glycans [8], red meat [66], and plant333

starches [58] appear to select for genes in particular bacterial species which facilitate the metabolism334

of these substrates within the host. Additionally, mouse experiments [67, 68] have shown that335

adaptations arise within hosts on short time scales of weeks to months in response to Western-style336

high fat and high sugar diets. We build on these findings by demonstrating that adaptations to host337

diet are broadly distributed across many pathways in many different species.338

We also uncover striking instances of adaptation at specific loci. For instance, we found a single339

selective sweep at the mdxEF locus in R. bromii which was ubiquitous in Westernized popula-340

tions but absent from non-Westernized populations. While the precise selection pressures driving341

the spread of mdxEF variants across Western populations are unclear, these genes are known to342

facilitate growth on maltodextrin—a synthetic starch derivative commonly used as an emulsifier343

and textural component of ultra-processed food [53, 54]—raising the possibility that this selective344

sweep represents an adaptation to a novel source of dietary starch in the Western diet. As R. bromii345

occupies a unique ecological niche within the gut microbiome [55], where it is a keystone species346

for the metabolism of resistant starches (i.e. starches which escape digestion by the host), adapta-347

tions in this species may have outsize effects on the ecological structure of the microbiome and the348

production of resistant starch fermentation byproducts, such as short-chain fatty acids. Future work349

investigating the functional and ecological consequences of the selective sweeps we have identified,350
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likely via experimental studies, will be important for understanding the role of each genetic variant351

in the microbiome.352

Previous attempts to scan for signatures of positive selection across the genome in gut micro-353

biome species have tended to employ single locus approaches—looking for signatures such as paral-354

lelism or elevated dN/dS ratios [1, 2]. Such approaches are ideally suited to detect selective sweeps355

within hosts from de novo mutations, for instance, but are underpowered to detect gene-specific356

sweeps as they do not leverage LD between sites. Gene-specific sweeps in natural populations of357

bacteria have been instead discovered via searching for dramatic reductions in local diversity cou-358

pled with preservation of SNP densities in flanking regions [15, 24]. However, thus far, examples359

of gene specific sweeps in the literature have largely been discovered by case-by-case studies as360

opposed to systematic application of a haplotype-based selection scan statistic, such as iHS [20].361

The precise reasons for why such statistics have been rarely applied are unclear, though we do find362

that iHS exhibits limited ability to detect known HGT-mediated sweeps in C. difficile (Figure S24).363

By contrast, iLDS is highly successful in detecting positive controls in multiple species of bac-364

teria (Figure 3A and Figure S23). Moreover, we find that iLDS is versatile enough to be applied365

to any recombining species, and as such we demonstrate it is capable of detect positive controls in366

Drosophila melanogaster (Figure S32, Supplementary Section 7). iLDS may have power across a367

range of species because it exploits a common signature associated with selective sweeps: delete-368

rious variants hitchhiking to high frequency with a beneficial driver. To our knowledge, the tight369

linkage of beneficial variants with hitchhiking deleterious variants, which has been shown to be a370

common feature of adaptation both in theory and in numerous systems [69, 70, 71, 72, 73, 74, 75,371

76, 77], has not been explicitly incorporated into any selection scan statistic.372

We note that others have also observed that elevated LD among non-synonymous variants rela-373

tive to synonymous variants can be a signature of adaptation [78, 79, 80, 81]; however, the connec-374

tion with deleterious hitchhiking had not previously been noted. Stolyarova et al. [78] and Callahan375

et al. [81] found that epistatic interactions could generate elevated LD among non-synonymous376

variants in the highly polymorphic fungus Schizophyllum commune and also in Drosophila species,377

respectively, while Arnold et al. [79] concluded that epistasis was not necessary to generate this378

signal in Neisseria gonorrhoeae, and that adaptive inter-specific HGT of short genomic fragments379

bearing multiple positively selected non-synonymous alleles was the likely driving factor. We em-380

phasize that our findings are fully consistent with those of Stolyarova et al., Callahan et al., and381

Arnold et al. But crucially, our results suggest that elevated LD among common non-synonymous382

variants is not by itself sufficient to establish that all such variants are adaptive or epistatically inter-383

acting. Because purifying selection at the vast majority of non-synonymous sites is well-established384

to be a pervasive feature not only of bacterial genomes [1, 82, 83, 84, 85], but also in the genomes385

of most other species [86, 87, 88]. We believe it is highly likely some proportion of common386

non-synonymous polymorphisms will be deleterious hitchhikers in any adapting population, with387

this proportion growing, paradoxically, as the strength of positive selection increases. In future388

work, disentangling the effect of epistasis versus hitchhiking on deleterious alleles will be important389

for understanding the relative contributions of different population genetic forces driving selective390
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sweeps in bacteria and other natural populations.391

Most of the selective sweeps we identify are likely real and are not false positives given low false392

discovery rates frequently on the order of 10% for recent and strong selective sweeps (Figures S10 -393

S12). However, the FDR is likely much lower than what we have measured from simulations, which394

treats each analysis window as independent from one another. In data, we require that multiple395

adjacent windows are significant, and, all windows supporting a putative sweep have central SNPs396

that are tightly linked. Additionally, the low TPR measured from simulations even for the strongest397

and most recent sweeps (60%), likely due to our stringent criteria for identifying a sweep, suggests398

there are actually many more sweeps that iLDS has not yet detected, which may be weaker or399

older, where iLDS loses power (Figures S7 - S9). This raises the question of how truly pervasive400

selection is in gut commensal bacteria. Future work expanding the sensitivities of selection scan401

statistics will be crucial for quantifying the frequency and also targets of adaptation among gut402

commensal bacteria as well as other organisms.403

The high rate of recovery of positive controls and moreover the discovery of hundreds of selec-404

tive sweeps suggest that that recombination is a major mechanism by which adaptive DNA spreads405

in human gut microbiome populations. While previous work has found extensive transfer of DNA406

via HGT across species boundaries [13, 14] and also between strains of the same species across407

hosts [1, 12], we definitively establish here that certain fragments cannot be spreading due to neu-408

tral recombination alone, but rather are being repeatedly transferred in a gene-specific selective409

sweep. We emphasize that the success of iLDS critically depends on the fact that recombination is410

ubiquitous across these species’ genomes [1, 12], allowing us to distinguish non-selected regions411

of the genome—where recombination breaks up LD between even nearby variants—from selected412

regions.413

In conclusion, development and application of iLDS to metagenomic data from diverse popu-414

lations may help us to learn about unique selective pressures especially relevant to certain human415

conditions. For example, in future work, application of iLDS to diseased vs healthy cohorts may416

reveal disease-relevant microbiome loci [89]. The stringent criteria for significance as well as our417

ability to cleanly detect positive controls in multiple organisms ranging from bacteria to eukaryotes418

suggests that several of the candidates for selection that we have identified are likely real. Thus,419

future molecular studies investigating the functional importance of selected loci identified by iLDS420

may provide mechanistic insight into how microbiome genotypes confer phenotypes to hosts, im-421

prove our ability to diagnose and treat diseases associated with specific microbiome variants, and422

potentially allow us to deploy existing natural, adaptive variation in the design of rational probiotics.423
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