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Abstract

An enantioselective copper-catalyzed alkynylation of unstabilized cyclic iminium ions has 

been developed. Whereas such alkynylations typically utilize pyridinium, quinolinium and 

isoquinolinium intermediates, this method enables use of cyclic iminium ions unstabilized by 

resonance. With the use of a Lewis acid and copper catalyst, these iminium ions are generated in 
situ from readily available hemiaminal methyl ethers and transformed into highly enantioenriched 

α-alkynylated cyclic amines. A variety of terminal alkynes can be incorporated in high yields and 

enantiomeric excesses.
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Saturated nitrogen heterocycles are important motifs in drug discovery.1 In particular, 

cyclic amines bearing α-stereocenters are present in many pharmaceuticals, natural 

products, and bioactive molecules.2 An attractive approach to these products is nucleophilic 

addition to a prochiral cyclic iminium ion, and we and others have developed 
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enantioselective alkynylations to deliver α-chiral amine heterocycles functionalized with 

versatile alkynyl substituents.3,4 Despite impressive advances in these alkynylations, the 

scope of iminium ions has been restricted to those that are stabilized by resonance, 

specifically isoquinolinium,5 quinolinium,6 and pyridinium7 ions (Scheme 1A). When we 

carried out this work, no examples of enantioselective alkynylation to unstabilized cyclic 

iminium ions had been reported. These iminium ions lack aromatic or other resonance 

stabilization, making them more difficult to form and prone to undesirable decomposition 

via E1 elimination under the basic conditions of a copper-catalyzed alkynylation. Although 

Knochel has developed an impressive enantioselective alkynylation of acyclic N-alkyl 

iminium ions,8 the only stereoselective alkynylation of a cyclic iminium ion, done by Royer, 

relied upon a chiral auxiliary (sulfiniminium ion) approach and required stoichiometric 

aluminum acetylide.9

Because of the importance of saturated nitrogen heterocycles, we embarked on a quest to 

develop a high-yielding and highly enantioselective alkynylation of unstabilized iminium 

ions. Herein, we report a copper/pyridine-(bis)oxazoline catalyst system to accomplish 

enantioselective alkynylation of racemic hemiaminal ether substrates 1a (Scheme 1B). In 

addition to identification of the optimal ligand for high enantioselectivity, the successful 

development of this reaction included careful balancing of the Lewis acid and base to 

avoid undesired decomposition. As we prepared this manuscript, the Wasa group reported 

alkynylation of N-aryl iminium ion intermediates, formed in situ via C─H activation, 

with trimethylsilylpropriolates, including enantioselective examples with cyclic systems.10 

This elegant method complements our current report; in contrast to Wasa’s method, we 

use racemic hemiaminal ethers as substrates, employ terminal aryl acetylenes, and deliver 

products with readily removed carbamate protecting groups.

We selected the reaction of hemiaminal ether 1a and phenylacetylene for optimization. 

Aminal 1a can be readily prepared in two steps from commercially available N-

(benzyloxycarbonyl)piperidone.11 Because of our previous success in alkynylations of 

stabilized oxocarbenium and iminium ions using copper(I)/L1 catalysts and hindered 

bases,5e, 12 we examined similar conditions for this alkynylation. The use of CuI along 

with trimethylsilyl triflate (TMSOTf) as Lewis acid led to a promising 53% yield and 

47% ee, along with ~15% enamine from undesired elimination (Table 1, entry 1). A 

significant effect of the copper counterion was observed; other counterions, both halides 

and hexafluorophosphate, led to lower yields and ee’s (entries 1-4). Other commercially 

available pyridine(bis)oxazoline (PyBox) ligands also failed to improve the yield and ee 

(entries 5–6). Low yields and ee were also observed when bidentate (bis)oxazoline ligands 

L7 and L8 were used, despite their success in enantioselective alkynylations of stabilized 

cations (entries 7–8).13 Decreasing the reaction temperature improved the enantioselectivity 

somewhat without loss in yield; this lower temperature required that dioxane was replaced 

with 2-Me-THF to prevent the solvent from freezing (entry 9). Although seeing this increase 

in enantioselectivity was encouraging, it was also clear that we needed to rethink our catalyst 

design to enable the dramatic increases in enantioselectivity that we needed.

In considering the differences between the unstabilized iminium ion formed from aminal 1a 
and the stabilized quinolinium and isoquinolinium ions that have been used previously, we 
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hypothesized that the smaller size of iminium 2 might require a tighter chiral pocket in the 

catalyst. Because t-Bu-substituted L2 was worse than L1, we also hypothesized that aryl 

substituents were necessary. We thus investigated Ph-PyBox derivatives with substitution 

at R2, which could compress the R1 substituents about the chiral pocket.14,15 Indeed, the 

enantiomeric excess increased to 82% ee with methyl-substituted L4, and to 86% ee with 

ethyl-substituted L5 (entries 10–11). Using L5 as ligand, further increase in enantiomeric 

excess was realized by using dimethoxyethane (DME) as solvent, albeit in lower yield (entry 

14). High yield could then be restored by using boron trifluoride diethyl etherate as the 

Lewis acid (entry 15). Finally, by lowering the reaction temperature to −50 °C, 86% yield 

and 92% ee was observed (entry 16). Alternative leaving groups on the hemiaminal ether 

were less effective (see Supporting Information).16

Under the optimized conditions (Table 1, entry 16), various aminal substrates were 

examined (Scheme 2). The model reaction can be run on 1.0-mmol scale to deliver alkyne 

3 without diminished yield or ee. In addition to the benzyloxycarbonyl (Cbz) protecting 

group, tert-butoxycarbonyl (Boc) protected amine 4 can be formed in 68% yield and 91% 

ee. The absolute configuration of 4 was determined by comparison of its optical rotation 

to the literature value.17 The absolute configuration of other products was assigned by 

analogy. High yield and ee is observed in the reaction of 6-membered cyclic iminium 

ions, as demonstrated by formation of piperidine 5. Azepane 6 can also be delivered via 

this method, albeit with lower ee. Conformational analysis shows that both π-faces of the 

7-membered iminium ion are more sterically encumbered than the π-faces of the 5- and 

6-membered systems. Given this difference, it is not surprising that the same catalyst would 

not provide high ee for the 7-membered iminium ion intermediate. Substitutions on the 

ring are also well tolerated (7, 8, 9). With the use of (S,S)-L5, excellent yield and a single 

diastereomer were observed in the formation of 9 from an enantiopure substrate. However, 

using (R,R)-L5 afforded the same diastereomer with diminished yield. These results show 

that the stereoselectivity is due to substrate control, but the difference in yield highlights 

the influence of the chiral catalyst in the mismatched case. This strong substrate control has 

been observed in similar pyrrolidine systems.18

The scope of terminal alkynes was then explored. A variety of aryl acetylenes are well 

tolerated (Scheme 3). The additional steric bulk of o-tolylacetylene is accommodated with 

high yield and ee observed (10). Functional groups, such as p-bromo, m-chloro, and p-Bpin, 

can be incorporated effectively (11, 12, 14), enabling downstream cross-couplings of the 

alkynylated products. High enantioselectivities were observed for other aryl acetylenes with 

electron-withdrawing substituents such as ether (13), nitrile (15), trifluoromethyl (16), and 

ester (17). Heteroaryls, such as thiophene (18) can be incorporated as well. However, aryl 

acetylenes with electron-donating substituents, such as p-methoxy and p-dimethylamino 

substituents, led to diminished enantioselectivity (19, 20). Additionally, the use of alkenyl 

and alkyl acetylenes afforded desired products. albeit with diminished ee and yield (21, 22, 

24). Silyl acetylenes were also examined, among which triphenylsilyl acetylene produced 

the best result of 70% yield and 43% ee (23).19

With respect to mechanism, we hypothesize that a chiral copper acetylide is formed in situ, 

as is the iminium ion. Attack of the copper acetylide onto the iminium ion then provides 
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the desired product. We note a Hammett correlation between the aryl acetylene substitution 

and the enantiomeric ratio (Fig. 1).20 The higher enantioselectivity observed with less 

electron-rich alkynes is consistent with C─C bond formation as the enantiodetermining 

step. Less nucleophilic acetylenes should have later transition states in the C─C bond 

formation, resulting in closer proximity of the iminium ion to the chiral pocket of the chiral 

copper acetylide, ultimately giving higher enantioselectivity. Ongoing studies are focused on 

more deeply understanding the nature of the active catalyst and developing a detailed model 

for enantioinduction.

In summary, a copper-catalyzed enantioselective alkynylation of unstabilized cyclic iminium 

ions has been described. The iminium ions are formed in situ from readily available 

hemiaminal ethers. This method delivers 5- and 6-membered nitrogen heterocycles with 

α-stereocenters in good yields and enantiomeric excess under mild reaction conditions. The 

reaction features excellent functional group tolerance, and a variety of aminals and alkynes 

can be used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hammett correlation of substitution on aryl acetylene with enantiomeric ratio.
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Scheme 1. 
Cyclic Iminium Ions in Stereoselective Alkynylation Reactions
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Scheme 2. Scope in Aminal.a
a Conditions: aminal 1 (0.3 mmol), CuI (10 mol %), L5 (12 mol %), phenylacetylene (1.2 

equiv), PMP (1.5 equiv), BF3·OEt2 (1.1 equiv), DME (0.05 M), −50 °C, 24 h. Average 

isolated yields (±5%) and ee’s (±2%) of duplicate experiments, unless noted otherwise. b 0.1 

mmol scale with (R,R)-L5. Yield determined by 1H NMR with 1,3,5-trimethoxybenzene as 

internal standard.
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Scheme 3. Scope in terminal alkynesa.
a Conditions: 1a (0.3 mmol), CuI (10 mol %), L5 (12 mol %), alkyne (1.2 equiv), PMP (1.5 

equiv), BF3·OEt2 (1.1 equiv), DME (0.05 M), −50 °C, 24 h. Average isolated yields (±5%) 

and ee’s (±2%) of duplicate experiments, unless noted otherwise. b Yields were ±10%. c 

Single experiment.
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Table 1.

Optimization of Alkynylation.a

entry[a] [Cu] L*[b] temp
(°C)[c]

yield
(%)

ee
(%)

1 CuI L1 r.t. 53 47

2 CuCl L1 r.t. 14 1

3 CuBr L1 r.t. 10 7

4 Cu(MeCN)4PF6 L1 r.t. 4 0

5 CuI L2 r.t. 31 37

6 CuI L3 r.t. 27 30

7 CuI L7 r.t. 17 0

8 CuI L8 r.t. 0 ndf

9b CuI L1 −30 54 52

10b CuI L4 −30 80 82

11b CuI L5 −30 80 86

12b CuI L6 −30 74 55

13b,c CuI L5 −30 73 85

14d CuI L5 −30 50 91

15d,e CuI L5 −30 85 90

16d,e CuI L5 −50 86 92

[a]
Conditions: aminal 1a (0.1 mmol), [Cu] (10 mol %), ligand (12 mol %), phenylacetylene (1.2 equiv), PMP (1.5 equiv), TMSOTf (1.1 

equiv), dioxane (0.05 M), 24 h, unless otherwise noted. Yields determined by 1H NMR with 1,3,5-trimethoxybenzene as internal standard. Ee’s 
determined by HPLC using a chiral stationary phase.

[b]
2-Me-THF as solvent.

[c]
iPr2NEt as base.

[d]
Dimethoxyethane as solvent.

[e]
BF3·OEt2 as Lewis acid.

[f]
nd = not determined.
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