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Abstract
Alzheimer’s disease (AD) has a detrimental impact on brain function, affecting various aspects such as cognition, memory, 
language, and motor skills. Previous research has dominantly used electroencephalography (EEG) and functional near-infra-
red spectroscopy (fNIRS) to individually measure brain signals or combine the two methods to target specific brain functions. 
However, comprehending Alzheimer’s disease requires monitoring various brain functions rather than focusing on a single 
function. This paper presents a comprehensive research setup for a monitoring platform for AD. The platform incorporates 
a 32-channel dry electrode EEG, a custom-built four-channel fNIRS, and gait monitoring using a depth camera and pressure 
sensor. Various tasks are employed to target multiple brain functions. The paper introduced the detailed instrumentation of 
the fNIRS system, which measures the prefrontal cortex, outlines the experimental design targeting various brain functioning 
programmed in BCI2000 for visualizing EEG signals synchronized with experimental stimulation, and describes the gait 
monitoring hardware and software and protocol design. The ultimate goal of this platform is to develop an easy-to-perform 
brain and gait monitoring method for elderly individuals and patients with Alzheimer’s disease.

Keywords Brain monitoring system · Electroencephalogram · Functional near-infrared spectroscopy · Gait monitoring · 
Alzheimer’s disease

1 Introduction

Statistics Korea reported in 2022 that there are approxi-
mately 9.01 million individuals aged 65 or older, accounting 
for 17.5% of the total population. This indicates that Korea 
is currently facing the challenges of an aging society and is 

transitioning into a super-aged society as the numbers keep 
increasing. Among the population of elder, around 10% of 
the elderly population in Korea suffer from dementia, lead-
ing to hospitalizations or visiting clinic. Currently, there is 
no cure available for dementia, and thus, efforts focus on 
prevention and delaying the progression of symptoms.
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Alzheimer’s disease (AD) is the most common cause of 
dementia, characterized by the formation of amyloid plaques 
and neurofibrillary tangles, which result in neuronal cell 
death and affect various aspects of brain. Early detection 
of Alzheimer’s disease is crucial in order to delay symp-
tom deterioration. The primary screening methods used in 
Korea include the Mini–Mental State Examination (MMSE), 
a questionnaire assessing general cognitive function, and 
the Seoul Neuropsychological Screening Battery (SNSB), 
which evaluates brain functions across different domains [1, 
2]. However, these screening methods have limitations, as 
MMSE is not effective in identifying early-stage dementia 
such as mild cognitive impairment (MCI) [3]. Also, both 
tests are influenced by socio-educational factors and are 
unsuitable for illiterate individuals [4, 5].

To address these shortcomings, there is a need for a quan-
titative, objective, and easy-to-handle screening tool. Cur-
rent screening techniques employ noninvasive methods such 
as electroencephalography (EEG) and functional near-infra-
red spectroscopy (fNIRS) due to their portability compared 
to bulkier modalities like MRI and PET. EEG measures neu-
ral electrical activity, while fNIRS detects hemodynamic 
activity related to blood circulation. Moreover, fNIRS can 
be customized at lower costs compared to other modalities.

In order to comprehensively examine Alzheimer’s dis-
ease, it is essential to measure various functions affected by 
brain abnormalities, including cognitive function, memory 
function, language function, and motor function. To address 
this, we have designed a platform to measure brain and gait 
function to screen early AD. This platform enables the con-
tinuous measurement of brain function and gait, and we have 
prepared a technical report outlining the necessary steps for 
developing the AD screening platform. The platform con-
sists of a brain function measurement system based on EEG 
and fNIRS, and a gait measurement system based on a depth 
camera and pressure sensors, as described in Fig. 1.

Previous studies in the literature have primarily focused 
on the experimental results, lacking sufficient details 
regarding the device development and systemic param-
eter settings for EEG, fNIRS, and gait monitoring. This 
lack of information hampers the understanding and repro-
ducibility of the research procedures for other researchers 

referencing these studies. Therefore, the purpose of this 
paper is to provide detailed information on our research 
setup, including the hardware and software configurations. 
This study presents an experimental setup comprising a 
commercial EEG system, a custom fNIRS system, and a 
commercial gait monitoring system for an Alzheimer’s 
disease study. We also describe the design of the experi-
mental setup employed to conduct the experiment.

2  Materials and methods

2.1  Hardware

The brain monitoring system for AD, as shown in Fig. 2, 
comprised two main components: a 32-channel dry elec-
trode EEG system (g.Nautilus, g.tec, Austria) covering the 
entire brain, and a custom-built four-channel fNIRS sys-
tem used to measure the prefrontal cortex. Both the EEG 
and fNIRS devices had sampling rates of 500 Hz and 8 
Hz, respectively. The fNIRS system consisted of two dual-
wavelength LEDs (OE-MV7385-P, OptoENG, Republic 
of Korea) and five photodiodes (OPT101, Texas Instru-
ments, USA), with wavelengths of 730 nm and 850 nm 
being used. The signal captured by the photodiodes was 
amplified using quad-operational amplifiers. The LEDs 
emitted light of each wavelength alternately for a brief 
duration, controlled by digital pins in the microcontroller. 
The LEDs were supplied with a constant current through a 
transistor-based current circuit. The circuit design details 
are provided in S1 of the supplementary material. The 
system components were fabricated using a flexible mate-
rial called TPU and created using a 3D printer based on 
the design developed in a 3D CAD program.

Additionally, the gait monitoring system (Tango+ 
STEP, OPTONICS, Republic of Korea) included a depth 
camera to measure body balance during walking and a 
pressure sensor-equipped mat to analyze the gait pattern. 
The specific characteristics of the brain and gait monitor-
ing system are listed in Table 1.

Fig. 1  A schematic concept of 
the measurement system for 
Alzheimer’s disease
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2.2  Software

2.2.1  EEG software

We utilized BCI2000 software to develop the EEG operating 
system, which allows for the customization and visualization 
of appropriate stimuli for subjects. This software enables 
real-time recording and plotting of EEG signals while syn-
chronizing the experimental protocol with the EEG data. To 
run the EEG system in BCI2000, two files, namely “param-
eter” and “batch” files, were required.

The parameter configuration in BCI2000 was divided 
into several sections, including Visualize, System, Source, 
Storage, Application, Connector, and Filtering. A detailed 
description of the BCI2000 environment can be found in S2 
of the supplementary material. The Visualize tab was used 
to set up real-time signal visualization. Briefly, we specified 
the IP address of the EEG device as 127.0.0.1 to establish 
the connection between BCI2000 and the EEG device. The 

Storage tab determined the data directory, subject number, 
session, and file format, which we saved as.dat files. The 
Application tab allowed us to set the window size of the 
experimental paradigm and parameters for sequencing, such 
as stimulation duration, interstimulus duration, number of 
stimulations, and sequence type. The Application tab also 
facilitated the customization of basic BCI2000 parameters 
for our study. For instance, we used oddball, 1-back, and ver-
bal fluency tasks, involving simple drawings and text, so we 
modified the stimuli to customized icons and text. Each set 
of parameters was saved as.prm files, resulting in separate.
prm files for each task.

The batch files contained the sequence of commands to 
initialize the experimental paradigm and visualize the EEG 
signals. When the batch file was executed, it initiated the 
g.Nautilus server and established the connection with the 
software and loaded the previously saved.prm files. The UI 
of the batch file is shown in Fig. 3. Clicking on the “Config” 
button displays a parameter configuration window where 

Fig. 2  The system configuration. a The brain monitoring system and b The gait monitoring system

Table 1  Characteristics of the acquisition systems

Characteristics Acquisition system

EEG fNIRS Gait

Manufacturer/Name g.tec/g.Nautilus Lab built OPTONICS / Tango+ STEP
Number of channels 32 4 (Long), 2 (Short) Image acquisition
sensor Dry electrode (g.SAHARA) 5 optodes (5 photodiodes, 2 LEDs) Pressure sensor, depth camera
Signal transmission method Wireless USB USB
Operating software BCI2000 The standalone executable program 

generated using MATLAB
The standalone executable program
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the number of channels, sampling rate, and previously set 
stimulation parameters could be verified. Once the parameter 
check was completed, the technician pressed enter key, and 
the configuration window closed. Additionally, by clicking 
“Set Config,” the configuration was compiled to the device, 
and the EEG signal appeared on the monitor. The techni-
cian then assesses the signal quality of the subject before 
beginning the measurement. If any abnormal spikes were 
observed prior to the experiment, the technician would 
adjust the placement of EEG electrodes on the subject’s 
head accordingly. After verifying all signals and ensuring 
the system was ready, the technician pressed “Start” to initi-
ate the experiment.

2.2.2  fNIRS software

We programmed the operational functions of the fNIRS sys-
tem using Arduino. This involved implementing code on 
Arduino to switch the LED wavelength and read values from 

the photodiodes. The photodiode values were then displayed 
as a line on the Serial Monitor. The specific Arduino code 
can be found in S3 of the supplementary material.

Next, we designed a graphical user interface (GUI) using 
MATLAB to visualize the real-time values. The GUI tem-
plates are depicted in Fig. 4. The configuration of the GUI 
was accomplished using MATLAB’s GUIDE function. The 
first step was to retrieve the signal from the microcontroller 
via the Serial Monitor using “get” function in MATLAB. 
The voltage signal was read into MATLAB variables using 
the “fscanf” function. The fNIRS channels CH1 and CH2 
were positioned on the right prefrontal cortex, while CH3 
and CH4 were located on the left side. The channel labeled 
as “Near” represented the channel with a short source-detec-
tor separation.

To establish a connection with the fNIRS device, the 
technician verified the comport of the device, entered the 
corresponding number (e.g., “COM4”), and clicked on the 
“CONNECT” button. The text on the button changed to 
“DISCONNECT” once the software detected the fNIRS 
device on the computer. Upon clicking the “START” but-
ton, the fNIRS device began running, and the changes in 
hemoglobin concentration were displayed. The conversion 
of these changes into real-time data was achieved using the 
modified Beer-Lambert law [6]. All channel signals were 
plotted on six graphs. The top left corner of each graph dis-
played the intensity of light for the two wavelengths, ena-
bling the technician to check the signal intensity.

While the program was running, the “START” button 
changed to “STOP.” Upon completion of the experiment, the 

Fig. 3  BCI2000 user interface for EEG recording

Fig. 4  GUI design for fNIRS device
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technician clicked the “STOP” button to cease data display. 
Clicking “SAVE” enabled the fNIRS data to be saved in the 
folder where the fNIRS program was located. The MATLAB 
code for the GUI implementation can be found in S4 of the 
supplementary material.

To monitor EEG and fNIRS programs on one monitor, 
we used Xsplit, a broadcast program that combines real-time 
recordings for comfortable observation of multi-device data 
projected on a screen. As shown in Fig. 8, on the top left of 
the screen, the video camera is recorded in real-time along 
with the fNIRS and EEG signal to ensure that the technician 
can observe a sudden signal change according to movement. 
Figure 5 shows the visualization template, including a video 
camera, button trigger, and task video attached, according 
to the divided section. After the brain measurement, the gait 
measurement is performed separately.

2.2.3  Gait software

The Tango+ STEP, gait monitoring system, consists of a 
depth camera installed to measure the balance of the body 
when walking and a specially fabricated mat equipped with 
a force-sensitive resistor to assess the gait pattern. For gait 
monitoring, the skeleton and step events were recorded via 
the software provided by company. The UI of software is 
shown in Fig. 6. Using depth image information, real-time 
3D joint coordinates are created and measured to store infor-
mation such as gait parameters and major joint angles. Gait 
parameters include gait length and width of the right and 
left feet and velocity of walking. Angle parameters analyzed 

from image information include hip-knee angle, knee, shoul-
der, elbow, arm, body, and head inclination. After the meas-
urement, a document summarizing this information can be 
saved and printed in the software.

2.3  Experimental protocols

For brain monitoring, we employed the measurement during 
visual oddball, 1-back, and verbal fluency tasks as part of the 
experimental paradigm to assess basic cognition, working 
memory, and language function, respectively. Prior to each 
task, a cross mark appeared on the monitor, and the subject 
was instructed to stare at the center point. Before beginning 
the task, the resting state signal was recorded for one minute. 
In the oddball task, consecutive circles appeared in random 
order on the monitor, and the subject was instructed to press 
a button when the color of the circle changed. The circles 
were displayed for 0.5 s and disappeared with an interstimu-
lus interval (ISI) of 1–1.5 s.

In the 1-back task, the subject was shown one of three 
figures in random order and instructed to remember the pre-
vious figure. They were then required to press a button when 
the current figure matched the previous one. Each figure 
was displayed for 1 s, and the ISI was the same as that of the 
oddball task. The verbal fluency task consisted of six stimuli, 
three phonemic tasks, and three semantic verbal tasks. The 
subject was given a phonemic or semantic word and asked to 
continuously produce related words for 30 s. Afterward, they 
were instructed to discontinue word generation and stare at 

Fig. 5  Interface for real-time brain monitoring
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the cross mark on the monitor for another 30 s. This cycle 
was repeated.

After completing the brain signal measurement, the 
gait monitoring protocol was introduced and performed. 

The subject first walked straight and then returned. They 
were then instructed to walk while simultaneously counting 
numbers upward and downward. The specific sequence is 
described in Fig. 7.

Fig. 6  The gait monitoring software

Fig. 7  The experimental paradigm: a Oddball task, b 1-back task, c Verbal fluency task, d Walking, e Dual task (Walking and number counting)
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2.4  Experimental procedure

The experiment was conducted in a specially designed 
room at the Gwangju Senior Technology Center. The data 
measurement procedure is summarized in Fig. 8. The sub-
ject recruitment was carried out at the Gwangju Dementia 
Prevention and Management Center. When a subject vis-
ited the center, the research staff explained the experiment 
and obtained their consent to participate. A schedule for 
the measurement was then set. When the subject visited the 
AD monitoring center, the research staff provided a detailed 
explanation of the entire experimental procedure to them and 
obtained their signed consent form. The subject was seated 
comfortably in a chair, which was positioned in front of a 
monitor, and the chair’s location was fixed to align with the 
monitor’s middle line.

The room was divided into sections for brain monitor-
ing and gait monitoring. Initially, the subject performed the 
tasks in an isolated area within the brain monitoring space. 
The technician sat in the operator’s room and used a web-
cam placed beside the subject to observe the signal qual-
ity. Simultaneously, the technician monitored the ongoing 
task on a monitor that replicated the one in the subject’s 
side. After the brain measurement was completed, they 
moved to the gait monitoring space and continued the meas-
urement. All the procedure took approximately one hour to 
complete.

After completing the experiments, the data files were cop-
ied and saved on a backup drive. The technician then trans-
ferred the files to a physical memory drive and took them to 
the research institute. Subsequently, the data was uploaded 
to a data server accessible by researchers within the same 
network. To access the server, users needed specific creden-
tials, including a designated ID and password. The data files 
were organized by subject number for easy retrieval.

3  Results

We presented preliminary data on fNIRS as part of our AD 
monitoring platform. Firstly, we compared healthy control 
individuals with those diagnosed with MCI (mild cognitive 
impairment) during the Verbal Fluency Task (VFT) [7]. We 
observed a greater change in oxyhemoglobin concentration 
in MCI patients, with a rapid increase at the beginning of the 
task. Secondly, we computed functional connectivity from 
resting-state, oddball, 1-back, and VFT paradigms [8]. The 
MCI group exhibited higher connectivity within the right 
and inter-prefrontal area during the resting state while show-
ing significantly lower connectivity within the left and inter-
prefrontal area during VFT compared to the healthy control 
group. Additionally, we validated a deep learning model for 
multi-class AD classification using fNIRS raw data from 
140 patients, achieving an accuracy of 0.9 [9]. Furthermore, 
a deep learning approach has been explored to diagnose the 
prodromal stage of AD using resting-state EEG data [10]. 
Similarly, the machine learning-based classification mod-
els with wearable sensors have been applied to a multilevel 
gait study [11]. The analysis based on camera and pressure 
sensors is currently being investigated as an ongoing study. 
After single module analysis is complete, the multi-domain 
study is required to improve the screening accuracy of AD.

4  Discussion

During the brain function measurement, we employed an 
EEG system to capture the neural activity across the entire 
brain area, while the fNIRS system specifically focused on 
the hemodynamics of the prefrontal cortex. The oddball, 
1-back, and verbal fluency tasks were carefully designed to 
assess relevant brain functions such as attention, memory, 

Fig. 8  The procedure of monitoring AD
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and language. Although these tasks primarily activate the 
occipital, temporal, and parietal lobes, the frontal and pre-
frontal regions are also closely associated with their func-
tioning. Previous research by McCarthy et al. demonstrated 
distinct frontal activation patterns in response to rapidly 
repeated stimulation within a group of subjects undergoing 
the oddball task [12]. This suggests that the frontal cortex 
exhibits rapid responsiveness to repetitive stimuli. Further-
more, both EEG-NIRS techniques have identified fast opti-
cal signal and event-related potential response in the pre-
frontal cortex due to the oddball stimulus [13].

The n-back task, commonly used in EEG and fNIRS stud-
ies, is designed to assess working memory. Fraga et al. con-
ducted a clinical study comparing event-related desynchroni-
zation among healthy older adults and individuals with MCI 
and AD [14]. They found significant differences between 
the control and the AD group, indicating altered working 
memory levels in AD. Similar investigations have quantified 
changes in blood oxygenation in the prefrontal cortex during 
the n-back task in healthy adults and MCI patients, high-
lighting its utility in assessing cognitive workload [15, 16].

The verbal fluency task is widely employed in fNIRS 
studies, as it elicits high levels of brain activation in the 
prefrontal cortex when individuals generate words related to 
specific phonemic or semantic categories [17]. Yeung et al. 
have revealed altered patterns of lateralization during the 
semantic verbal fluency task in MCI patients [18]. Moreover, 
comparisons between healthy older adults and individuals 
with MCI and AD have demonstrated variations in mental 
workload across different stages of AD [19–21]. In EEG 
studies, the verbal fluency task has shown an association 
between theta power and naming performance [22].

Video recording during the experiment is crucial for iden-
tifying artifacts in EEG and fNIRS signals. Technicians uti-
lize real-time webcam recordings to observe the subject’s 
condition, and these videos are saved alongside the data 
for subsequent analysis. The presence of artifacts, such as 
eye blinking or slight head movements, can be marked and 
documented with timestamps, supporting the preprocessing 
in terms of the identification and elimination of unwanted 
signal. The video recordings include EEG, fNIRS, and syn-
chronized button response data. The button response task 
requires the subject to pay attention and provides insights to 
the technician to sense their understanding of the rule of the 
task. In general, individuals with MCI and AD may encoun-
ter difficulties in understanding the procedures, resulting in 
erroneous button presses. Thus, button response accuracy 
and reaction time can serve as indicators of AD progression.

Gait is a fundamental daily activity and also it is considered 
one of the symptoms of the dementia stage. The monitoring 
of walking and body balance is impacted by abnormal brain 
function and therefore those factors can be key characteristics 
of AD screening in an early stage. Research has demonstrated 

that individuals with mild cognitive impairment caused by 
Alzheimer’s disease exhibit noticeably slower walking speeds 
compared to the normal population [23]. Recognizing the 
importance of assessing these physical aspects can contribute 
to early detection and intervention in AD cases.

While previous studies on Alzheimer’s disease (AD) mon-
itoring using EEG and fNIRS have predominantly focused 
on brain function during rest or working memory tasks, our 
proposed method encompasses a broader range of tasks. Our 
approach includes assessments during resting state, working 
memory, cognitive tasks, and verbal fluency tasks.

In the literature search, we found four relevant papers 
that focused on AD studies utilizing EEG and fNIRS. Li 
et al. investigated alterations in brain networks in AD and 
utilized EEG–fNIRS to identify weaker and suppressed 
cortical connectivity during a working memory task [24]. 
Cicalese et al. employed a machine learning algorithm to 
classify different stages of AD using EEG and fNIRS fea-
tures [25]. They achieved promising results with an Area 
Under Curve of up to 0.88. Perpetuini et al. targeted the 
detection of early AD through working memory failure 
and achieved notable outcomes [26]. Lastly, Chiarelli et al. 
quantified the relationship between theta and alpha brain-
wave bands with changes in hemoglobin concentration [27].

In contrast, our AD monitoring platform integrates both 
brain function measurements and gait analysis. This compre-
hensive approach allows for the evaluation of not only brain 
functioning but also step function and body balance. By cap-
turing multiple features for analysis, our method offers an 
efficient monitoring approach for AD.

5  Conclusion

In this study, we have described the development of a real-
time monitoring platform for Alzheimer’s disease (AD) using 
EEG, fNIRS, and gait monitoring sensors. The platform aims 
to effectively detect various domains affected by AD, includ-
ing cognition, working memory, language, and motor func-
tion. The preliminary data from a single module suggests that 
this platform has the potential to be utilized as a screening 
tool for AD. We hope that the detailed technical description 
provided for setting up the system and software will be valu-
able for researchers planning to design AD-related studies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13534- 023- 00306-7.
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