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Abstract
Ultrasound computed tomography (USCT) is an emerging technology that offers a noninvasive and radiation-free imaging 
approach with high sensitivity, making it promising for the early detection and diagnosis of breast cancer. The speed-of-
sound (SOS) parameter plays a crucial role in distinguishing between benign masses and breast cancer. However, traditional 
SOS reconstruction methods face challenges in achieving a balance between resolution and computational efficiency, which 
hinders their clinical applications due to high computational complexity and long reconstruction times. In this paper, we 
propose a novel and efficient approach for direct SOS image reconstruction based on an improved conditional generative 
adversarial network. The generator directly reconstructs SOS images from time-of-flight information, eliminating the need 
for intermediate steps. Residual spatial-channel attention blocks are integrated into the generator to adaptively determine the 
relevance of arrival time from the transducer pair corresponding to each pixel in the SOS image. An ablation study verified 
the effectiveness of this module. Qualitative and quantitative evaluation results on breast phantom datasets demonstrate that 
this method is capable of rapidly reconstructing high-quality SOS images, achieving better generation results and image 
quality. Therefore, we believe that the proposed algorithm represents a new direction in the research area of USCT SOS 
reconstruction.
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1  Introduction

Breast cancer is the most prevalent cancer among women, 
and its incidence has been increasing in recent years [1]. 
Early detection is crucial for a favorable prognosis [2]. How-
ever, the most commonly used mammography can be lim-
ited by dense breast tissue, leading to missed and inaccurate 
diagnoses [3]. Ultrasound computed tomography (USCT), 
especially transmission tomography, has shown great poten-
tial in detecting breast cancer due to its ability to obtain 

quantitative acoustic parameters such as the speed-of-sound 
(SOS) and attenuation [4, 5]. Tumor tissues typically have 
higher SOS values than normal tissues [6], making quantita-
tive reconstructed SOS images an effective tool to assist in 
breast tumor diagnosis.

SOS reconstruction is a challenging nonlinear inverse 
problem. Some methods rely on simplified approximations. 
One such approach is travel-time tomography based on the 
straight or bent-ray approximation, which neglects diffrac-
tion effects and has a fast speed but low spatial resolution 
[7]. Another approach is based on Born or Rytov approxi-
mations to linearize the forward scattering problem, which 
provides relatively higher resolution but may not be suitable 
for imaging breasts with large SOS contrasts [8]. Full-wave-
form inversion (FWI) accurately models the physics of wave 
propagation and has the highest reconstruction accuracy, but 
it requires high computational costs [9].

To improve reconstruction efficiency, researchers have 
employed deep learning methods to directly reconstruct 
SOS images from the signal domain, achieving remarkable 
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success [10–19]. One possible method is model-driven deep 
learning methods, which incorporate networks into unroll-
ing iterative reconstruction algorithms [10–13]. Vishnevskiy 
et al. introduced a variational network for pulse-echo SOS 
estimation under limited view by unfolding a model-based 
reconstruction method [10–12]. The variational network 
employs the adjoint of projection operators to learn the gra-
dient of the regularizer from data, eliminating the need for 
manual regularization tuning. Fan et al. proposed a model-
data-driven method by unrolling the primal-dual algorithm 
based on the paraxial approximation of the Helmholtz 
equation, using U-Net [20] to replace the forward adjoint 
operator [21]. However, the paraxial approximation is only 
applicable when the angle between the direction of propaga-
tion and the z-axis is small. These methods still involve an 
iterative process, which is time-consuming and computation-
ally expensive and thus not suitable for real-time imaging in 
clinical applications.

Pure data-driven deep learning reconstruction has also 
achieved success in image reconstruction tasks due to its 
ability to automatically learn feature representations from 
large datasets and perform highly nonlinear mappings 
[15–19, 22]. However, methods such as AUTOMAP [22] 
that utilize several stacked fully connected layers may suf-
fer from overfitting and require large memory capacities 
for larger image sizes. To address this issue, researchers 
have turned to fully convolutional neural networks [15–19], 
most of which are based on the U-Net structure [20]. Some 
networks [15–18] use frequency domain pressure data as 
input, which may lack flexibility for various array configura-
tions. Other networks, such as DeepUCT [22] take the entire 
time-series data as input, leading to significantly increased 
computational costs, especially when dealing with a large 
number of transducers. In contrast, employing time-of-flight 
(TOF) as input can address these issues, enabling more flex-
ible and efficient reconstruction.

Furthermore, it should be noted that SOS reconstruction 
in USCT is a nonlinear inverse problem that can be solved 

with generative models, such as generative adversarial net-
works (GANs) [23]. One notable GAN variant is WGAN-
GP [24, 25], which incorporates the Wasserstein distance 
and the gradient penalty as the discriminator loss, avoid-
ing model collapse and gradient disappearance in original 
GANs. However, it lacks control over the generated outputs. 
In contrast, Pix2Pix [26], a conditional GAN-based approach 
[27], provides enhanced control by utilizing conditional 
inputs for the generator. It enables domain transformations 
by minimizing pixel reconstruction error and adversarial 
loss. Additionally, the discriminator network incorporates 
correlation between the input and generated images, facili-
tating more effective discrimination.

Building upon these concepts, a novel approach called 
Direct SOS reconstruction with Spatial-Channel Attention 
Wasserstein GAN (DSA-GAN) is proposed to associate TOF 
information with the SOS distribution without relying on 
any physical prior. The DSA-GAN takes the arrival time dis-
tribution as input and directly generates SOS images through 
the generator. The discriminator is employed to evaluate the 
discrepancy between the generated and real SOS images, 
using it as a regularization term to guide the optimization 
of the generator. Moreover, a perceptual loss is added to 
the loss function to help the network better learn advanced 
semantic information in the SOS distribution. Qualitative 
and quantitative experimental results demonstrate that DSA-
GAN can achieve rapid and high-quality reconstruction of 
SOS images for healthy breasts at different density levels 
and breasts with lesions.

2 � Methods

2.1 � Problem formulation

In USCT imaging, a commonly employed configuration 
is a ring transducer array composed of M uniformly dis-
tributed transducers, as shown in Fig. 1a. In this imaging 
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Fig. 1   a Schematic illustration of SOS imaging using a ring transducer array in USCT. b A schematic of the Radon transform in the straight-ray 
assumption, where r represents the position of the individual detector element, and � denotes the angular along the transmitter-emitter direction
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setup, each individual transducer element emits a spheri-
cal wave that propagates inside the array, interacting with 
objects present in the medium. Subsequently, all transducer 
elements act as receivers to record the raw data. The imaging 
process involves sequentially emitting waves from each ele-
ment while recording the received wave signals for inverse 
imaging.

In FWI, the main objective is to optimize the model 
parameters to minimize the discrepancies between the 
observed time series dobs and the numerically generated 
modeled data G(m) , which can be formulated as:

where m is the unknown model parameter vector related to 
SOS, acoustic density, and attenuation. The operator G(⋅) 
describes how to compute the data from the model param-
eters, which is implemented as the acoustic wave equation. It 
is worth noting that the wave equation introduces a nonlinear 
relationship between pressure and model parameters, mak-
ing the optimization problem inherently nonlinear as well.

Alternatively, travel-time tomography employs a high-fre-
quency approximation to the acoustic wave equation, assum-
ing that the physical energy propagates along ray paths. The 
TOF between an emitter and a receiver can be calculated by 
integrating the slowness (i.e., reciprocal of the SOS) along 
the acoustic propagation path. The imaging region is discre-
tized into N × N grids. The goal of the inverse problem is to 
find a slowness distribution s ∈ ℝ

N2×1 that can well describe 
the observed travel times Tobs ∈ ℝ

M2×1 , i.e.,

where A ∈ ℝ
M2×N2 denotes the ray-length matrix, which 

depends on the current SOS distribution, leading to a non-
linear relationship between Tobs and s.

Therefore, both travel-time tomography and FWI pose 
nonlinear problems that require iterative optimization pro-
cesses and have high computational requirements. In the 
proposed method, the conventional optimization procedures 
are substituted with a neural network training process, which 
presents a promising alternative.

The network is designed from TOF data, which aligns 
with travel-time tomography. Under the straight-ray assump-
tion, which is based on the Radon transform, the Radon pro-
jections corresponding to a certain position in the spatial 
domain form a sinusoid in the sinogram data, as depicted 
in Fig. 1b. However, when the bent-ray assumption is intro-
duced, this relationship becomes more intricate. The projec-
tion of a point may involve multiple elements, including the 
sinusoidal curve and its expansion areas. To determine the 
ray path that best approximates the observed travel time, iter-
ative processes involving forward and inverse computations 

(1)min
m

‖
‖dobs −G(m)‖‖

2

2
,

(2)min
s

‖‖A(s)s − Tobs
‖‖
2

2
,

are employed. To overcome this limitation, one can explore 
the application of attention modules to adaptively learn the 
relationships between specific positions in the TOF image, 
enabling a more precise determination of relevant features 
during the reconstruction process.

2.2 � Framework based on conditional Wasserstein 
GAN

Figure 2 illustrates our proposed network architecture, which 
draws inspiration from WGAN-GP [24, 25] and the success-
ful Pix2Pix framework [26] designed for image-to-image 
translation. Within this framework, a generator G is uti-
lized to directly map the TOF domain to the image domain, 
generating synthetic SOS images, while a discriminator D 
distinguishes between real and synthetic SOS images. The 
generator aims to generate results that closely resemble the 
real SOS image to deceive the discriminator, which in turn 
is trained to be more discerning and accurately identify the 
generated SOS images. The generator and discriminator are 
trained iteratively, competing against each other to enhance 
the overall generative performance.

2.2.1 � Loss function

In the image-to-image USCT SOS image reconstruction 
task, the loss functions of the discriminator and generator 
are minimized as follows:

where ytof represents the TOF information extracted from 
the transmission signals with random noise and serves 
as the input to the generator, acting as the conditional 
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Fig. 2   A schematic diagram of the overall structure of the DSA-GAN
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information. x̃sos is the SOS image generated from the 
generator, i.e., x̃sos = G(ytof) , which comes from the gener-
ated sample distribution ℙg . xsos is the ground truth SOS 
image, which comes from the real sample distribution ℙr . 
x̂ represents a random sample between x̃sos and xsos , that is, 
x̂ = 𝜉xsos + (1 − 𝜉)x̃sos , where � is a random variable that fol-
lows a uniform distribution (i.e., � ∼ U[0, 1] ). The first two 
terms in Eq. (3) represent the Wasserstein distance, and the 
last term represents the gradient constraint. � is a constant 
weight parameter that biases the gradient of the differenti-
able discriminator towards 1, and ∇x̂D(x̂) denotes the gradi-
ent of the discriminator.

Furthermore, the L1 loss and perceptual loss are intro-
duced to ensure the similarity between the generated images 
and the target images:

where �vgg(⋅) denotes the VGG-19 feature extractor [28] and 
n and d represent the number of pixels and feature maps in 
each feature map, respectively. The term �vgg(x sos ) corre-
sponds to the features of the ground truth, while 𝜑vgg(x̃ sos ) 
represents the features of the generated SOS image.

The final loss function of the generator can be represented 
as:

where �1 and �2 are weight parameters that balance the con-
tributions of perceptual loss, content loss, and adversarial 
loss.

2.2.2 � Network architecture

2.2.2.1  Generator  The generator of DSA-GAN employed 
a classical encoder-decoder structure [29], as depicted in 
Fig. 3a, as the input and output belong to different domains 
and low-level information sharing is unnecessary for this 
image-to-image domain transformation task. Therefore, 
unlike in Pix2Pix, a U-Net with skip-connection structures 
is not needed. The encoder converts the high-dimensional 
TOF map into an embedded representation, while the 
decoder generates the high-dimensional SOS image. In the 
encoder, the filter size of the convolutional layers gradually 
decreases. The first two layers have a size of 7 × 7 , followed 
by five layers with a size of 5 × 5 , and the remaining lay-
ers have a size of 3 × 3 . By utilizing a larger filter size in 
the initial layer, the network can capture a broader range 
of information by covering a larger neighborhood region of 
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the input TOF map. This is crucial since a single pixel in 
the reconstructed image corresponds to scattered areas in 
the TOF map. To maintain the sparsity of high-dimensional 
feature representations, the number of convolutional filters 
in the encoder increases, and correspondingly, the number 
of channels in the feature maps is doubled, with sizes of 
32, 64, 128, 256, and 512. The input and output sizes of the 
generator are both fixed at 256 × 256 pixels.

Furthermore, a Residual Spatial-Channel Attention module 
(Res-SCA) is incorporated after each down (up) sampling, as 
shown in Fig. 3b. This module integrates channel attention 
(CA) [30] and spatial attention (SA) [31] with the conventional 
residual block to enhance useful features. Suppose that the 
input to the SCA module is denoted by FSCA

in
 , and it consists of 

C feature maps with each map having a size of H ×W . FSCA
in

 
can be expressed as [f1,⋯ , fc,⋯ , fC] in CA, where fc ∈ ℝ

H×W 
is the c-th feature map and [f (1,1),⋯ , f (i,j),⋯ , f (H,W)] in SA, 
where f (i,j) denotes the feature in the (i, j) position.

CA module The global average pooling is applied to shrink 
the spatial dimensions H ×W of the input feature map Fin , 
obtaining the channel-wise statistics q ∈ ℝ

1×1×C . The set of 
these descriptors is then processed by two fully connected lay-
ers to compute scaling factors for each input channel. The first 
layer, which is parameterized by the weight set �d ∈ ℝ

C×(C∕rd) , 
performs channel downscaling by reducing the number of 
channels in the input signal by a factor of rd . The resulting low-
dimensional signal is then passed through the second layer, 
which is parameterized by the weight set �u ∈ ℝ

(C∕rd)×C , to 
perform channel-upscaling and restore the original number of 
channels. As a result, the channel-wise rescaling weights are:

where � and � are the ReLU and sigmoid activation func-
tions, respectively. The channel scaling factors q̂ are then 
applied to reweight the input channels through elementwise 
multiplication with the input feature map, as shown below:

SA module The input feature undergoes average pooling 
and maximum pooling along the channel dimension, result-
ing in two H ×W × 1 channel feature maps, Favg and Fmax , 
respectively. These feature maps are then concatenated along 
the channel dimension, forming the concatenated feature 
map Fconcat = [Favg;Fmax] . Next, a 7 × 7 convolutional filter 
with weight �s ∈ ℝ

7×7×2C×1 is applied to the concatenated 
feature map Fconcat , compressing it along the channel dimen-
sion. After the convolutional layer, the sigmoid activation 
function � is applied to obtain the weight coefficients m̂:

The new feature map FSA is then obtained by elementwise 
multiplication of m̂ and the input feature map FSCA

in
:

(8)q̂ = 𝜎(𝜔u𝜂(𝜔dq)),

(9)FCA = q̂⊗ FSCA
in

.

(10)m̂ = 𝜎(Conv(Fconcat,𝜔s)).



61Biomedical Engineering Letters (2024) 14:57–68	

1 3

Finally, the output of the CA and SA modules are added 
to the original input feature map Fin using a residual skip 
connection, generating the final output Fout of the Res-SCA 
module.

2.2.2.2  Discriminator  The discriminator in this study is 
based on the design principles of WGAN and Pix2Pix, 
as depicted in Fig.  3c. The network takes as input both 
the predicted SOS images from the generator (or ground 
truth) and the original input TOF images as conditions, 
which ensures that the generator produces results that are 
consistent with the content of the original images. How-
ever, the PatchGAN design used in Pix2Pix is not suitable 
for this study, as it assumes that different image regions 

(11)FSA = m̂⊗ FSCA
in

. are independent of each other, whereas in this case, there 
is no one-to-one correspondence between the input and 
output pixels. In this study, each pixel in the arrival time 
distribution image has physical significance in terms of 
its horizontal and vertical coordinates and is associated 
with the complete SOS image, so the discriminator needs 
to operate on the entire space. The convolutional layers 
have a filter size of 3 × 3 and numbers of 32, 32, 64, 64, 
128, 128, 256 and 256. Two fully connected layers with 
1024 and 1 neurons follow these convolutional layers. A 
Leaky ReLU activation layer [32] follows each convolu-
tional layer and the first fully connected layer. The odd-
indexed convolutional layers have a step size of 1, while 
the even-indexed layers have a step size of 2 to reduce the 
image scale. The sigmoid function layer of the last fully 
connected layer of the original GAN’s discriminator is 

Fig. 3   The architecture of the a 
generator, b residual spatial-
channel attention module 
(Res-SCA), and c discriminator 
in DSA-GAN
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removed, and the Wasserstein distance is used to measure 
the difference between the generated and real images.

2.2.3 � Implementation details

During training, the generator and discriminator were 
trained alternately. In each iteration, the discriminator was 
trained 5 times before the generator was trained once. The 
filter weights of each layer were initialized by random val-
ues drawn from a Gaussian distribution with zero mean and 
standard deviation of 0.01. The leaky ReLU layer of the dis-
criminator used a slope of 0.2 for negative inputs. The chan-
nel reduction rate in the Res-SCA module was set to 2. The 
SGD optimizer was utilized with a learning rate of 10−4 , and 
the batch size was set to 16. In the loss function, the weight 
parameters for the pixel loss and perceptual loss were 0.1 
and 0.01, respectively. The weight parameter for the gradient 
penalty term was set to 10. The network was implemented 
in Python 3.7 using TensorFlow as the framework and was 
trained on a server with four NVIDIA GeForce RTX 2080Ti 
GPUs, each with 11 GB of memory.

The proposed method was evaluated against commonly 
used traditional methods starting from TOFs, including FBP 
[33] and the bent-ray method with Laplacian regularization 
(referred to as Laplacian) [7]. FBP is based on straight-ray 
assumptions, while Laplacian incorporates bent-ray assump-
tions from travel-time tomography. Additionally, a compari-
son was made with DSA-Net, which shares the same struc-
ture as the generator network. DSA-Net can be considered 
a representative of studies employing an architecture based 
on the U-Net structure [15–19]. The training of DSA-Net 
employed the SGD optimizer with a gradually decreasing 
learning rate ranging from 10−4 to 10−5 . All the compared 
methods utilized the best parameter settings for evaluation.

3 � Results

3.1 � Synthetic circle dataset

This dataset consists of images containing randomly gen-
erated nonoverlapping uniform disks, each with a con-
stant density and SOS value, without considering acoustic 
attenuation. These disks represent neighboring soft tissues, 
with SOS values ranging from 1450 to 1583 m/s. They 
are set against a background of water with an SOS value 
of 1480 m/s. The images were obtained using a 256-ele-
ment transducer ring array that was uniformly distributed 
and had a diameter of 160 mm. To emulate the errors that 
can occur during travel time selection, the simulated TOF 
map obtained using the Eikonal solver was modified with 

Gaussian random noise, with a standard deviation of 10 ns. 
The dataset consists of 60,000 pairs, with 48,000 pairs used 
for training and 12,000 pairs reserved for testing.

The accuracy of the reconstruction was assessed using 
three widely used metrics: peak signal-to-noise ratio 
(PSNR), structural similarity index metric (SSIM), and nor-
malized root mean square error (nRMSE). nRMSE measures 
the relative error between the model’s prediction results and 
the true value. A smaller nRMSE indicates a smaller dis-
crepancy between the model’s prediction results and the true 
values, indicating higher accuracy. It is computed as:

First, we investigated the effectiveness of the network 
design. The generator incorporates two attention modules, 
and an ablation study was conducted on the synthetic circle 
dataset. We compared the performance of the generator with 
and without an SA and CA module. The quantitative evalu-
ation results are shown in Table 1. The results demonstrate 
that introducing either a CA or SA module can improve the 
reconstruction results, while combining both provides the 
best performance with the smallest variance. This experi-
ment effectively confirms the effectiveness of the Res-CSA 
module.

As shown in Fig. 4, for the generator, initially, the dis-
criminator tends to classify most of the inputs as fake 

(12)nRMSE =

�∑N

j=1
(xj − yj)

2

�∑N

j=1
(yj)

2

.

Table 1   Performance comparison of the generator with and without 
the integration of an SA and CA module

SA CA PSNR (dB) SSIM nRMSE

No No 30.61 ± 1.78 0.983 ± 0.010 0.159 ± 0.009

Yes No 32.98 ± 1.62 0.995 ± 0.007 0.128 ± 0.005

No Yes 32.93 ± 1.63 0.996 ± 0.008 0.132 ± 0.005

Yes Yes 33.18 ± 1.51 0.996 ± 0.005 0.113 ± 0.004

IterationIteration

Lo
ss

Lo
ss

(a) (b)

Fig. 4   Evolution of a generator and b discriminator loss during net-
work training iterations
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images. Consequently, the generator starts with a high loss 
value. As the training progresses and improves, the genera-
tor’s loss decreases rapidly in the early stages and eventually 
stabilizes. This indicates that the network has been suffi-
ciently trained.

Figure 5 presents the results obtained on the synthetic 
circle dataset. The results generated by DSA-GAN demon-
strate the lowest overall error level, with almost no deviation 
within the structure, except for the edges of circular struc-
tures. In contrast, the predicted results of DSA-Net not only 
exhibit significant errors at the edges but also show unstable 
bias within the structure, particularly noticeable inside the 
circle with the lowest SOS value. Additionally, compared to 
the results of DSA-Net, the structures in the images gener-
ated by DSA-GAN are clearer with lower noise.

3.2 � Normal breast phantom dataset

The simple numerical phantoms offer an oversimplified 
representation of the intricate anatomical structures present 
in the human female breast. To address this limitation, in 
this section, we generated a dataset from clinical contrast-
enhanced magnetic resonance angiography breast images 
[34, 35]. These images encompass 3D data obtained from 
the breasts of three healthy women, where the breast den-
sity levels were classified into three categories: scattered 
areas of fibro-glandular density, heterogeneously dense, and 
extremely dense. Following a rigorous data cleaning process, 
we obtained 579, 275, and 276 coronal slices for the three 
breasts, respectively. To create the acoustic breast phantoms 
for our USCT studies, we assigned specific acoustic param-
eters to different tissue structures as outlined in Table 2. 
Ultimately, we amassed a total of 4520 images, with 3612 

images allocated for training purposes and the remaining 
908 images designated for testing.

Figure 6 illustrates the results of the test data from breasts 
with scattered areas of fibro-glandular density. The recon-
struction results of FBP can provide coarse shape informa-
tion and approximate spatial localization. The Laplacian 
method provides relatively accurate structure information, 
but there are noticeable artifacts in the low SOS regions 
around the compressed breast. This may be due to acoustic 
waves prioritizing the high SOS regions, leading to advoid-
ance of the low SOS regions during the iterative process. 
Both DSA-GAN and DSA-Net generate results similar to 
the ground truth image. The prediction results of DSA-Net 
show a relatively high SOS value for the glandular regions, 
while the errors in the image generated by DSA-GAN are 
distributed more uniformly and relatively low.

The SOS value profiles along the yellow dashed lines 
in Fig. 6 are presented in Fig. 7. It is evident that the FBP 
reconstruction result deviates significantly from the ground 
truth and can only roughly reflect the trend of SOS changes. 
The Laplacian method provides relatively accurate SOS 

N
o.

 o
f R

x

Ground Truth Laplacian DSA-GANDSA-NetFBP

2 cm

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

19.98 / 0.951 / 0.501 32.98 / 0.996 / 0.112 33.25 / 0.996 / 0.10917.09 / 0.937 / 0.699PSNR(dB) / SSIM / nRMSE

Fig. 5   Comparison of reconstruction results using different algo-
rithms for a numerical phantom composed of disks. a Ground truth, b 
FBP, c Laplacian, d DSA-Net, e DSA-GAN, f TOF map as input, g–j 

show the residual images of b–e with respect to the reference ground 
truth, respectively

Table 2   Setting of SOS for each tissue in the numerical breast phan-
tom dataset

Tissue Speed-of-sound value (m/s)

1 2 3 4

Background 1480 1480 1480 1480
Fibro-glandular 1570 ± 10 1570 ± 10 1580 ± 20 1570 ± 10

Fat 1510 ± 10 1420 ± 10 1520 ± 10 1475 ± 35

Skin 1445 ± 5 1445 ± 5 1445 ± 5 1425 ± 15

Blood vessel 1520 ± 10 1520 ± 10 1520 ± 10 1520 ± 10
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values in the glandular regions; however, it introduces blur-
ring effects along the boundaries, resulting in an expanded 
glandular area. As a result, significant deviations in SOS 
values are observed in the background fat regions. The pre-
dicted result of DSA-Net closely approximates the true SOS 
distribution, although some fluctuations are present in the 
fat region, and there is an overestimation of approximately 
5 m/s at the glandular location. The DSA-GAN-generated 
results demonstrate the best performance, with the closest 
approximation to the ground truth values. It exhibits devia-
tions in SOS of approximately 2 m/s at the glandular loca-
tion and an almost identical distribution of SOS in the back-
ground fat regions.

In addition, tests were also conducted on breast phantoms 
simulating heterogeneously dense and extremely dense tis-
sue compositions, as depicted in Fig. 8. Despite the inherent 
challenges posed by denser glandular distributions in these 
phantoms, DSA-GAN consistently demonstrates superior 
performance and achieved the most accurate reconstructions 

among all the evaluated algorithms. However, it is worth 
noting that some errors are primarily concentrated along 
the edges, while the SOS values in the main regions exhibit 
high accuracy.

3.3 � Breast cancer phantom dataset

Furthermore, we used a custom-made dataset by inserting 
lesions into breast slices to simulate and obtain the breast 
cancer phantom dataset. The breast slices were obtained 
from a dataset consisting of dedicated breast CT images of 
150 clinical patients. Semiautomatic image classification 
methods as described in [36, 37] were used to classify the 
images into fibro-glandular, fat, skin, and air. The breast 
diameters in the dataset ranged from 57 mm to 138 mm, and 
the glandular fraction by mass ranged from 0.5% to 63.9% . 
The breast lesions [38, 39] were obtained from 50 breast 
cancer models obtained by segmenting 3D patient breast 
tomosynthesis images, eight models obtained by segmenting 
whole body and breast cadaver CT images, and 80 mod-
els based on a mathematical algorithm. Finally, the breast 
cancer phantom dataset was created by randomly inserting 
tumor slices into each coronal section of the breast with their 
original sizes to simulate the cross-sectional distribution of 
breast cancer in patients. We then used the SOS settings 
[40] listed in Table 3. Finally, the dataset consisted of 42577 
slices, of which 34002 were used for training and 8575 were 
used for testing.

Figure 9 illustrates a performance comparison of differ-
ent reconstruction algorithms on the breast tumor phantom 
test set. DSA-GAN achieves a significant improvement in 
PSNR, increasing from 7.08 dB to 17.70 dB, while DSA-Net 
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Fig. 6   Comparison of reconstruction results using different algorithms for a breast phantom mimicking the scattered area of fibro-glandular den-
sity
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DSA-Net
DSA-GAN
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Fig. 7   Quantitative SOS values along the yellow dashed line in 
Fig. 6a
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performs even better with an increase to 18.91 dB when 
compared to the FBP results. The estimated tumor sizes 
for FBP, Laplacian, DSA-Net, and DSA-GAN are approxi-
mately 23.6 × 28 mm2 , 13 × 23.8 mm2 , 12.2 × 19.5 mm2 , and 
10.3 × 9.4 mm2 , respectively, compared to the ground truth 
size of 17 × 17.5 mm2 . These results indicate that both the 
DSA-GAN and DSA-Net methods are able to more accu-
rately reconstruct the structure and size of the tumor.

The average SOS value inside the tumor is 1544 m/s 
according to the ground truth. The results obtained using 
the FBP, Laplacian, DSA-Net, and DSA-GAN methods have 
average SOS values of approximately 1465 m/s, 1494 m/s, 
1535.5 m/s, and 1541.6 m/s, respectively. These values 

demonstrate that the SOS value obtained by DSA-GAN is 
the closest to the ground truth value of 1544 m/s. Addition-
ally, it is noteworthy that the reconstruction results of DSA-
GAN exhibit clearer and more defined edges compared to 
the results obtained using DSA-Net.

3.4 � Computational cost

The computational complexity of Laplacian and Bayesian 
methods primarily originates from the forward process, with 
ray-tracing being the most time-consuming step, resulting in 
a complexity expressed as O(NM2) . In contrast, the complex-
ity of DSA-GAN is mainly dependent on the size of the input 

Ground Truth Laplacian DSA-GANDSA-NetFBP
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Ground Truth Laplacian DSA-GANDSA-NetFBP

Fig. 8   Comparative analysis of reconstruction results using different algorithms for breast phantoms mimicking heterogeneously dense breasts 
(top two rows) and extremely dense breasts (bottom two rows)

Table 3   Setting of SOS values 
for each tissue in the synthetic 
breast tumor phantom dataset

Tissue Background Skin Fat Fibro-
glandular

Benign
Tumor

Malignant
Tumor

SOS value (m/s) 1480 1580 ± 20 1422 ± 9 1487 ± 21 1548 ± 17 1513 ± 27
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TOF map, which is of the order O(M2) . This complexity 
is significantly lower compared to the O(NM2) complexity 
observed in the bent-ray methods.

Table 4 presents the reconstruction time for a 256 × 256 
image using different algorithms under the same computing 
environment as stated in Sect. 2.2.3. The FBP method exhib-
its a short reconstruction time of 0.17 s, but its reconstruc-
tion quality is poor. On the other hand, the Laplacian method 
achieves relatively better reconstruction quality compared 
to FBP, but it has a longer reconstruction time of 495.6 s, 
significantly higher than other methods. In contrast, both 
DSA-GAN and DSA-Net only require passing through the 
generator network, resulting in a prediction time of 0.05 s 
for both methods, making them the fastest among all the 
methods.

4 � Discussion and conclusions

In this paper, we introduced a novel network called DSA-
GAN, which integrates the principles of conditional WGAN 
and Pix2Pix. DSA-GAN effectively accomplishes direct 
mapping from TOF data in the sensor domain to quanti-
tative SOS images, eliminating the need for incorporating 
physical knowledge in the conventional inverse problem 

reconstruction process. Furthermore, DSA-GAN outper-
forms conventional approaches in terms of both speed and 
image quality, making it the fastest and yielding the highest 
quality results. This notable performance advantage holds 
promise for facilitating the future implementation of real-
time whole breast imaging in USCT.

The WGAN with a gradient penalty offers several advan-
tages over the original GAN, leading to improved network 
training and addressing the mode collapse problem. By 
introducing the gradient penalty, the convergence during 
network training is accelerated, ensuring a smoother and 
more stable learning process. Furthermore, mode collapse 
mitigation in DSA-GAN allows it to capture intricate fea-
tures and variations in the TOF map, crucial for accurate 
SOS image reconstruction.

The proposed DSA-GAN in this paper is a purely data-
driven algorithm that relies on a substantial amount of 
diverse datasets for training. These datasets should encom-
pass various conditions, including different distributions, 
sizes, sound speed contrasts, and positions of tumors. Only 
with such comprehensive data can accurate reconstruction of 
SOS images be achieved without prior knowledge. However, 
acquiring such extensive data poses challenges in clinical 
application. To tackle this issue, one approach is to employ 
data augmentation techniques to generate synthetic data 
that can be used to train the network. Additionally, incor-
porating transfer learning shows promise in enhancing the 
algorithm’s performance. By leveraging pretrained models 
or knowledge from related domains, the network can ben-
efit from previous learning experiences. By combining the 
constraints derived from physical models with data-driven 
approaches, the accuracy and generalization capability of 
the reconstruction results can be further improved. This 
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Fig. 9   Comparison of reconstruction results of different algorithms for breast phantoms mimicking breast with tumors

Table 4   Comparison of reconstruction time for a 256 × 256 image 
using different algorithms

Algorithm FBP Laplacian DSA-Net DSA-GAN

Time 0.17 s 495.6 s 0.05 s 0.05 s
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integration also facilitates better comprehension and inter-
pretation of the network outputs, making them more acces-
sible for analysis and understanding.
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