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MENDER: fast and scalable tissue structure
identification in spatial omics data

Zhiyuan Yuan 1

Tissue structure identification is a crucial task in spatial omics data analysis, for
which increasingly complex models, such as Graph Neural Networks and
Bayesian networks, are employed. However, whether increased model com-
plexity can effectively lead to improved performance is a notable question in
the field. Inspired by the consistent observation of cellular neighborhood
structures across various spatial technologies, we propose Multi-range cEll
coNtext DEciphereR (MENDER), for tissue structure identification. Applied on
datasets of 3 brain regions and a whole-brain atlas, MENDER, with biology-
driven design, offers substantial improvements over modern complexmodels
while automatically aligning labels across slices, despite using much less run-
ning time than the second-fastest. MENDER’s identification power allows the
uncovering of previously overlooked spatial domains that exhibit strong
associationswith brain aging.MENDER’s scalabilitymakes it freely appliable on
a million-level brain spatial atlas. MENDER’s discriminative power enables the
differentiation of breast cancer patient subtypes obscured by single-cell
analysis.

Recent advances in spatially resolved single-cell (SRSC) technologies
allow the profiling of cellular gene expression in the tissue context,
allowing comprehensive spatial characterization of various systems1–7.
Coordinated by different cell states with varying gene expression
patterns, spatial domains are higher-order functional units that
recurrently distribute across tissue space, and have close relationships
with tissue physiology8,9. In complex diseases such as cancer, mount-
ing evidence has suggested the pivotal roles of specified spatial
domains in disease diagnosis and monitoring10–12. Given the ever-
increasing SRSC data13,14, many computational methods have been
developed to identify spatial domains15–17.

In a typical SRSC dataset, the spatial coordinates and gene
expression profiles of each cell are measured. Such data representa-
tion naturally forms a spatial graph with cells as nodes and gene
expression as node attributes, which motivated the two major mod-
eling paradigms in this field, i.e., Graph Neural Network (GNN)18–20, and
Bayesian Network (BN)21–23. Along the developmental paths of both
paradigms, the vast majority of methods were designed to improve

performance by increasing model complexity. GNN-based methods
introduced dedicated neural modules, loss functions, and network
architectures. BN-based methods extend additional hidden variables,
variable dependencies, and specified priors. Although increasingly
complex models often lead to better performance, the improvements
are, in some recent studies, seeing a diminishing marginal return24.
Besides, additional model complexity may subject the algorithms to
non-trivial parameter-tunning, low time efficiency, and/or reduced
generalizability. As such, all these issues call for a new paradigm to
break through the developmental bottlenecks in this field.

In this work, we evaluate both advantages and disadvantages of
the existing state-of-the-art methods to elicit the bottleneck problems
that a new method must solve. We next analyze and observe the
consistency of cellular neighborhood structure across 24 data from 8
different spatial technologies and tissue systems. Based on this, we
design a biology-driven cellular context representation, which obtains
consistent prediction improvements over current state-of-the-art GNN
models in 3 different supervised learning settings on 13 spatial data
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across different technologies. Inspired by the above analyses, we
present Multi-range cEll coNtext DEciphereR (MENDER) for unsu-
pervised spatial domain identification. MENDER has 3 highlighted
points, which are considered major bottlenecks of existing methods:
(1) multi-slice spatial domain identification that challenges many
advanced methods; (2) scalability to million-level datasets; and (3)
improved running time efficiency without the need of GPU. Compre-
hensive benchmark analyses show MENDER’s substantial improve-
ments in termsof accuracy, continuity, and running timeover complex
GNNandBNmodels on various datasetswith increasing challenges.On
the million-level brain spatial atlas, MENDER is the only method that
successfully delineates major brain domains largely consistent with
established Allen brain reference, without any human intervention. On
a model of mouse brain aging, MENDER identifies subdomains con-
sistent across 3 aging stages and also domains that specifically
occurred in young mice. On a 40-patient triple-negative breast cancer
(TNBC) dataset, MENDER can differentiate three subtypes of TNBC by
explaining the cellular spatial organization differences. We also
extendedMENDER’s application on awider range of spatial data types,
showing its generalizability.

Results
Motivation and overview
Limitations of existing methods. We first explain why a new method
for spatial domain identification is still needed given the existence of
many methods in the field. We select 8 existing methods published in
the last two years and evaluate from 6 criteria, including support for
multi-slice analysis, stability, interpretability, scalability, speed, and
availability of cell context representation (Supplementary Fig. 1A). The
definition of each criterion is briefly explained in Supplementary
Fig. 1A anddetailed explained in “Six aspects to view existingmethods”
section of “Methods”. Thesemethods include 4GNN-based (SpaGCN18,
STAGATE19, CCST25, and SpaceFlow20) and 4 BN-based (BayesSpace21,
BASS23, SpatialPCA26, and SOTIP27).

One can observe that most evaluation criteria are strongly asso-
ciated with the method principle (Supplementary Fig. 1A). All GNN-
basedmethods have better scalability and speed (conditional on GPU)
than BN-based methods and they can also output the context repre-
sentations for cells. The common limitations of GNN-based methods
are the lack of stability and interpretability inherited from general
deep-learningmodels. BN-basedmethods, on the contrary, havebetter
output stability and interpretability than GNN-based methods since
they are generally built on well-defined probabilistic variable depen-
dencies. But they cannot guarantee good scalability to large datasets
with short running time, and generally don’t output the cell context
representations (SpatialPCA26 as anexception). These evaluationswere
also verified in recent studies20,23 and in the subsequent benchmark
analysis of this manuscript.

In particular, some criteria in the above analysis are critical in the
advent of the big data era of space omics. Many large consortia efforts
have generated spatial datasets containing millions of cells collected
fromabunch of slices28–30. In such scenarios, the scalability ofmethods
to large datasets, running time, and the support of multi-slice analysis
are especially needed. Although there are many methods for spatial
domain identification, new innovations still are needed to meet the
above criteria as possible.

Consistent neighborhood structures across different data. We
analyze the distance of neighboring cells from different spatial tech-
nologies and different tissue systems (Supplementary Fig. 1B). To do
so,we collect 24 datasets generated by 6 different spatial technologies
from SODB31 [https://gene.ai.tencent.com/SpatialOmics/]. These spa-
tial data cover the major part of currently mainstream technologies14,
including MERFISH29,30,32, DARTFISH14, BaristaSeq33, STARmap34,
osmFISH4, and seqFISH35 (see “Methods”). For each dataset, we first

construct a 1-NN graph of all cells based on each cell’s spatial coordi-
nates, then the distance between each cell and its directly connected
cell is recorded to form a distribution. One can observe that the major
mass (between first and third quartiles) of the distribution is between
10 and 20 μm, concentrating around 15 μm (Supplementary Fig. 1B),
even though these datasets are from distinct spatial technologies and
tissue systems.

Multi-range cEll coNtext DEciphereR (MENDER). Previous studies
have used the cell type composition within the cellular neighborhood
around each index cell as its context representation, followed by
clustering on the representation (termed cellular neighborhood clus-
tering, CNC)12. However, this approach only considers the context
information in one spatial range, limiting the consideration of the
cellular relationships across multiple ranges. Motivated by CNC, and
given the consistent neighborhood structures, we present Multi-range
cEll coNtext DEciphereR (MENDER) by building the cell state compo-
sition ofmultiple ranges into the cellular context representation (Fig. 1,
see “Methods”). MENDER takes spatial omics data as input (Fig. 1A),
then constructs the spatial graph based on the cell distancematrix and
defines cell state based on the gene expression profiles (Fig. 1B). Then
the cell state frequencies across multiple ranges are recorded to form
the cell context representation (Fig. 1C). The applications of MENDER
include identifying spatial domains frommultiple slices, i.e.,multi-slice
analysis (Fig. 1D), detecting condition-specific spatial signatures
(Fig. 1E), decoding the MENDER representation into cell spatial orga-
nization (Fig. 1F), and extending to large-scale datasets (Fig. 1G). Note
that MENDER doesn’t rely on accurately annotated cell clustering,
instead, cell clustering is obtained by simply adopting standard Leiden
algorithm. We have tested MENDER’s robustness to different cell
clustering methods and parameters, as well as noisy cell cluster labels
(Supplementary Figs. 2–5, see “Cell state” in “Methods”).

Better prediction power than graph neural network models
To evaluate MENDER’s representation power towards spatial domain
prediction and compare with alternative methods, we employed a
supervised learning strategy to compare the prediction accuracy of
differentmethods (Fig. 2). The comparedmethods included SpaGCN18,
SpaceFlow20, and STAGATE19, which are considered as the state-of-the-
art spatial domain identification methods that can output cellular
context representation. We also included SingleRange (the single-
range version of MENDER), and CNC (cellular neighborhood
clustering)12. We collected 13 SRSC datasets (see “Methods”) with
spatial domain annotations regarded as ground truth.We reported the
classification accuracy across tenfold across-validation using 3 differ-
ent classifiers, i.e., Linear Support Vector Machines (SVM) (Fig. 2A),
Radial Basis Function (RBF) SVM (Fig. 2B), and Random Forest
(Fig. 2C), respectively. A consistent improvement was observed in the
cellular context representation obtained by MENDER vis-a-vis modern
GNNmodels independent of the classifier chosen (Fig. 2A–C). We also
analyzed the influence of parameters of MENDER, the prediction
accuracy of MENDER saturated after the number of ranges reaches 6,
and the cell state clustering parameter didn’t affect the classification
accuracy (Supplementary Fig. 6).

Evaluation
The strength of MENDER over complex models in supervised learning
situations was evident from earlier analyses. As spatial domain iden-
tification is typically an unsupervised learning process that doesn’t use
training data, we compared MENDER with other methods in unsu-
pervised contexts (Fig. 3).

The significance of multi-slice spatial domain identification has
been highlighted by the ever-increasing large-scale studies, which
collect samples from various tissue sections or individuals. Performing
multi-slice analysis can ensures consistent cell labeling and uniform
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clustering granularities across different slices. We benchmarked
MENDER against 4 spatialmethods (i.e., STAGATE19, BASS23, CNC12, and
SOTIP27) that supported multi-slice analysis, 2 non-spatial algorithms
(i.e., Louvain andLeiden36), and 1method that is single-range versionof
MENDER (i.e., SingleRange). The 3 benchmark datasets contain 3, 3,
and 31 slices measured by STARmap, BaristaSeq, and MERFISH,
respectively, each containing the expert-annotated spatial domain
labels regarded as ground truth (see “Methods”). Consistent with
previous studies20,25,26, the evaluationmetrics (see “Methods”) included
Normalized Mutual Information (NMI, metrics for accuracy, higher
better) and Percentage of Abnormal Spots (PAS, metrics for
continuity).

Evaluation on STARmap dataset. We applied the 8 different methods
(i.e., Louvain, Leiden, STAGATE, BASS, SOTIP, SingleRange, CNC, and
MENDER) on a spatial transcriptomics dataset of the mouse prelimbic
area (Fig. 3A) measured by STARmap, containing 3190 cells from
3 slices (Fig. 3B), with expression measurements for 166 genes34.
Resulted from5 replicated runs for eachmethod, themulti-slice spatial
domain identification performance of MENDER was consistently the
best among alternative methods of all slices, both in accuracy
(Figs. 3C, 5 runs for each bar) and continuity (Figs. 3E, 5 runs for each
bar). The aggregated performance across all slices also indicated
MENDER’s best performance (Fig. 3D, F, 15 runs for each bar).

Evaluation on BaristaSeq dataset. We evaluated on a larger dataset
with more spatial domains, which was collected from the mouse pri-
mary visual area (Fig. 3G) measured by BaristaSeq, containing 11,426
cells from 3 slices (Fig. 4H), with expression measurements for 79
genes33. Quantitative results of 5 replicated runs showed thatMENDER

got consistently the best accuracy (Fig. 3I) across different slices, and
comparable continuity with BASS substantially better than others
(Fig. 3K). The aggregated performance across all slices also indicated
MENDER’s best accuracy (Fig. 3J, 15 runs for each bar) in terms of NMI,
and second-highest continuity comparable with BASS in terms of PAS
(Fig. 3L, 15 runs for each bar).

Evaluation onMERFISH dataset. We challenged thesemethods on an
even more complex dataset, collected from the mouse frontal cortex
areameasured byMERFISH, containing 378,918 cells from31 slices of 3
ages, with expression measurements for 374 genes (Fig. 3M–P).
Compared with the former datasets, this MERFISH dataset contained
33-fold more cells organized as more complex tissue structures and
measured more genes. More importantly, the 31 slices were collected
from multiple individuals from 3 different aging stages, potentially
leading to non-shared spatial domains across slices. Due to the large
data size, SOTIP and BASS raised running time issues, so we only
compared Louvain, Leiden, STAGATE, SingleRange, CNC, and MEN-
DER.Quantitative results of 5 replicated runs showed thatMENDERgot
substantial improvements in both accuracy and continuity across
31 slices (Supplementary Fig. 7). The aggregated performance of all
slices also showed the best accuracy (Fig. 3Q, 155 runs for eachbar) and
highest continuity (Fig. 3R, 155 runs for each bar) of MENDER.

Evaluating single-slice versus multi-slice analysis. The benefit of
multi-slice analysis over single-slice analysis, as emphasized in recent
studies23,27, is its ability to perform spatial domain identifications
across multiple slices simultaneously. This facilitates the comparison
of identified results across slices. Utilizing single-slice analysis for
multiple slices separately introduces challenges, such as the need for

Fig. 1 | Overview of MENDER. A The input of MENDER is spatial omics data,
containing a gene expressionmatrix and a spatial coordinatematrix.B, C Themain
body ofMENDER.The cell distancematrix is computed using the spatial coordinate
matrix and the cell state is determined by the gene expression matrix (B). The cell

state frequencies are recorded across multiple ranges away from each cell (C).
Applications of MENDER. MENDER can perform multi-slice spatial domain identi-
fication (D), identify condition-specific spatial signatures (E), interpret the context
representation to biological entities (F), and scale to large datasets (G).
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additional domain matching, especially when the number of slices
increases, and the risk of inconsistent clustering granularity across
slices. We further assessed whether multi-slice analysis offers per-slice
improvement. We conducted single-slice analysis for each slice across
three datasets, resulting in a total of 37 single-slice analyses. We then
compared the accuracy (in terms of NMI) of single-slice andmulti-slice
analyses for each slice (see “Methods”). Although statistically sig-
nificant, the per-slice improvement of multi-slice over single-slice
analysis is relatively small (Supplementary Fig. 8).

Extended evaluation. We conducted supplementary studies to eval-
uate MENDER’s performance outside its primary scope. Specifically,
we testedMENDER’s capacity for cell type identification, a task distinct
from spatial domain identification, using both supervised and unsu-
pervised settings. Please see Supplementary Notes “Extended analysis
on cell type identification task”. Our supplementary analyses demon-
strated that MENDER, as well as other state-of-the-art spatial domain
identification methods such as STAGATE and SpaceFlow, align more
closely with Domain annotations than Cell Type annotations. Quanti-
tative measures, such as Normalized Mutual Information (NMI),
showed that MENDER’s performance reduced when compared against
Cell Type annotation instead of Domain annotation. Furthermore,
when performing supervised cell type identification, the accuracy of
MENDER’s representation was found to be approximately 50%, indi-
cating a substantial number of mislabeled cells. This pattern was also
observed in other leading spatial domain identification methods,
suggesting that these methods are not ideally suited for cell type
identification tasks.

Scalability on million-level brain atlas
Another distinct feature of MENDER is the scalability to large datasets,
which stems from its deterministic recording of a few spatial neighbors
for each cell, in contrast with other complex models that require

repeatedly accessing the large spatial graph during the iterations of
stochastic optimization. We tested MENDER on a single-cell spatial
transcriptomics dataset of the whole mouse brain sections measured
byMERSCOPE [https://info.vizgen.com/mouse-brain-data], containing
734,696 cells from 9 slices of 3 different brain positions (Fig. 4A), with
expressionmeasurements for 483 genes.The challenges of this dataset
include a large cell count, the complex spatial structure of the whole
brain, and inconsistent domains between different positions. The
advantage of this dataset is that each position has three replicates,
which can help verify the consistency of the identified spatial domains
of multi-slice analysis. The Allen brain map37 supported additional
reference to be compared with [https://mouse.brain-map.org/static/
atlas]. Due to these challenges, MENDER was the only spatial method
that can handle this dataset.

We closely examined the 9-slice joint analysis results provided by
MENDER. A comprehensive assessment of all 9 slices revealed visual
consistency within the same position, thus verifying the method’s
reliability (Fig. 4A, top). Upon closer inspection of the detailed results
for the 3 positions, respectively, a clear correspondence between
MENDER’s predicted results and the Allen brain map was identified
(Fig. 4A, bottom). For instance, MENDER accurately outlined the
laminar patterns in the Isocortex in all three positions (Fig. 4A, C), and
also identified domains shared by the 3 positions while being mor-
phologically distinct, such as the Corpus Callosum (Fig. 4A, D) and the
Hippocampal region (Fig. 4A, E). Additionally, domains not shared
across positionswere alsodetected, examples include the PontineGray
(Position 1, Fig. 4A, B), the Thalamus (Position 1 and 2, Fig. 4A,F), and
theCaudoputamen (Position2 and3, Fig. 4A,G). TheUMAPembedding
of MENDER-induced cell context representation (MENDER-UMAP,
Fig. 4H) exhibited both continuous tissue patterns and clear bound-
aries of distinct tissue compartments. These analyses demonstrate
MENDER’s scalability onmillion-level spatial datasets and the potential
for condition-specific domain discovery with multi-slice analysis.

Fig. 2 | Prediction accuracy of different spatial methods. Linear SVM (A), RBF
SVM (B), and Random Forests (C) are performed on the top of each spatial repre-
sentation method across 13 data, respectively. Each method is run for 5 times. The

accuracy is measured using tenfold cross-validation. Error bars are based onmean
and 95% confidence interval. Source data are provided as a Source Data file.
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Running time
Another important feature of MENDER is its speed. We summarized
the running time of different spatial domain methods in previous
datasets (Fig. 4I) and identified a substantial improvement of MENDER
over other methods across the 4 datasets (Fig. 4J). Specifically, MEN-
DERwas 9.4-fold, 9.3-fold, and 139.1-fold faster than the second-fastest
method in STARmap dataset (Dataset1), BaristaSeq dataset (Dataset2),
and MERFISH dataset (Dataset3), respectively (Fig. 4J). In the last
MERSCOPE dataset (Dataset4) containing 734,696 cells, MENDER is
the only appliable method.

Generalizability
We’ve made strides towards testing MENDER’s generalizability on
more spatial data modalities, particularly in light of the rapid emer-
gence of new spatial technologies. We evaluated MENDER and other
methods on additional datasets (Supplementary Fig. 9). These datasets
include single-cell resolution (including Stereo-seq38, osmFISH4, and
STARmapPLUS39) and non-single-cell resolution (including Spatial
Transcriptomics40, 10x Visium, and Slide-seq6).With the non-single-cell

resolution data, we aimed to assess whether MENDER could identify
expected tissue structures, even though its initial design is not speci-
fically for such data.

Firstly, we used two Slide-seq datasets (Supplementary Fig. 10).
The first dataset originates from the mouse cerebellum and contains
23,096 genes measured on 39,496 beads. We compared the results
from different methods (Supplementary Fig. 10B) with the tissue
structure reference (Supplementary Fig. 10A). It was evident that all
methods consistently identified major cerebellum structures like
Molecular Layer (ML) and Granule Layer (GL). However, only MENDER
pinpointed the Purkinje Layer (PL), which other methods overlooked.
These identified structures were thenmatched using known structural
markers (Supplementary Fig. 10C). Marker genes Gpm6b (ML marker,
Supplementary Fig. 10C 3rd column), Calb1 (PL marker, Supplemen-
tary Fig. 10C 2nd column), and Cblb3 (GL marker, Supplementary
Fig. 10C 1st column) were specifically upregulated in the expected
structures. The overlay of these genes also displayed patterns con-
sistent with the expected structures and MENDER’s results (Supple-
mentary Fig. 10C 4th column).

Fig. 3 | Benchmarking of multi-slice spatial domain identifications.
A–F Benchmarking on STARmap dataset. The dataset is from the mouse prelimbic
area (A) from 3 slices (B). NMI and PAS are used to evaluate different methods for
each slice separately (C, E), and jointly (D, F). Error bars are based onmean and 95%
confidence interval. G–L Benchmarking on BaristaSeq dataset. The dataset is from
the mouse primary visual area (G) from 3 slices (H). NMI and PAS are used to

evaluate different methods for each slice separately (I, K), and jointly (J, L). Error
bars are based on mean and 95% confidence interval. M–R Benchmarking on
MERFISH dataset. The dataset is from the mouse frontal cortex area from 31 slices
(M–P). NMI and PAS are used to evaluate different methods for each slice (Sup-
plementary Fig. 7), and jointly (Q, R). Error bars are based on mean and 95% con-
fidence interval. Source data are provided as a Source Data file.
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Fig. 4 | Scalability and speed. A–H Application of MENDER on amouse brain atlas
using MERSCOPE. A The dataset contains 9 slices from 3 different brain positions.
For each slice, we show the MENDER result (top). We also highlight one slice for
each position to compare with the Allen brain reference (bottom). Specific brain
domains are shown, including Pontine Gray (B), Isocortex Layers (C), Corpus Cal-
losum (D), Hippocampal region (E), Thalamus (F), and Caudoputamen (G). H The

UMAP embedding on the top of MENDER cellular context representation.
I Summary of benchmark datasets for unsupervised spatial domain identification.
JRunning time comparison of different spatial methods across the 4 datasets. Error
bars are based onmean and 95% confidence interval. Source data are provided as a
Source Data file.
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The second dataset, derived from the mouse hippocampus, cov-
ered 23,264 genesmeasured on 53,208 beads. By comparing the results
of various methods (Supplementary Fig. 10E) with H&E images and
structure annotations from the Allen reference atlas (Supplementary
Fig. 10D), it became clear that all methods identified the overall struc-
ture of the hippocampal region. However, BASS and SOTIP had diffi-
culties to differentiate finer structures of Cornu Ammonis (CA) and
Dentate Gyrus (DG), whereas STAGATE, CNC, and MENDER succeeded
in differentiating sub-structures of CA (CA1 and CA3) and DG (Supple-
mentary Fig. 10E). Validation of these identified structures using known
structural markers (Supplementary Fig. 10F) revealed Wfs1, a marker
gene of CA1, was notably enriched in the region annotated byMENDER
(Supplementary Fig. 10F 1st column). The samewas true forChgb inCA3
(Supplementary Fig. 10F 2nd column) and C1ql2 in DG (Supplementary
Fig. 10F 3rd column). The overlay of these marker genes (Supplemen-
tary Fig. 10F 4th column) matched well with the predicted structures.

We also collectedmouse olfactory bulb (MOB) datasets from four
distinct spatial technologies: Spatial Transcriptomics (ST), 10x Visium,
Slide-seq, and Stereo-seq. These datasets’ resolutions span from single-
cell (Stereo-seq) to nearly single-cell (Slide-seq) to tissue level (10x
Visium and ST), enabling a thorough assessment of method general-
izability across different spatial resolutions. The MOB tissue exhibited
well-structured layer patterns with known layer markers, shown for
each dataset (Supplementary Fig. 11C, F, I, L). For ST and 10x Visium
data, we provided the histological images from the original
publications40,41 (Supplementary Fig. 11A, D). From the ST and 10x
Visium results, MENDER consistently identified major MOB layers,
includingGranuleCell Layer (GCL),Mitral Cell Layer (MCL), Glomerular
Layer (GL), and Olfactory Nerve Layer (ONL) (Supplementary Fig. 11B,
E). Other methods, such as BASS, SOTIP, and STAGATE also detected
some of these structures (Supplementary Fig. 11B, E). From Slide-seq
and Stereo-seq results, MENDER highlighted finer tissue structures,
including the Rostral Migratory Stream (RMS) and Internal Plexiform
Layer (IPL), leveraging the enhanced spatial resolution (Supplementary
Fig. 11H, K). Other methods, particularly SOTIP and STAGATE, also
detected some expected structures (Supplementary Fig. 11H, K).

Subsequently, we collected four datasets of brain cortex tissue
from two distinct spatial technologies: 10x Visium and osmFISH.While
osmFISH offers single-cell resolution, 10x Visium data is at the spot
level. The cortical structures facilitated an evaluation of method per-
formance. Similar to our prior analysis, we provided layer markers for
reference (Supplementary Fig. 12C, F, I). Paired histological images
were available for 10x Visium data (Supplementary Fig. 12A, D), and
structure annotations from the original publication were available for
osmFISH data (Supplementary Fig. 12G). For the two 10x Visium
datasets, BASS andMENDER results yielded the best laminar structures
compared to other methods (Supplementary Fig. 12B, E). For the
osmFISH data, referencing the tissue anatomy (Supplementary
Fig. 12G), all methods identified expected layers such as Pia, Layer1-6,
white matter, and hippocampus. Yet, MENDER achieved sharper layer
boundaries (Supplementary Fig. 12H).

Next, we collected eight data obtained by a newer spatial tech-
nology, STARmapPLUS39 (Supplementary Fig. 13). The assayed tissue
includes both the cortex and hippocampus regions (Supplementary
Fig. 13). Since thesedatasets are of high quality, sourced from standard
mouse brain coronal section, a comparison between method results
and the Allen reference atlas readily reveals whichmethods can better
identify expected tissue structures. Across these eight samples, all
methods differentiated between the cortex and Hippocampal forma-
tion (HPF). Focusing on HPF sub-structures, almost all methods
detected CA1, CA3, and DG, but only MENDER consistently identified
CA2 (Supplementary Fig. 13). Regarding cortex sub-structures, MEN-
DER delineated the clearest layer boundaries compared to other
methods (Supplementary Fig. 13).

We have developed an online webpage [https://mender-tutorial.
readthedocs.io/], which provide essential guidance on the applications
of MENDER for various data types.

Identify age-consistent and age-specific spatial domains
We again analyzed the MERFISH dataset (Fig. 3M–P) since it contains
spatial single-cell data at different aging stages (i.e., 4 weeks, 24 weeks,
and 20 months)42, which might lead to age-associated biological
insights. MENDER-UMAP showed agreement between the low-
dimensional embedding and ground truth labels, and also implied
the existence of subdomains ignored by original annotation (Fig. 5A,
annotated by red, green, pink, and orange dashed circles). We herein
sub-clustered the data using MENDER to 9 domains (Fig. 5A, right).
Compared with MENDER results before sub-clustering (i.e., the analy-
sis in Fig. 3M–R, where the number of clusters was set to 8), the new
clustering result got significantly improved accuracy, consistently
across 31 slices (Fig. 5B).

We sought to examine the discrepancy between the original
annotation andMENDERprediction (Fig. 5A).We first focused on the
Olfactory region (OLF) (Fig. 5A, left), which was sub-clustered as two
domains, D6 (pink dashed circle) and D7 (orange dashed circle), by
MENDER (Fig. 5A). The spatial single-cell plot displayed not only
consistent existence of the two subdomains across different aging
stages but also similar localization relationships between them.
Spatial signature analysis (see “Methods”) showed dominant dis-
tribution of InN-Olf (Inhibitory Neurons) and ExN-Olf (Exhibitory
Neurons) in the two sub-domain of OLF (i.e., OLF1 and OLF2),
respectively, across ranges 0~4 (Fig. 5K, purple dashed boxes),
indicating distinct neuron activities between the two subdomains of
OLF conserved across ages. This analysis demonstrated MENDER’s
potential to identify biologically meaningful subdomains over-
looked by previous analyses.

We next explored an apparent discrepancy between the original
annotation and MENDER’s prediction, specifically concerning D4 and
D8 (Fig. 5A, right, red and green dashed circle). Both of these were
initially annotated as Corpus Callosum (CC) (Fig. 5A, left). The UMAP
embedding of MENDER (MENDER-UMAP) revealed an uneven dis-
tribution of the three stage labels (i.e., 4 weeks, 24 weeks, and
20 months) across the CC in feature space (Fig. 5F, G). Quantitatively,
D8 was almost entirely concentrated in the 4-week stage, while D4 was
mostly populated by the 24-week and 20-month stages (Fig. 5H bot-
tom), contrasting the original annotation (Fig. 5H, top). The consistent
distribution of D8 across 10 replicates of 4-week mice suggested that
this resultwasnot an artifact (Fig. 5I). Thisparagraphprimarily focused
on discovering these subdomains within the CC and examining their
distribution across different time points.

Advancing from the discovery of these sub-CC domains, we
further investigated their spatial distribution. One of the advantages
of MENDER’s multi-slice analysis is that it allows for a direct com-
parison of domain labels across different slices. We selected repre-
sentative tissue slices from the three aging stages and presented the
spatial distribution of MENDER-identified spatial domains for com-
parison (Fig. 5J). The resulting spatial map exhibited highly similar
laminar structures (from outermost to innermost layers: Pia mater,
Layer II/III, Layer V, Layer VI, CC, and Striatum) and sharp boundaries,
as expected. Notably, the CC domain exhibited different colors
(corresponding to different domain labels) between stages, i.e.,
green at 4 weeks and red at 24 weeks and 20 months. The spatial
signature analysis revealed the primary difference between CC (4w)
and CC (24w & 20m) was the distinct distributions of oligoden-
drocyte subtypes (Fig. 5K, red boxes). These observations under-
scoreMENDER’s potential to identify condition-specific domains and
illustrate the spatial relationships between these domains across
different stages.
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Differentiate spatial-related subtypes of breast cancer
Having already benchmarked the performance and scalability of
MENDER and demonstrated the biological insights that MENDER-
identified spatial domains provide, our next objective was to investi-
gate whether MENDER could identify spatial domains with biomedical
significance. For this purpose, we employed the multi-slice analysis of
MENDER on a large-scale MIBI-TOF spatial proteomics dataset11 of 40

Triple-Negative Breast Cancer (TNBC) patients, comprising approxi-
mately 200,000 cells in total (see Fig. 6A). This large volume of data
poses a challenge to other related methods (as demonstrated with
former sections), but can be easily resolved by the high computational
efficiency of MENDER.

Thepatients were categorized into three TNBC subtypes based on
the accompanying metadata, namely the cold group, mixed group,
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and compartmentalized group (see Fig. 6A). The three groups were
reported to have significantly different survival outcomes11. Notably,
the original study had previously shown that differences between the
three subtypes could not be explained by cell type abundance alone.
Given that MENDER-identified spatial domains integrate the spatial
relationships of diverse cell types, we posited that the abundance of
spatial domains across patients may be better suited to distinguish
between the three TNBC subtypes.

In this dataset, we observed distinct topological variations across
the TNBC subtypes via the spatial domains identified by MENDER
(Fig. 6B).Weproceeded to represent eachpatient using theproportion
of cell type and domain. The original publication supplied both fine
and coarse cell classifications. In subsequent discussions, we define
patient representation usingMENDERdomainproportionas “MENDER
repr” and patient representation deploying cell type (fine/coarse) as
“CT-fine repr” and “CT-coarse repr”. Aligning with prior findings, nei-
ther CT-fine repr nor CT-coarse repr could effectively distinguish
among the three subtypes (Fig. 6C, D).

Contrastingly, MENDER repr successfully differentiated the sub-
types, and captured the progressive prognosis from the cold group, to
the mixed group, and ultimately to the compartmentalized group, as
shown in the PCA plot (Fig. 6E). In quantitative terms, for both CT-fine
repr and CT-coarse repr, while PC1 could significantly differentiate
compartmentalized from cold/mixed for the cell type proportion, PC2
was unable to distinguish between the three groups (Fig. 6C, D).
Conversely, forMENDER repr, PC1 could significantlydifferentiate cold
from mixed/compartmentalized, and PC2 could significantly differ-
entiate compartmentalized from cold/mixed (Fig. 6E). By combining
the twomain PCs, MENDER repr could easily tell apart the three TNBC
subtypes (Fig. 6E).

The PCA analysis underscored the visual separability of the
patient groups when MENDER was deployed. In order to evaluate the
differentiating ability of different patient representations, we adopted
the procedure used in representation learning literature43–45 and con-
structed classification tasks using different representations, reporting
the classification accuracy as ameasure of the differentiating power of
each representation (see “Methods”). For the three representations—
MENDER repr, CT-fine repr, and CT-coarse repr—we applied two
supervised classifiers: K-nearest neighbors (KNN) and Support Vector
Machines (SVM). The results underscored that MENDER repr clearly
outperformed CT-fine repr and CT-coarse repr in classifier accuracy,
whether KNN (Fig. 6F left) or SVM (Fig. 6F right) was employed as the
classifier, suggesting a significantly higher ease of classification for the
patient groups using MENDER-derived representations. To control for
the effects of varying feature numbers, we also evaluated the classifi-
cation accuracy in three feature spaces by projecting the same number
of principal components (see “Methods”). The findings affirmed that
the superior predictive capacity of the MENDER-identified domains
remained unaffected by feature dimensionality (Fig. 6G).

Discussions
Spatial domain identification is a crucial task in spatial biology and is an
important intersection of the machine learning and spatial omics
fields. For this task, new methods often followed the established

paradigms and conducted incremental developments by increasing
model complexity. But whether complex models could deliver con-
sistent gains has not been discussed. To this end, our analysis hinted
that a simple model might bring better performance over modern
complex models, thus inspiring a new paradigm to break through
current bottlenecks.

There are primarily two factors that can influence the determi-
nation of spatial domain labels. The first factor is cellular context
because MENDER relies on the representation of cellular context to
determine spatial domain labels. However, it’s important to note that
the presence of the same spatial domains doesn’t necessarily imply the
absence of cellular context variations. For instance, consider the ori-
ginal spatial domain region in Fig. 6B, which can still contain cellular
context variations, as demonstrated by the color variations in the Rh

region in Supplementary Fig. 35A. Here, we used UMAP-reduced cel-
lular context representation and mapped it to the CIELAB color space
for each cell to illustrate these variations. The second factor is the
Leiden clustering resolution. When we increased the clustering reso-
lution, we observed that the Rl region generated different spatial
domain labels (Supplementary Fig. 35C). Conversely, when we
decreased the Leiden resolution, we noticed that the domain labels
within Rl became more homogeneous (Supplementary Fig. 35B).

There were two folds of analytical contributions. First, we identi-
fied consistent neighborhood statistics across different spatial tech-
nologies in different tissue systems. Second, we found that simple
cellular context analysis might have improved performance compared
to state-of-the-art complex models (e.g., Graph Neural Networks and
Bayesian Networks) in both supervised and unsupervised settings.
There were also two folds of practical contributions. First, we solved
the multi-slice analysis in the spatial domain identification task which
was little considered by previous methods. Second, we solved the
scalability and running time problems, which were the main issue of
previous methods in the applications on million-level datasets. We
conducted a memory usage comparison between MENDER and other
competing methods (Supplementary Table 1). We recorded the peak
memory usage for eachmethodon everydataset. The results indicated
that SingleRange, CNC, and MENDER exhibit the best memory effi-
ciency, as they only require themaintenance of one fixed spatial graph
and context representation in memory. It’s worth noting that even on
the MERSCOPE dataset with over 700,000 cells, MENDER only
requires 25min and 80GB+ of memory, showcasing its potential cap-
ability to handle datasets of million-level scale.

MENDER’s innovation is best understood within the computa-
tional community of spatial transcriptomics, where the mainstream
methodological paradigm of spatial domain identifications (also
known as spatial clustering) follows a two-step approach8,17. The first
step involves encoding the cellular context information into a context-
aware representation, and the second step involves clustering the
context-aware representation to obtain the spatial domain labels.

Regarding the first step, some methods use graph convolutional
networks (GCN) to obtain the context-aware representation18,19,46,
while others use probabilistic graphical models (PGM)47,48. MENDER
utilizes a new concept which presents a descriptor on how cell state is
spatially organized within the local context, as an alternative to GCN

Fig. 5 | Discovery of age-related spatial domains. A MENDER-UMAP of the
MERFISH aging dataset, colored by the expert annotation from the original pub-
lication (left) and MENDER results (right). B The ARI and NMI before and after
MENDER sub-clustering. Eachpoint is a slice (the numberof slices in total is 31). The
green line indicates improved performance after sub-clustering and the orange line
indicates decreased performance after sub-clustering. The original annotation and
MENDER’s annotation were plotted on the three stages, 4 weeks (C), 24 weeks (D),
and 20 months (E), respectively. The aging stage labels are annotated on the
MENDER-UMAP plot both on a single plot (F) and separately (G). H The stage
distribution across different domains from the original annotation (top) and

MENDER (bottom), respectively. I The domain distribution across different slices
from 4-week-oldmice. J Spatial distribution of MENDER-annotated domains across
different aging stages. Different colors indicate different spatial domains. K The
spatial signature analysis of MENDER-annotated domains across slices from all
aging stages. Each row is a feature of MENDER-computed context representation.
The cell states are indicated by different colors, and the ranges are indicated by the
number beside the cell state label. Each column shows the spatial signature of an
identified domain. The values of the context representationmatrix are reflected by
the size and colors of the dots. Source data are provided as a Source Data file.
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and PGM methods. We avoided GCN and PGM methods due to their
limitations: GCN methods were reported to have unstable outputs
across different runs on different machines25, and PGM methods
were reported to have longer running time23. Additionally, both
existing GCN and PGM methods lack scalability to large datasets,
causing the failure of applying existing methods on datasets larger
than 106 cells.

For the second step, Leiden is used for clustering the context-
aware representation, which was commonly used by other spatial
clustering methods’ 2nd step. Although some methods use other
clustering algorithms for the second step (e.g., STAGATE uses mclust
when the number of classes is known19), they are fundamentally similar
toMENDER, as they all use existing clustering algorithms to cluster the
context-aware representation to obtain the spatial domain labels.

Fig. 6 | Differentiate TNBC subtypes. A Information of the datasets. The datasets
comprise 3 patient groups, namely cold,mixed and compartmentalized, consisting
of 6, 19 and 15 patients, respectively. B The cell type annotations and MENDER-
predicted domains on representative patients from different groups are shown.
PCA plots of the patients characterized by the proportions of cell type (fine),
termed CT-fine repr (C), cell type (coarse), termed CT-coarse repr (D), and
MENDER-identified domains termed MENDER repr (E), respectively. N = 6 inde-
pendent samples for cold, N = 19 for mixed, and N = 15 for compartmentalized.
Boxplot setting: the lower and upper hinges show the first and third quartiles (the
25th and 75th percentiles); the center lines correspond to the median; the upper
whisker extends from the upper hinge to the largest value, which should be less
than 1.5× the interquartile range and the lower whisker extends from the lower
hinge to the smallest value, which is at most the 1.5× interquartile range. F The

separability of patients by 3 different proportions is quantified by the classification
accuracy of 2 supervised classifiers, i.e., KNN and SVM. The y-axis shows the clas-
sification accuracy (ACC) reported fivefold cross-validation, using either KNN or
SVM as classifiers. The patient-level labels are cold, mixed and compartmentalized.
The p-values (one-sided t-test) indicate the significance of the difference between
CT-fine repr and MENDER repr, and between CT-coarse repr and MENDER repr,
respectively. Error bars arebasedonmean and95%confidence interval.G Similar to
F, except that the features of these proportions are PCA-reduced to the same
dimensions before classification. The number of PCs ranges from 2 to 17. The y-axis
also shows the classification accuracy (ACC) reported by fivefold cross-validation.
N = 5 independent experiments. Error bars are based on mean and 95% confidence
interval. Source data are provided as a Source Data file.
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Due to the relatively early developmental stage of the spatial
omics field, most available datasets are from the brain and other
healthy tissues, and there is still a lack of complex disease or tumor
data. In such disease cases, the cell spatial organization and effect
range (radius) might be more complex and various across different
tissue positions, progression stages, or patients. How to design an
adaptive effect range is a future challenge. Due to the complex tissue
structures to be studied, especially in diseases, identifying hierarchical
tissue structures is another important direction. A straightforward
solution is to embed hierarchical clustering methods into current
spatial clusteringmethods. A recent innovation solved this problem in
a different way, extracting spatial structure through co-expression
hotspots, enabling the identification of multi-scale, multi-layer, inter-
pretable organizational structures49.

Methods
MENDER
MENDER takes multiple slices of spatial omics data as input (see
“Input” in the following and Fig. 1A), which contains two matrices, i.e.,
the gene expression matrix and the spatial coordinate matrix. Next,
MENDER uses the gene expression matrix to determine the cell states
(see “Cell Group Computation” in the following), and uses the spatial
coordinatematrix to obtain themulti-range neighborhood of each cell
(see “Multi-range neighborhood Representation Computation” in the
following) (Fig. 1B). Then for each index cell, MENDER records the
number of each cell state in each range and concatenates them to get
the context representation of the index cell (Fig. 1C), which is finally
clustered to get the spatial domains (see “MENDER-UMAP Visualiza-
tion and MENDER Spatial Domains Computation” in the following)
(Fig. 1D-G). For technical details, please refer to Supplementary Fig. 14
while reading the following descriptions. Data elements (including
input, output, and intermediate data), boxed in purple in Supple-
mentaryFig. 14, are emphasizedusing “Double quotes” in the following
descriptions.

Input. The input of MENDER is multiple slices of spatially resolved
single-cell data. “Multiple slices”means these tissue slices are collected
from multiple tissue sections and don’t share a common spatial
coordinate system. MENDER processes a spatial dataset containing G
genes measured on N cells from S slices, with three pieces of input
information: (1) The “Gene expressionmatrix” ðNrows ×GcolumnsÞ; (2)
The “Spatial matrix” (N rows ×2columns, for 2D data, or
Nrows ×3columns, for 3D data); (3) The slice ID identifier (a vector of
length N), specifying the origin slice of each cell. In order to be com-
patible with common single-cell and spatial omics analysis
packages50,51, the data accepted by MENDER is prepared in Anndata
format. The multi-slice data should be merged into the same Anndata
object, using the keyword “slice_id” in Anndata.obs to identify different
slices.

Cell group computation. Before the construction of cell context
representation, MENDER relies on the determination of each cell’s cell
state (i.e., “Cell group” in Supplementary Fig. 14) based on the gene
expression matrix. In our practice, if batch effects exist across slices,
Harmony52 (scanpy.externel implementation, default setting) is used
for data integration, followed by neighborhood searching and Leiden
clustering (scanpy.tool implementation, with resolution = 2) on the
“Harmonized embedding”. If no batch effect is present, the PCA-
reduced gene expression profiles are directly subjected to neighbor-
hood searching and Leiden clustering.

Some resource papers provided expert-annotations of cell types,
if such reliable annotation is provided as prior knowledge, the above
procedure can be bypassed to directly acquire the “Cell group”. This
approach has the potential to enhance accuracy and shorten the

running time. In real-world applications, particularly when confronted
with complex disease cases and possible batch effects, we highly
recommend using reliable cell type annotation across multiple slices
to evade potential inaccuracies.

We evaluated the robustness of MENDER with respect to various
cell clustering methods and parameters across multiple datasets
(Supplementary Figs. 2–4). Specifically, we assessed four single-cell
clustering methods: UMAP + KMeans, Louvain, Leiden, and SC3s53. We
then reported MENDER’s performance (quantified in terms of NMI) in
relation todiverse clustering parameters associatedwith eachmethod.
As clustering granularity increased, MENDER’s performance rapidly
approached its peak and maintained without significant degradation.
This behavior demonstrates MENDER’s robustness to variations in cell
clustering methods and their corresponding parameters across data-
sets. Broadening our exploration, we examined MENDER’s robustness
against low-quality cell clusters (Supplementary Fig. 5). To achieve this,
we introduced varying noise levels to cell cluster labels. Our results
indicate that MENDER’s performance suffers only a slight drop when
the noise level remains under 0.5, emphasizing MENDER’s robustness
even in the presence of noisy cell group labels.

In more general cases, the disengagement of the cell state clus-
tering step could provide a divide-and-conquer solution when input-
ting low-quality spatial data. Besides the above approach to determine
the “Cell Group”, one can also apply reference-based54 cell type
annotations usingmethods such as scArches55, Tangram56, and Spatial-
ID57, to determine the cell state labels. Such feature of MENDERmakes
it a highly flexible framework that can effectively integrate rich
resources of bioinformatics tools.

Multi-range neighborhood Representation Computation. The “Spa-
tial Matrix”, “Slice ID”, and the “Cell Group” (obtained previously) are
utilized to calculate the “Multi-range Neighborhood Representation”.
The “Slice ID” separates the “Spatial Matrix” into multiple matrices,
each representing the spatial matrix of a slice, to prevent cells from
different slices from becoming spatial neighbors. For each spatial
matrix corresponding to a slice, spatial neighborhood searching
(Squidpy51 implementation, default parameters) is performed inde-
pendently by constructing amulti-processparallelization pool (Python
multiprocessing implementation).

For each slice, around every cell, S ranges (the setting of S
depends on the spatial resolution, as noted in Supplementary Fig. 14:
2 for 10X Visium/ST, 4 for Slide-seq, and 6 for single-cell resolution
technologies) of spatial neighborhoods are created, forming S ring
areas around the central cell (the radius is set to 15um by default).
The cell index located within each ring area is recorded for each
central cell. Note that although 15um was consistently set across this
manuscript, it may not necessarily hold if broader range of spatial
data is obtained from a larger variety of tissues in the future.
Therefore, we have developed a function module called estimate_r-
adius that enables the evaluation of distance distributions for new
datasets.

Combining the “Cell Group” computed earlier, for each cell, the
frequencies of cell types located within the central cell’s associated
multi-range neighborhood are recorded. These frequencies are
then concatenated to form the “Multi-range Neighborhood
Representation”.

Formally, suppose the total number of cells across all input slices
is N, the first step partitioned all cells into C distinct cell states, i.e.,
“Cell group” in Supplementary Fig. 14, noted as G= gc

� �
,c 2 ½1,C�. The

cell state of the i-th cell is noted as celli,i 2 ½1,N�. The origin slice of the
i-th cell is noted as slicei,i 2 ½1,N�: The spatial coordinate of the i-th cell
is noted as xi,yi

� �
,i 2 ½1,N�. The number of ranges is set to S. The radius

is set to R. Then the multi-range neighborhood representation matrix,
M 2 Z + N × ðS×CÞ

, in which the i-th row is the context-aware
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representation of the i-th cell.

Mi,ðs�1Þ×C + c = jj s � 1ð Þ×R ≤Dist i, jð Þ<s ×R� � \ jjslicej = slicei
n o

\ jjcellj = gc

n o��� ���
ð1Þ

where :

Dist i, jð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xi

� 	2
+ yj � yi
� 	2

r

i, j 2 ½1,N�

s 2 ½1, S�

c 2 ½1,C�
MENDER-UMAP visualization and MENDER spatial domains com-
putation. Utilizing the “Multi-range Neighborhood Representation” of
eachcell, dimension reduction and clustering are executed to generate
the “MENDER-UMAP Visualization” and the “MENDER Spatial
Domains”. To create the “MENDER-UMAP Visualization”, neighbor-
hood graph (scanpy.pp.neighbors) is constructed on the normalized
and PCA-reduced “Multi-range Neighborhood Representation”
(implemented by scanpy.pp.normalize_total then scanpy.pp.log1p and
scanpy.pp.pca). Then UMAP (implemented by scanpy.tool.umap) is
applied on the neighborhood graph. To generate the “MENDER Spatial
Domains”, the Leiden clustering is employed to cluster on the neigh-
borhood graph (same as before). The clustering resolution of Leiden is
set in the following manner: if the expected number of domains is
known, a function is implemented to automatically estimate the sui-
table Leiden resolution. This can be accomplished by executing run_-
clustering_normal (with a positive value as the parameter, for the
expected number of domains). Conversely, if the expected number of
domains is not available (as in exploratory studies), the Leiden reso-
lution defaults to 0.5. This is achieved by running run_cluster-
ing_normal (with a negative value for clustering resolution).

Evaluation and biomedical applications. Finally, once the spatial
domains are obtained, one might want to evaluate the accuracy of the
identified domains and carry out biomedical applications. For evalua-
tion purposes, MENDER includes Compute_NMI, a tool for comparing
the similarity between predicted domains and ground truth domains
using Normalized Mutual Information (NMI). Compute_PAS is also
provided to assess the spatial coherence of the predicted domains.

For biomedical applications, it is suggested touse theproportions
of domains of each patient as their representation. In the case of
unsupervised analysis, Principal Component Analysis (PCA) is applied
to the patient representation to embed each patient in a low-
dimensional space. This process can automatically partition patients
into different groups with significantly different outcomes. More
details can be found in “Evaluation of patient representations” in
“Methods”.

Determine the optimal clustering resolution. The challenge of
determining the appropriate resolution or number of regions in spatial
clustering is a common hurdle in the field. To address this challenge,
we introduced the “res_search” method in MENDER. This approach
enables users to iteratively search for the optimal Leiden resolution,
given the expected number of regions (Supplementary Fig. 36). To
demonstrate, Supplementary Fig. 37 highlights the effectiveness of the
“res_search” method in resolution selection. Using a MERSCOPE brain
dataset, we showed that MENDER, with default resolution settings,

identifies fine-grained structures. However, when applying
“res_search” with an expected number of regions set to 5, MENDER
accurately discerns broader brain regions, aligning with the Allen
Brain Atlas.

Six aspects to view existing methods
Support for multi-slice analysis. The multi-slice analysis is a concept
proposed relative to single-slice analysis23. It aims to perform spatial
domain identifications on multiple slices at the same time so that the
labels of the identified results can be compared across slices. If the
single-slice analysis is used to analyze multiple slices separately, it will
lead to two problems. First, the labeling result of each slice is inde-
pendent, whichmeans that the domainA inone slice and the domain A
in another slice do not necessarily refer to the same domain, resulting
in the need for additional domainmatching, which ismore challenging
in scenarios where the number of slices increases. Second, single-slice
analysis of multiple slices may result in inconsistent clustering granu-
larity across slices. For example, domain A in one slicemay be split into
domain C and domain D in another slice.

The importance of multi-slice analysis was highlighted in recent
studies23,27, and only 3 existing methods provided the interface for
users to performmulti-slice analysis, including STAGATE19, BASS23, and
SOTIP27. STAGATEprovides a tutorial formulti-slice analysis at [https://
stagate.readthedocs.io/en/latest/AT1.html], SOTIPprovides at [https://
github.com/TencentAILabHealthcare/SOTIP/tree/master/SOTIP_
analysis/multi_sample], and BASS provides at [https://zhengli09.
github.io/BASS-Analysis/].

We can categorize the methods that support multi-slice analysis
into three paradigms: “early-support”, “late-support”, and “data-end-
support”, based on the point in the workflow where the integration
occurs.

The “early-support” paradigm typifiesmethods such as SOTIP and
BASS, which perform data integration early in the procedure. In other
words, they initially harmonize gene expressions across different slices
before proceeding to construct spatial graphs independently for each
slice. The finalmodeling is then performed on all slices jointly, yielding
spatial domain results comparable between slices.

On the other hand, STAGATE exemplifies the “late-support”
paradigm, where single-slice analysis of STAGATE is performed inde-
pendently for each slice. This process generates a context-aware
representation for each slice. The data integration operation is then
performed on these representations, with the final clustering carried
out in the integrated embedding space.

The third paradigm, “data-end-support”, is exemplified by
BayesSpace. This paradigm modifies the spatial coordinates of differ-
ent slices to lay on the same spatial coordinates, and maintains a
substantial gap between slices, so that spots from different slices are
not neighbors. The algorithm then proceeds with single-slice analysis,
yielding spatial clustering results.

At present, SpaGCN, CCST, SpaceFlow, and SpatialPCA currently
lack the necessary functionalities in their code and documentation for
multi-slice analysis. However, with modifications to their code, they
could be adapted to facilitate multi-slice analysis, using either the
“early-support” or “late-support” paradigms previously discussed. On
the other hand, BayesSpace’smethodology does not generate context-
aware cell representations, making it unsuitable for extension via the
“late-support” paradigm.

Stability. Stability is the ability of a computational method to produce
similar output as possible in different runs when given identical
input58. Reproducibility in the scientific community has received
widespread attention in recent years, and method stability is an
important part of it. The randomness and non-convexity of modern
deep-learning models make them difficult to produce stable results
across different runs on different machines. Relatively better stability
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was reported by probabilistic graphical models although they also
cannot guarantee complete stability.

Interpretability. Interpretability judges whether the parameters and
variables involved in themodel can bemapped to biological entities or
relationships. Good interpretability can lead to more meaningful
model outputs and better means of model diagnosis. Deep-learning
models have inherent disadvantages in interpretability compared to
Bayesian models, which were generally built upon biological items as
variables and dependencies as conditional probabilities.

Scalability and speed. Since computational methods in spatial omics
need to additionally consider spatial relationships of cells, compared
with single-cell (non-spatial) methods (such as single-cell clustering),
they aremore challenging to scale to large-scale data. At present, most
existing spatial methods are only applied and benchmarked on rela-
tively smaller data (<100,000 cells). GNN-based methods tend to be
more scalable than BN-based methods since they can rely on mature
deep-learning communities and tools. The scalability bottleneck of
existingmethods is considered as the ability to generate output within
a reasonable running time. But for even larger datasets, memory may
be the next bottleneck (GNN may be at a disadvantage since larger
VRAM is less accessible than RAM).

Availability of cell context representation. This feature enables the
output of both cell context representation (the cellular context
information is encoded) and the spatial domain label for each cell. The
context representation is a fixed-length vector for each cell, whichmay
be useful for additional downstream analysis like those in single-cell
analysis. The additional analysis might include pseudo-space
analysis20,59 (similar to the pseudo-time analysis in single-cell
analysis60–62), data visualization (for example using t-SNE63, UMAP64,
and PHATE65), differential expression analysis66,67 (this requires the
representation to be biologically meaningful, i.e., interpretable), and
other analysis implemented in single-cell packages like SCANPY50 or
Seurat68. GNN-based methods generally output both the context
representation and spatial domain labels, and the latter is generally
obtained by clustering on the former. Among BN-based methods,
those based on Markov random fields (e.g., BayesSpace and BASS)
generally do not output the context representation.

Analyzing the distance of neighboring cells
Datasets. MERFISH primary motor cortex dataset is from Ref. 29,
MERFISH hypothalamic preoptic region dataset is from Ref. 32, MER-
FISH nucleus accumbens dataset is from Ref. 30, DARTFISH occipital
cortex dataset is from Ref. 14, BaristaSeq primary visual area dataset is
from Ref. 33, STARmap primary visual cortex dataset is from Ref. 34,
osmFISH somatosensory cortex dataset is fromRef. 4, seqFISHembryo
dataset is from Ref. 35. These datasets contain the major single-cell-
level resolution spatial technologies. We didn’t analyze datasets from
other single-cell-level technologies such as slide-seq5 or slide-
seqV26,69,70 because the sequencing units (i.e., beads) were array-like
distributed in the space and thus didn’t reflect real cell distance.

Analysis. For each slice in each dataset, we recorded the distance of
eachcellwith its nearest cell, and all cells in the slicewere collected as a
distribution (i.e., boxplot in Fig. 1B). Specifically, for each slice, we first
computed the pairwise distance of all cells to get a distance matrix.
This was done using the “pdist” and “squareform” functions of scipy71.
To avoid the zero values along the diagonal, we set the diagonal of the
distance matrix to infinite value (“fill_diagonal” function of numpy72),
then for each row, we record its minimum value as the shortest dis-
tance. Some datasets contain many slices, to save space, we only ran-
domly selected 5 slices to show the distribution.

Boxplot. The lower and upper hinges show the first and third quartiles
(the 25th and 75th percentiles); the center lines correspond to the
median. Distance ranges from 10 μm to 20 μm were highlighted with
orange, and distance of 15 μm was indicated with the red dashed line
(Supplementary Fig. 1B). Boxplots were generated using Seaborn
[https://seaborn.pydata.org/].

Supervised learning settings
General settings. To compare the spatial domain prediction perfor-
mance between Graph Neural Networkmodels and our simple cellular
context representation, we used 3 state-of-the-art methods, i.e.,
SpaGCN18, SpaceFlow20, and STAGATE19, that can output cell context
representation as the input for prediction. For a fair comparison, we
set the number of neurons of the hidden layer (i.e., the number of
dimensions of context representation) of each method to 50, and the
number of epochs is set to 500. Each method on each dataset was
performed for 5 times.

SpaGCN. For SpaGCN,we followed the tutorial in [https://github.com/
jianhuupenn/SpaGCN/blob/master/tutorial/tutorial.ipynb], the differ-
ence is thatwe set the “histology”parameter to false since there arenot
H&E images available. Since SpaGCN involved a PCA step (to reduce
the gene expression vector to 50) prior to the GNN network, which
would raise an error if the number of genes is smaller than 50.We thus
made a modification to the original code so that the “n_comp” of the
PCA is set to the smaller value between (50 and the number of mea-
sured genes). The resulted cell context representationwasobtainedby
the “embed” attribute of SpaGCN object.

SpaceFlow. For SpaceFlow, the authors provided tutorials for single-
cell spatial transcriptomics data [https://github.com/hongleir/
SpaceFlow], we followed their recommended parameters and
obtained the context representation by the “embedding” attribute of
SpaceFlow object.

STAGATE. For STAGATE, the authors nicely provided multiple tutor-
ials for different spatial data types, including Slide-seqV2, 10X Visium,
stereo-seq, and STARmap datasets. Since our test datasets’ char-
acteristics were most similar to STARmap dataset, we used the
recommended steps in [https://stagate.readthedocs.io/en/latest/T9_
STARmap.html]. We also tuned the “rad_cutoff” parameter of STA-
GATE for best performance (in practice, this parameter is best tuned so
that the number of neighbors per cell on average is around 10).

Evaluation. We used three classifiers to evaluate the representation
powers of SpaGCN, SpaceFlow, STAGATE, and MENDER. The three
classifiers were Linear SVM, RBF SVM, and Random Forest, which were
standard classification algorithms for linear classifier, non-linear clas-
sifier, and tree-based classifier. We recorded the median classification
accuracy across tenfold cross-validations. The classifiers and cross-
validation implementations were used from Scikit-learn73.

Unsupervised learning settings
The unsupervised task in this study is multi-slice analysis for spatial
domain identification. We benchmarked MENDER against other
methods, including 4 spatial methods that were available for multi-
slice analysis (STAGATE, BASS, CNC, and SOTIP), and 2 non-spatial
methods (Louvain and Leiden). We used two evaluation metrics as
done by previous benchmarks26.

NormalizedMutual Information (NMI) can be used to evaluate the
accuracy of predicted spatial domain labels compared with ground
truth, and high NMI means good performance. NMI quantifies the
similarity between two label assignments, supposed as P and T , to the
same set of objects.HðPÞ andHðTÞ are denoted as their entropies. Then
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NMI is computed as:

NMI=
MIðP,TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðPÞHðTÞ

p ð2Þ

Percentage of Abnormal Spots (PAS) can be used to evaluate the
spatial continuity of predicted domain labels given the spatial coor-
dinates, and low PAS means good performance. PAS was calculated as
the percentage of cells whose spatial domain label differed from at
least 6 of its 10 neighbors.

Given the complexity and heterogeneity inherent in spatial bio-
logical data, a single evaluationmetricmay not sufficiently capture the
performance of spatial domain identification methods. While metrics
like PAS, Local Inverse Simpson’s Index (LISI), and spatial chaos score
(CHAOS) offer insights into the spatial continuity of the predicted
domains25,26, higher spatial continuity doesn’t not necessary mean
better spatial domain prediction, and they must be interpreted care-
fully and in the context of other performancemeasures such as NMI or
ARI, which directly compare the predicted labels against the ground
truth. The simultaneous consideration of these metrics can provide a
more nuanced understanding of the method’s performance. More
importantly, it can help to avoid potential misinterpretations thatmay
arise when these metrics are considered in isolation.

Multi-slice analysis of STAGATE. We used the tutorial provided in
[https://stagate.readthedocs.io/en/latest/AT1.html]. The difference is
that that tutorial used 10XVisiumdatasets thatweredifferent fromour
single-cell resolution datasets. So we pre-process our datasets as done
in [https://stagate.readthedocs.io/en/latest/T9_STARmap.html], and
used the multi-slice code to construct the spatial graph separately. As
to the “rad_cutoff” parameter, like before, we tuned this parameter so
that the number of neighbors per cell on average is around 10, to get
the best performance.

Multi-slice analysis of BASS. The authors of BASS directly provided
the code for multi-slice analysis on single-cell resolution spatial data
[https://zhengli09.github.io/BASS-Analysis/STARmap.html]. So we
directly employed the steps.

Multi-slice analysis of SOTIP. The authors provided the code for
multi-slice analysis in [https://github.com/TencentAILabHealthcare/
SOTIP/tree/master/SOTIP_analysis/multi_sample].Wedirectly adopted
the code for benchmark analysis.

Parameter setting
Please refer to Supplementary Fig. 9. We have also provided the cor-
responding reproducibility code.

Elaborating on the parameters, the ‘scale’ refers to the number of
ranges employed during the construction of multi-range neighbor-
hoods. For technologies of single-cell resolution, such as STARmap,
BaristaSeq, MERFISH, MERSCOPE, Stereo-seq, osmFISH, ExSeq, and
STARmapPlus, we have consistently set the ‘scale’ to 6.

Theparameters ‘nn’or ‘radius’dictate the size of each range. ‘nn’ is
utilized for spatial technologies with an array-like spot distribution,
such as 10X Visium and ST. Specifically, ‘nn’ is set to 6 for 10X Visium,
reflecting its six nearest neighborhoods per spot, and 4 for ST, corre-
sponding to its four nearest neighborhoods per spot. On the other
hand, for spatial technologies with non-array-like distributions, we set
the ‘radius’ parameter to a consistent 15 µm. We also provided a
function in MENDER package called estimate_radius to recommend
suitable ‘radius’ for potential users.

Leiden clustering is employed twice, initially to define the ‘Cell
group’ (Supplementary Fig. 14) and finally to obtain ‘MENDER spatial
domains’ (Supplementary Fig. 14). For the initial clustering, we con-
sistently apply Leidenwith a resolution of 2. The final Leiden clustering

requires one parameter, ‘k’. If ‘k’ is positive, MENDER’s ‘res_search’
function is executed to automatically ascertain the optimal Leiden
resolution that will yield ‘k’ domains. This is particularly useful when
the expected number of domains is known a priori, such as in our
benchmark studies with ground truth domain annotations. If ‘k’ is
negative, Leiden clustering is executed with a resolution equal to the
absolute value of ‘k’. This is preferred when the number of domains is
not provided as prior knowledge to themethoduser. In suchscenarios,
multiple different resolutions should be tested.

Per-slice performance comparison between multi-slice and
single-slice analysis
Single-slice analysis is conducted using the MENDER.MENDER_single
module, while multi-slice analysis is performed using the MENDER.-
MENDER module in the MENDER package. The parameter settings for
both analyses are (scale = 6 | radius = 15 µm | k = #domains). The NMI is
compared as follows (using the STARmap dataset (Fig. 3B) as an
example). For single-slice analysis, the three slices of the dataset are
analyzed independently, each with 10 replicates, resulting in 10 NMI
values per slice. For multi-slice analysis, the dataset (three slices
jointly) is used for joint spatial clustering, also for 10 replicates.
Therefore, each slice has 10 versions of predicted domains and 10 NMI
values. Hence, both multi-slice and single-slice analyses of the STAR-
mapdataset yield 30NMI values, as compared in Supplementary Fig. 8.
The p-value is obtained using a one-sidedWilcoxon rank-sum test. The
same approach was applied to the BaristaSeq and MERFISH datasets.

Evaluation of patient representations
In our final application, we assessed the performance of three distinct
methods for patient-level representation in separating patient groups.
Patient-level annotations are available in the originalmanuscript11, with
three distinct labels: cold, compartmentalized, and mixed. The three
patient representations evaluated are all proportions of cell-level
labels within each patient. The first two representations, termed CT-
fine repr and CT-coarse repr, derive from cell type labels within each
patient, as annotated by the original paper, but with different cell type
granularities (i.e., fine and coarse). The third representation, termed
MENDER repr, is derived from the spatial domain labels identified by
MENDER (default parameters: radius = 15 µm, scale = 6, k = −0.5). Each
representation matrix has rows equivalent to the total number of cells
and columns equivalent to the number of unique labels across the
dataset.

Unsupervised analysis (Fig. 6C–E) was performed by initially
applying PCA to the three patient representations, followed by map-
ping all patients into the resultant three PCA spaces (the top two
principal components). We used a two-sided Student’s t-test to assess
differences between patient groups for each top principal component.
PCA was conducted using Scanpy’s default settings, and the Student’s
t-test was conducted using Scipy’s implementation.

The supervised analysis (Fig. 6F, G) consisted of two parts. The
first part (Fig. 6F) involved supervised classification on the raw feature
space of the three patient representations, namely CT-fine repr, CT-
coarse repr, and MENDER repr. The second part (Fig. 6G) involved
supervised classification on the PCA-reduced (top 2~17 principal
components) feature space of the three patient representations. In the
first part, we employed aK-nearest-neighbor (KNN) classifier to classify
the three patient representations. We reported classification accuracy
(using sklearn.metrics.accuracy_score implementation) with fivefold
cross-validation. The results are displayed in Fig. 6F (left), where the
y-axis represents the KNN classification accuracy. The p-value was
calculated using Scipy’s implementation of the Student’s t-test. The
procedure for Fig. 6F (right) was similar to that for Fig. 6F (left), except
we substituted the KNN classifier with an SVM classifier. In the second
part (Fig. 6G), as in the first part, KNN and SVM classifiers were used to
evaluate the different patient representations. The difference was that
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Fig. 6G tested the PCA-reduced versions of the three representations.
Specifically, for Fig. 6G (top), the three representations were reduced
to k (2~17) top principal components, and for each k, we reported the
KNN classification accuracy using fivefold cross-validation. A similar
approach was taken for the SVM analysis (Fig. 6G, bottom).

Annotations
All domain annotations have been manually annotated in previously
published papers. The STARmap data was obtained from Ref. 34 and
manually annotated by Xiang Zhou’s group23, based on the Allen
referencemap and the gene expression patterns of the prelimbic area.
The data and annotation can be downloaded fromhttps://github.com/
zhengli09/BASS-Analysis/tree/master/data. The BaristaSeq data was
manually annotated by the SpaceTx Consortium14, which comprises 13
labs from 11 universities and institutes. The primary aim of the Con-
sortium is to provide data resources for benchmarking computational
methods in the field of spatial transcriptomics. The data and annota-
tions can be downloaded fromhttps://spacetx.github.io. TheMERFISH
data was annotated in their original study42. Every single slice was first
clustered into small patches based on gene expression and spatial
locations. These patches were thenmanuallymergedwith reference to
brain anatomical structures andknowngene expressions. Thedata and
annotations can be downloaded from https://cellxgene.cziscience.
com/collections/31937775-0602-4e52-a799-b6acdd2bac2e.

Running time
For all computational experiments, we used the Python library “time”
to record the running time. Each method’s data preprocessing step
was included in the duration, along with themain body of themethod.
For deep-learning methods (STAGATE), since the running time was
strongly related to the number of epochs, we set the epochs to 500 as
indicated in the tutorials. An increased number of epochs might bring
improved accuracy but increased running time.

Spatial signature analysis
Given the interpretability of MENDER, i.e., the representation vector
obtained by MENDER could be mapped to biological entities, such as
cell state and distances to the index cell. One can identify the spatial
differences of one domain (that is, a group of cells clustered by the
context representation) compared to another domain. To do this, we
employed theWilcoxon rank-sum test between two groups, found the
top 5 features for each domain with the highest scores (the score is
computed for each gene using both the p-value and expression levels,
implemented by SCANPY), and plotted as dot-plots in Fig. 5K. In the
dot-plot, each row represented a feature of the cell context repre-
sentation by MENDER, and the feature encodes two levels of infor-
mation, one is the cell state, and another is the distance range away
from the index cell (each range is a 15um radius ring centered at the
index cell). The dot plot then displayed the spatial signatures of every
spatial domain, so that one can observe what specific cell spatial
organization is associated with each domain.

Computational resource
CPU: Intel(R) Xeon(R) Gold 5218R CPU@ 2.10GHz 80 cores. Memory:
263724496 kB in total.

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. Randomization was achieved by
setting random seeds. The algorithm developer and the data analyzer
were the same person, so totally blinding was impossible.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. STARmap
Prelimbic area data: [https://github.com/zhengli09/BASS-Analysis/
tree/master/data]; BaristaSeq Visual cortex data: [https://spacetx.
github.io/data.html]; MERFISH Frontal cortex data: [https://
cellxgene.cziscience.com/collections/ 31937775-0602-4e52-a799-
b6acdd2bac2e]; MERSCOPE (Vizgen) Brain data: [https://info.vizgen.
com/mouse-brain-data]; ST Olfactory bulb data: [https://www.
spatialresearch.org/resources-published-datasets/]; Visium data:
[https://www.10xgenomics.com/resources/datasets]; Slide-seq data:
[https://singlecell.broadinstitute.org/single_cell/study/SCP815/
sensitive-spatial-genome-wide-expression-profiling-at-cellular-
resolution#study-summary]; Stereo-Seq data: [https://db.cngb.org/
stomics/datasets/STDS0000058]; osmFISH data: [http://
linnarssonlab.org/osmFISH/]; ExSeq data: [10.5281/zenodo.4075515];
STARmapPLUS data: [https://singlecell.broadinstitute.org/single_cell/
study/SCP1375]; Allen Reference Atlas: [https://mouse.brain-map.org/
experiment/thumbnails/100048576?image_type=atlas]; We also pro-
vide the benchmark datasets as h5ad format via SODB31, please find
how to load them in the tutorial [https://mender-tutorial.readthedocs.
io/en/latest/]. Source data are provided with this paper.

Code availability
The Python implementation of MENDER is available at Github [https://
github.com/yuanzhiyuan/MENDER] and Zenodo74. A tutorial on MEN-
DER package is also available at [https://mender-tutorial.readthedocs.
io/en/latest/].
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