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Abstract
Background: Obesity is a global issue with a major impact on cardiovascular health. 
This study explores how obesity influences nocturnal cardiac electrophysiology in 
suspected obstructive sleep apnea (OSA) patients.
Methods: We randomly selected 12 patients from each of the five World Health 
Organization body mass index (BMI) classifications groups (ntotal = 60) while keeping 
the group's age and sex matched. We evaluated 1965 nocturnal electrocardiography 
(ECG) samples (10 s) using modified lead II recorded during normal saturation condi-
tions. R-wave peaks were detected and confirmed using dedicated software, with the 
exclusion of ventricular extrasystoles and artifacts. The duration of waves and inter-
vals was manually marked. The average electric potential graphs were computed for 
each segment. Thresholds for abnormal ECG waveforms were P-wave > 120 ms, PQ 
interval > 200 ms, QRS complex > 120 ms for, and QTc > 440 ms.
Results: Obesity was significantly (p < .05) associated with prolonged conduction 
times. Compared to the normal weight (18.5 ≤ BMI < 25) group, the morbidly obese 
patients (BMI ≥ 40) had a significantly longer P-wave duration (101.7 vs. 117.2 ms), 
PQ interval (175.8 vs. 198.0 ms), QRS interval (89.9 vs. 97.7 ms), and QTc interval 
(402.8 vs. 421.2 ms). We further examined ECG waveform prolongations related to 
BMI. Compared to other patient groups, the morbidly obese patients had the highest 
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1  |  INTRODUC TION

Obesity has become a major public health hazard with an epidemic 
proportion. Obesity is associated with many cardiovascular comor-
bidities, such as coronary artery disease (CAD) and sudden cardiac 
death (SCD) (Hubert et  al.,  1983). Furthermore, obesity and ob-
structive sleep apnea (OSA) are closely related. It is well known that 
obesity predisposes to OSA (Schwartz et al., 2008), which further 
exacerbates the cardiovascular consequences of obesity (Drager 
et al., 2013) and is an independent risk factor for cardiovascular dis-
eases and SCD (Gami et al., 2013).

The pathophysiological cascade between OSA, obesity, and 
cardiovascular disease is multifactorial and partly unknown. In 
obese patients, upper airway collapsibility is often increased by 
underlying anatomic alterations and disturbances in upper air-
way neuromuscular control (Schwartz et  al.,  2008). This causes 
intermittent hypoxia and hypercapnia and upregulates the sym-
pathetic nervous system, which is associated with increased 
cardiovascular morbidity (Malpas,  2010) and weight regulation 
(Guarino et al., 2017). The perivascular fat appears to be a source 
of pro-inflammatory and vasoactive factors that may contribute 
to endothelial and smooth muscle cell dysfunction and the patho-
genesis of vascular diseases (Campia et  al.,  2012). Respiratory 
events cause pleural pressure swings, increasing heart rate, and 
blood pressure which can further lead to cardiopulmonary hyper-
reactivity to hypoxia, and cardiac anatomical remodeling (Sajkov 
& McEvoy,  2009). Moreover, obesity itself can result in cardiac 
remodeling, increased profibrotic stage, change in presentation 
of ion channels, leads to fibrosis, and predispose to arrhythmias 
(Mahajan et al., 2015; McCauley et al., 2020). The intrathoracic ad-
ipose tissue, comprising both mediastinal and epicardial elements, 
is situated adjacent to the heart and has the potential to infiltrate 
into the myocardium (Anumonwo & Herron, 2018). Research in-
dicates a correlation between the quantity of pericardial adipose 
tissue and unfavorable LV remodeling as well as an adverse car-
diovascular disease prognosis (Shah et al., 2017). Earlier research 
has also shown a connection between OSA and deviations in elec-
trocardiography (ECG) waveform changes (Can et al., 2009; Gupta 
et  al.,  2012; Shi & Jiang,  2020). Collectively, these interrelated 
health conditions may increase the risk of conduction abnormali-
ties and arrhythmias.

In this study, we investigate whether a higher body mass index 
(BMI) is associated with prolonged conduction times (P-wave, PQ 
interval, QRS complex, and QTc interval) in suspected OSA patients. 
We hypothesized that the degree of obesity correlates with ECG 
conduction abnormalities in suspected OSA patients. This informa-
tion might help in understanding the complex interplay between 
obesity, OSA, and cardiovascular disease.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

The dataset used in this study involved (n = 916) consecutive 
patients with suspected OSA. All patients had undergone full 
diagnostic polysomnography (PSG) at the Princess Alexandra 
Hospital (Brisbane, Australia) during 2015–2017. The PSG data 
were acquired with the Compumedics Grael acquisition system 
(Compumedics, Abbotsford, Australia). Approval for retrospective 
data collection was given by the Institutional Human Research 
Ethics Committee of the Princess Alexandra Hospital (HREC/16/
QPAH/021 and LNR/2019/QMS/54313). Due to the retrospec-
tive nature of the study, no informed consent was needed from 
the patients according to the Metro South Human Research Ethics 
Committee.

Only patients with a total sleep time of ≥4 h in the PSG and 
without cardiac pacemakers were included. Patients were further 
divided into five groups (each n = 12) according to the World Health 
Organization BMI classification: normal weight (NW) group defined 
as 18.5 ≤ BMI < 25, preobesity (PO) group as 25 ≤ BMI < 30, a moder-
ately obese group I (OGI) defined as 30 ≤ BMI < 35, severally obese 
group II (OGII) defined as 35 ≤ BMI < 40, and morbidly obese group III 
(OGIII) defined as BMI≥40 (WHO, 2000). After that, we sex and age 
matched the patients, and randomly selected 12 patients from the 
five different BMI groups.

2.2  |  PSG analysis

The PSG recordings were scored manually following the prevalent 
American Academy of Sleep Medicine guidelines (Berry et al., 2012). 

number of ECG segments with PQ interval (44% of the ECG samples), QRS duration 
(14%), and QTc duration (20%) above the normal limits.
Conclusions: Morbid obesity predisposes patients to prolongation of cardiac conduc-
tion times. This might increase the risk of arrhythmias, stroke, and even sudden car-
diac death.

K E Y W O R D S
body mass index, electrocardiogram, interval duration, obesity, obstructive sleep apnea, wave 
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The scoring was performed by experienced sleep technicians in 
Princess Alexandra Hospital using Compumedics ProFusion PSG4 
software (Compumedics). The scoring process has been described in 
more detail in a previous publication (Duce et al., 2016). The detailed 
information of each desaturation (e.g. start time and endpoint) was 
exported from ProFusion to Matlab (ver R2019b; Mathworks). All 
scored desaturations in which the patient was awake were excluded.

2.3  |  ECG analysis

The patients had a total of 4571 baseline (pre-desaturation) ECG seg-
ments. Nocturnal ECGs (modified lead II) were recorded during the 
diagnostic PSG study, with a sampling frequency of 256 Hz. First, we 
excluded ECG segments originating less than 25 s after the end of the 
previous desaturation to avoid the possible influence of desatura-
tion on the ECG (Sillanmäki et al., 2022). Second, 10-s ECG segments 
preceding desaturations events were extracted from the noctur-
nal ECG recording. After exclusions, a total of 1965 ECG segments 
were included in the further analysis. Peaks of the R-waves were de-
tected using Kubios HRV Premium software (Kubios Oy) (Tarvainen 
et al., 2014), and detections were verified visually and manually cor-
rected when necessary. Ventricular extrasystoles were excluded from 
the analyses by the software. After that, an average graph of electric 
potential during the ECG complex was computed for each 10-s seg-
ment and the duration of each wave and interval was manually marked 
(Sillanmäki et al., 2022). The T-wave endpoint was visually identified as 
an intersection between a tangent of the steepest part of the wave and 
the baseline and marked for each segment. The parameters studied 
were P-wave, PQ interval, QRS complex, and QTc interval. The heart 
rate corrected QT (QTc) intervals were calculated according to Bazett's 
formula (Bazett, 1997). The prevalence of prolonged ECG waveforms 
in different BMI groups was further studied. The upper normal thresh-
olds for ECG waveform durations were 120 ms for P-wave, 200 ms 
for PQ interval, 120 ms for QRS complex, and 440 ms for QTc interval 
(Kusumoto et al., 2019; Rautaharju et al., 2009).

2.4  |  Statistical analysis

The statistical significance of the differences between BMI groups was 
evaluated with the Wilcoxon rank-sum test, Wilcoxon signed rank-sum 
test, and chi-squared test. The limit for statistical significance was set 
to be p < .05 when comparing the PSG characteristics and prevalence of 
ECG waveform threshold exceedings. As every BMI category consists 
of samples from the same patients, the statistical significance of the 
difference between group medians was evaluated with the Wilcoxon 
signed-rank test. Moreover, as the categories contain a different num-
ber of samples and the Signed-rank works in a pair-wise manner, a total 
of 5000 iterations over all possible random permutations of the groups 
was conducted. This results in 5000 different p-values, and the median 
p-value was chosen to indicate the statistical significance. A p < .01 
was set as a threshold based on Bonferroni correction to compensate 

multiple comparisons. Matlab 2019b (Mathworks Inc.) was used for the 
statistical analysis. The data are presented as means and cumulative 
distributions.

3  |  RESULTS

Demographic information about the population is presented in Table 1. 
There were no statistically significant differences in PSG results be-
tween BMI groups (Table 1). The OGIII patients seemed to have more 
apnea/hypopnea-related findings compared to the NW group, yet the 
difference was not statistically significant. Even though the median 
apnea-hypopnea index was the highest in the OGII group, the OGIII 
group was more hypoxemic based on the desaturation severity.

In the OGIII group (consisting of morbidly obese patients), the me-
dians of RR interval and all ECG waveform durations were significantly 
longer compared to the NW group (Table 2). The median RR interval 
in the OGIII group was longer compared to the NW group (905 vs. 
844 ms, p < .01), respectively. The median P-wave duration of the OGIII 
group was 15.5 ms (15.2%) longer compared to the NW group (Table 2). 
The median PQ interval of the OGIII group was 22.2 ms (12.6%) lon-
ger compared to the NW group (Table 2). The difference between the 
OGIII group and other groups was prominent above the lower quar-
tiles in the distribution chart (Figure 1b). The median QRS interval of 
the OGIII group was 7.8 ms (8.7%) longer compared to the NW group 
(Table 3). The difference between the OGIII group and other groups 
was the most prominent in the upper quartile (Figure 1c). The median 
QTc interval of the OGIII group was 18.4 ms (4.6%) longer compared 
to the NW group. Additionally, the median QTc interval of the OGII 
group was 15.0 ms (3.7%) longer compared to the NW group (Table 2). 
The differences between the groups were the most substantial in the 
interquartile range and disappeared at the extremes (Figure 1d).

We found that the OGIII group showed the most exceedings 
over normal threshold levels (Figure  1 and Table  3). Among OGIII 
patients, the PQ interval was prolonged in 44.0% of ECG samples, 
while in NW patients the prevalence of prolonged PQ interval sam-
ples was 4.7% (Table 3). Similarly, the QRS duration was prolonged 
in 13.6% of the OGIII samples, but no normal threshold exceeding 
durations over the threshold was seen in the NW group. The QTc 
duration was over the threshold in 20.2% of OGIII samples, and in 
the NW group, 14.0% of samples exceeded the threshold (Table 3). 
The P-wave threshold was exceeded in 39.9% of the NW group's 
ECG samples, while in OGIII 36.0% of samples were over the thresh-
old (Table 3).

4  |  DISCUSSION

4.1  |  Principal findings

In this study, we investigated the impact of obesity on cardiac 
conduction in patients with suspected OSA. We observed signifi-
cant differences in conduction times between normal weight and 
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morbidly obese patients across various ECG parameters. However, 
the differences were less pronounced among less obese patients.

4.2  |  ECG changes in the context of the 
current literature

We discovered that higher BMI was associated with longer P-wave 
duration and longer PQ interval in suspect OSA patients. Moreover, 
the prevalence of first-degree atrioventricular block (PQ inter-
val > 200 ms) seems to increase with BMI. The incidence of pro-
longed AV conduction was 4.7% in the NW group, whereas in the 
morbidly obese group, it was notably higher at 44%. This finding is 
in line with a previous study showing a link between BMI and the 
prevalence of AV block (Shan et al., 2021). The finding has clinical 

significance due to the established association between prolonged 
PQ intervals and an elevated risk of atrial fibrillation and even higher 
mortality rates (Shan et al., 2021). However, the association can be 
multifactorial since also age and gender can affect the risk (Gaisl 
et al., 2016; Maeno et al., 2013; Shan et al., 2021). Moreover, a pre-
vious study has shown that P-wave abnormalities are associated 
with OSA (Can et al., 2009), and simulated apneas cause acute pro-
longation of P-wave duration even in the healthy population (Gaisl 
et al., 2016; Maeno et al., 2013).

In earlier investigations, QRS prolongation is shown to be rela-
tively prevalent in OSA patients (Gupta et al., 2012). In our study, 
we found that intraventricular conduction duration (the mean 
QRS interval) was longer in morbidly obese patients compared to 
the normal-weight population, and the number of prolonged QRS 
samples is higher in obese patients. This implies a relationship 

TA B L E  1 Clinical demographic and PSG (polysomnography) characteristics in different body mass index groups.

Normal weight Preobesity OCI OCII OCIII

Clinical characteristics

COPD 0 (0) 0 (0) 2 (16.7) 0 (0) 0 (0)

Depression 2 (16.7) 2 (16.7) 1 (8.3) 4 (33.3) 4 (33.3)

Dyslipidemia 0 (0) 1 (8.3) 5 (41.6) 3 (25) 3 (25)

Hypertension 2 (16.7) 2 (16.7) 5 (41.6) 2 (16.7) 7 (58.3)

Hypothyroidism 0 (0) 4 (33.3) 0 (0) 2 (16.7) 0 (0)

Previous atrial arrhythmia 0 (0) 0 (0) 0 (0) 0 (0) 1 (8.3)

Smoker 2 (16.7) 2 (16.7) 1 (8.3) 2 (16.7) 3 (25)

Type II diabetes 1 (8.3) 0 (0) 3 (25) 1 (8.3) 5 (41.6)

PSG results

AHI (1/h) 10.1 (4.4–18.4) 5.0 (3.1–11.8) 14.6 (6.1–33.4) 17.2 (6.3–28.7) 15.7 (9.3–33.3)

Arousal index (1/h) 23.3 (17.5–33.3) 18.3 (11.6–26.3) 25.4 (13.5–30.6) 27.4 (18.3–40.5) 21.3 (16.7–26.9)

Desaturation severity (%) 0.07 (0.02–0.11) 0.03 (0.02–0.05) 0.34 (0.08–0.55) 0.15 (0.05–0.51) 0.36 (0.11–1.00)

ODI (1/h) 3.3 (1.2–5.2) 1.4 (1.1–2.5) 13.2 (3.5–27.1) 8.3 (2.7–18.6) 16.0 (6.6–20.3)

TST (h) 5.9 (4.6–6.6) 5.9 (5.3–6.4) 5.7 (5.4–6.8) 5.2 (4.5–5.6) 5.9 (5.7–6.1)

t90% (s) 31.8 (8.1–60.8) 17.9 (3.7–144.3) 111.3 (48.7–495.7) 76.7 (8.7–545.6) 239.4 
(37.4–2667.0)

Note: Values are presented as number (%) or median (interquartile range; IQR) where appropriate.
Abbreviations: COPD, chronic obstructive pulmonary disease; ODI, oxygen desaturation index; PSG, polysomnography; t90%, time with oxygen 
saturation below 90%; TST, total sleep time.

TA B L E  2 Electrocardiography characteristics in different body mass index groups.

Normal weight Preobesity OCI OCII OCIII

RR interval (ms) 844.1 (784.8–913.9) 828.3 (792.1–881.8) 962.1 (836.2–1026.0) 887.0 (776.8–990.5) 904.9 (811.0–1080.6)

P-wave duration (ms) 101.7 (85.9–125.6) 109.4 (101.6–115.7) 109.4 (98.1–114.3) 109.4 (99.4–118.2) 117.2 (101.6–129.4)

PQ interval (ms) 175.8 (152.3–183.6) 155.5 (148.4–171.9) 171.9 (160.2–184.4) 171.9 (152.3–191.4) 198.0 (179.6–234.4)

QRS interval (ms) 89.9 (78.1–101.6) 85.9 (78.1–93.8) 88.5 (82.0–98.5) 89.8 (82.0–101.3) 97.7 (85.9–109.4)

QT interval (ms) 375.0 (359.4–398.4) 359.4 (351.6–390.6) 398.4 (386.7–406.3) 402.3 (343.8–421.9) 398.4 (378.9–425.8)

QTc interval (ms) 402.8 (394.2–411.2) 399.5 (384.4–415.2) 404.7 (391.8–425.4) 417.8 (403.9–428.5) 421.2 (402.4–436.8)

Note: Values are presented as median (interquartile range). The bolded value indicates a significantly (p < .01) larger median compared to the normal 
weight group.
Abbreviations: OCI, obesity class I; OCII, obesity class II; OCIII, obesity class III.
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between obesity and modifications in cardiac electrical conduc-
tion that go beyond the impact solely attributed to OSA. The QRS 
prolongation might stem, at least in part, from analogous fac-
tors akin to those noted in AV block, such as cardiac remodeling, 
among others. Sobhani et al. recently showed that not only BMI 
but also hypertension and increased lipide levels were associated 
with prolonged QRS duration (Sobhani et al., 2022). Furthermore, 
both obesity and OSA are known to associate with ventricular hy-
pertrophy (LVH) (Cuspidi et  al., 2014; Noda et  al.,  1995), which 

itself is connected with QRS prolongation. LVH is further asso-
ciated with an increased prevalence of heart failure, lethal ven-
tricular arrhythmias, and even SCD (Cavalera et al., 2014; Cuspidi 
et al., 2014; Kahan & Bergfeldt, 2005). Hence, the prolonged QRS 
duration observed in morbidly obese patients might indirectly 
point toward increased myocardial fibrosis, fatty infiltration of the 
myocardium, and LV wall thickening.

The QT interval reflects the total duration of ventricular myocar-
dial depolarization and repolarization. Several studies have explored 

F I G U R E  1 Cumulative distributions of 
baseline electrocardiogram waveforms 
for different body mass index groups. (a) 
P-wave duration, (b) PQ intervals, (c) QT 
intervals, and (d) QTc intervals.

Normal 
weight % (n)

Preobesity 
% (n) OCI % (n)

OCII % 
(n) OCIII % (n)

P-wave duration
>120 ms

39.9 (103) 19.8 (48)a 12.4 (65)a 15.2 (62)a 36.0 (193)

Prolonged PQ interval
>200 ms

4.7 (12) 0 (0)a 14.9 (78)a 15.3 (62)a 44.0 (236)a

Prolonged QRS
110–119 ms

0 (0) 1.7 (4)a 0.7 (4) 11.3 (46)a 7.3 (39)a

Prolonged QRS
≥120 ms

0 (0) 0 (0) 0 (0) 3.5 (14)a 13.6 (73)a

Prolonged QTc
≥440 ms

14.0 (36) 6.6 (16)a 13.8 (72) 11.8 (48) 20.2 (108)a

Note: Statistical significance of differences was assessed using chi-squared test. A bolded value 
indicates a significant (p < .05) difference with all groups.
Abbreviations: ECG, electrocardiography; OCI, obesity class I; OCII, obesity class II; OCIII, obesity 
class III.
aSignificant difference between the corresponding group and normal weight group.

TA B L E  3 Prevalence on prolonged ECG 
waveforms in different body mass index 
(BMI) classes.
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the correlation between repolarization parameters and diverse 
cardiac conditions. For example, QT dispersion (QTd), which mea-
sures the variation in recovery time across different regions of the 
heart, has been found to correlate with the severity of CAD (Helmy 
et al., 2017). Furthermore, the QT interval length itself is found to 
be independently associated with the emergence of malignant ven-
tricular arrhythmias in patients with CAD (de Carvalho et al., 2022). 
De Carvalho et  al. showed a 7% rise in malignant ventricular ar-
rhythmias for every 10 ms increase in the QT interval (de Carvalho 
et al., 2022). Most notably, both prolonged QTc and heightened QTd 
serve as significant predictors of overall and cardiovascular mortal-
ity, likely attributed to an increased susceptibility to arrhythmias. 
(Okin et al., 2000). Interestingly, it has been established in previous 
research that delays in repolarization are seen also in OSA patients 
(Shi & Jiang, 2020). In morbidly obese patients, the median QTc du-
ration was found to be nearly 20 ms longer than in the normal weight 
group. Consequently, individuals afflicted by morbid obesity might 
encounter a heightened health risk in comparison to those with a 
normal weight. Interestingly, this phenomenon appears to be re-
versible, at least to some extent, as weight loss has been shown to 
be associated with a shortening of the QTc interval (Papaioannou 
et al., 2004).

4.3  |  Potential mechanisms

The mechanisms driving electrophysiological changes associated 
with obesity encompass a range of factors. Both obesity and 
OSA can disturb the autonomic nervous system, characterized by 
heightened sympathetic activity and diminished parasympathetic 
tone may impact ECG (Guarino et al., 2017). Additionally, obesity 
exerts mechanical stress on the heart, which lead to structural 
adaptations such as hypertrophy and changes in cardiac mechan-
ics. For example, obesity is associated with left atrial enlargement 
that leads also changes in electrophysiology (Lin et al., 2011; Wang 
et al., 2004). The presence of oxidative stress and mitochondrial 
dysfunction within the context of obesity may further disrupt 
intracellular signaling pathways that hold relevance for cardiac 
electrophysiology (Cojocaru et  al.,  2023). It is also known that 
obesity-related chronic inflammation predisposes to myocardial 
fibrosis (Cavalera et al., 2014). The fibrotic remodeling alters the 
heart's microstructure and disrupts the normal electrical path-
ways, thereby resulting in prolonged conduction (Verheule & 
Schotten, 2021). The presence of excessive adipose tissue around 
the heart and infiltrating the myocardium may influence the prop-
agation of electrical signals across the cardiac system (Anumonwo 
& Herron, 2018). Moreover, morbidly obese individuals may have 
comorbidities requiring medications, some of which, such as cer-
tain antiarrhythmics and antidepressants, have the potential to 
prolong the QT interval (Van Noord et  al.,  2010). Furthermore, 
obesity-related metabolic disturbances can lead to electrolyte im-
balances, further contributing to the prolongation of the repolari-
zation (Van Noord et al., 2010).

4.4  |  Strengths and limitations

Our research sets itself apart from numerous prior studies that re-
lied on isolated ECG recordings. In our study, we explore multiple 
time points and various ECG parameters associated with cardiac 
conduction. This approach provides a comprehensive evaluation 
over an extended duration, capturing potential changes not ap-
parent during waking hours. Analyzing ECG samples during sleep 
further offers information under real-life conditions, free from 
the potential influence of stress or other factors present during 
awake ECG recordings. Furthermore, we combined research fo-
cusing on both OSA and obesity. For this reason, these findings 
have potential implications for improving risk assessment within 
this particular patient cohort. Moreover, it is worth noting that 
several studies on OSA tend to focus solely on male participants. 
In our study, both sexes were included. However, it is important 
to acknowledge certain limitations within our study. Both OSA 
and obesity are associated with other comorbidities and cardio-
vascular disease risk factors, including diabetes, hypertension, and 
dyslipidemia. These underlying conditions might influence the re-
sults. Moreover, the ECG samples were relatively short (10 s). The 
segment duration was selected as a compromise between a suffi-
ciently long segment to obtain a reliable representation and to not 
exclude too many samples in patients with frequent desaturations. 
The ECGs of some samples were subject to interpretation because 
of the power line interference that had not been corrected by the 
recorder. Additionally, we only compared the groups with the nor-
mal weight group. No further statistical comparisons were made 
between OP, OGI, and OGII patients. This, though, should not be 
a big defect as the medians of other groups were positioned most 
in the middle of the medians of the NW group and OGIII group. 
Furthermore, the relatively small number of subjects in each BMI 
group is a limitation of this study. This limitation arises from the 
retrospective nature of our study design, which presented chal-
lenges in forming matched groups based on age and sex. Yet, our 
study advances beyond previous research on obesity and cardi-
ovascular changes by focusing on specific ECG wavelength and 
interval alterations in morbidly obese patients. ECG segments 
that coincided with nocturnal desaturations were excluded from 
the study. This decision was made because previous research has 
established that nocturnal desaturations can influence the ECG 
(Sillanmäki et al., 2022). By excluding these segments, the study 
aims to focus solely on the impact of obesity on ECG waveform 
and interval alterations, without the potential confounding effects 
of desaturations. While acknowledging limitations, our study con-
tributes valuable insights into the intricate relationship between 
OSA, obesity, and cardiovascular health.

5  |  CONCLUSIONS

We found that morbid obesity is especially associated with pro-
longed conduction times. This predisposes obese patients to 
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cardiac conduction disorders and possibly also to arrhythmias. The 
mechanisms underlying the development of electrophysiological 
changes in morbidly obese patients are complex and multifactorial. 
Understanding these mechanisms is crucial for improved risk assess-
ment and the development of targeted interventions to mitigate the 
cardiac consequences of obesity in clinical practice.
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