
Article https://doi.org/10.1038/s41467-023-44629-6

Diffusion-based generative AI for exploring
transition states from 2D molecular graphs

Seonghwan Kim 1,3, Jeheon Woo 1,3 & Woo Youn Kim 1,2

The exploration of transition state (TS) geometries is crucial for elucidating
chemical reactionmechanisms andmodeling their kinetics. Recently, machine
learning (ML) models have shown remarkable performance for prediction of
TS geometries. However, they require 3D conformations of reactants and
products often with their appropriate orientations as input, which demands
substantial efforts and computational cost. Here, we propose a generative
approach based on the stochastic diffusion method, namely TSDiff, for pre-
diction of TS geometries just from 2D molecular graphs. TSDiff outperforms
the existing ML models with 3D geometries in terms of both accuracy and
efficiency. Moreover, it enables to sample various TS conformations, because
it learns the distribution of TS geometries for diverse reactions in training.
Thus, TSDifffindsmore favorable reaction pathwayswith lower barrier heights
than those in the reference database. These results demonstrate that TSDiff
shows promising potential for an efficient and reliable TS exploration.

A transition state (TS) refers to a transient molecular configuration that
places on top of the energy barrier that reactants pass through the
minimum energy path to reach products, corresponding to the saddle
point on the potential energy surface (PES). Identifying TSs is an
important task in chemical reaction analysis, such as kinetics
modeling1–4, mechanism studies5–12, and catalyst design13–16. Although TS
geometries are difficult to observe experimentally due to their transient
nature, they can be obtained using quantum chemical calculation
methods.Over thepast decades, a variety of TSoptimization techniques
have been developed and applied to many chemical reactions, thereby
providing insights into diverse chemical phenomena16–22.

TS optimization methods have two primary categories: single-
ended20–22 and double-ended methods19,23–27 depending on input types.
The former relies on a single set of the 3D geometries of reactants or
estimated TSs. One example is the Berny algorithm20 which optimizes a
given TS guess geometry to the saddle point of the PES using the local
surface information of atomic forces and a Hessian. Most single-ended
approaches start from the 3D geometries of reactants, such as artificial
force-induced reaction (AFIR)28, anharmonic downward distortion fol-
lowing (ADDF)29, and single-ended growing string methods (GSMs)19.
The double-endedmethods utilize the 3D geometries of both reactants
andproducts. For example, thenudgedelastic band23 anddouble-ended

GSMs24–26 first search the minimum energy pathway connecting the
reactants and products and then identify themaximumenergy point on
that pathway. While these conventional methods are widely used in
practice, they entail large computational cost and often convergence
issues, making TS exploration a considerably demanding task.

Recently, there has been a growing interest in using machine
learning (ML)methods to investigate the TSs, with the aim ofmitigating
the high cost of conventional methods. For example, numerous studies
havebeen conducted todirectly estimatebarrier heights4,30–36. However,
we here focus on the prediction of TS geometries32,37–41, since it provides
atomistic insights into reaction mechanisms and allows the refinement
and validation of the predicted TS via post quantum chemical calcula-
tions. In the past few years, several ML models have been proposed to
accurately predict TS geometries by leveraging the 3D geometries of
reactants and products as input, like the double-ended methods32,37–41.
The validity of these models was demonstrated with density functional
theory (DFT) calculations. Meanwhile, as a concurrent work of this
study, Duan et al. developed a diffusion model, OA-ReactDiff42, to pre-
dict the highest energy image of the DFT-based climbing image NEB,
also with the double-ended approach using the reactant and product
geometries. These existing models have exhibited promising results on
a general gas-phase reaction database43 as well as specific reaction
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categories, such as SN2 and hydrogen transfer reactions, indicating their
potential to complement expensive quantum chemical calculations.
Despite their remarkable achievements, it should be noted that they still
requirewell-aligned reactant andproduct geometries along the reaction
coordinates.

Both the conventional and ML approaches need an appropriate
input preparation for 3D molecular geometries. However, it is well
known that the results of the conventional approaches are sensitive to
the input structures25,26,44,45. The ML approaches also take the 3D con-
formations of reactants and products as input. Thus, it is inevitable for
them to share the same input sensitivity issue. As pointed out by
numerous studies, ML models using 3D molecular geometries as input
are known to be input sensitive across various fields31,46,47. In the TS
prediction task, Choi40 shows that perturbations to the input geometries
can result in a different TS geometry. Therefore, in practical applica-
tions, the input preparation becomes an important procedure affecting
the quality of prediction results. To obtain an appropriate input, the
molecular orientation should be considered along the target reaction
coordinates, which requires careful consideration even by professional
chemists. Moreover, it is necessary to explore possible TS conforma-
tions to elucidate themost favorable reactionpathway48–50,whichmakes
the preparation task more demanding to cope with various
conformations.

To address this problem, we present TSDiff, an ML model that
learns a direct mapping between TS conformations and 2D molecular
graphs. Thus, one can skip the proper selection of conformations and
orientations. Moreover, TSDiff can generate various TS conformations
possible from the 2D graph with high reliability by employing the sto-
chastic diffusion method which has been used to generate molecular
conformers in equilibrium51–53. Consequently, TSDiff can minimize user
efforts throughout the entire TS generation process and explore mul-
tiple reaction pathways without the direct consideration of conforma-
tions, leading to high efficiency.

In this study, the performance of TSDiff was evaluated using
Grambow’s dataset43, a set of diverse gas-phase organic reactions gen-
erated with the single-ended GSM, where reactant molecules were
sampled from GDB-7 to cover reactions involving possible bond chan-
ges among C, H, O, and N atoms. Despite its simplified input of 2D
graphs, TSDiff has achieved the highest accuracy compared to the
existing methods that rely on 3D geometric information. The validity of
the multiple TS conformations generated by TSDiff was verified by
quantum chemical calculations based on DFT. First, saddle point
optimization20 was performed on the generated geometries to obtain
the TS geometries with a single imaginary vibrational frequency. The
intrinsic reaction coordinate (IRC) calculation54 was followed to validate
that TS geometries correspond to the given graphically defined reac-
tion. The detailed validation methodology is provided in the Compu-
tational details section. TSDiff achieved a significantly high success rate
of 90.6% in this validation, showing its reliability as an initial TS geo-
metry guesser. Based on these results, we expect that TSDiff can greatly
alleviate the time-consuming trial-and-error procedures of TS explora-
tion. We also found 2303 new TS conformations at saddle points other
than the reference using TSDiff with eight rounds of sampling for 1197
reactions in the test set. Some of these corresponded to lower barrier
heights than those of the references, suggesting more favorable reac-
tionpathways. It isworthnoting that TSDiffwas trainedwithonlyoneTS
conformation for each reaction, underscoring its generative power in
this context. Overall, our findings demonstrate the potential of TSDiff as
a promising approach for efficient and reliable TS exploration.

Results
A brief description of the generation process
In this section, we provide a brief overview of TSDiff, an ML model
designed to learn the conditional distribution of 3D TS geometries
given 2D reaction information presented as SMARTS55 (see Fig. 1a).

TSDiff is based on the stochastic denoising diffusion method, where
themodel is trained to learn the reverse process of a noise process that
adds a randomnoise to the given geometry at each discrete time step.
At the inference phase, TS geometries are generated from an initial
state with a complete noise through the iterative denoising process,
where the noisy input is gradually refined by the denoising neural
network at each time step, given the 2D reaction information
(see Fig. 1b).

The input of the model is 2D reaction information expressed as
a reaction graph Grxn which captures the bond changes in reactants
and products56. The simplified version of the reaction graph is
depicted in the left box of Fig. 1a. Molecular graphs for reactants
and products, GR and GP , can be constructed based on bond and
atom information that can be obtained from SMILES57. The nodes in
the graph are represented as atom-feature vectors containing
atomic numbers. For the edges, the molecular graphs utilize
extended graph edges that include node-pair indices within a 3-hop
graph distance in the raw graph created based on covalent bonds.
The condensed reaction graph, which serves as our model input, is
formed by combining the two graphs of reactants and products
using atom-mapping information.

TSDiff employs graph neural network (GNN) layers based on
SchNet58 for its denoising neural network to handle the noisy posi-
tions and reaction graphs. The construction of a geometric reaction
graph involves adding the noisy positions to the 2D reaction graph
and connecting nodes with interatomic distances smaller than a
specified cutoff radius. This process integrates bond information,
graph distance information, and spatial distance information as
edge-features in the geometric graph. Subsequently, the model
leverages these geometric reaction graphs to approximate a score
function, a gradient of log-likelihood for noisy TS conformations,
which is applied to denoising by updating the noisy positions
toward the correct TS geometry. More details are described in the
TSDiff section.

The proposed TSDiff was trained and validated using the gen-
eral organic gas-phase reaction database published by Grambow
et al.43. We employed an ensemble with a total of eight models, and
our training process took 22 h for each model on a single RTX 2080
Ti NVIDIA GPU. For most results reported in the following sections,
we used the ensemble model and will refer to it as TSDiff unless
otherwise noted. Diffusion models entail higher inference costs
compared to other deep learning models, mainly due to their
iterative denoising process. Specifically, TSDiff requires 5000
denoising steps for inference, which takes a few seconds per reac-
tion. However, this cost is negligible compared to DFT calculations
for TS optimization.

Generation of TS conformations
We emphasize that TSDiff is a stochastic generativemodel, implying
that different geometries are generated at each sampling. Figure 2
depicts a conceptual representation of TSDiff’s predictive dis-
tribution. The different geometries generated by TSDiff correspond
to specific TS conformations that can be built from the same 2D
reaction graph. For example, Fig. 3 shows several generated geo-
metries corresponding to specific conformations and reference
geometries for three reactions in the test set. This is an inherent
outcome because TSDiff uses only 2D graphs as input. Also, the
reference TS would be one of various TS conformations identified
by a specific computational method. Therefore, it is essential to
consider diverse conformations and the comparative analysis of
their barrier heights in the TS exploration process in order to
identify the most favorable reaction pathway. Thanks to the nature
of generative AI, TSDiff learns the distribution of TS geometries for
diverse reactions in training, facilitating the reliable sampling of
these different TS conformations.
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The various conformations generated by TSDiff need to be verified
to ensure that they are indeed chemically valid TSs. As an example, we
performed quantum chemical validation on a single test reaction. First,
TSDiff generated one hundred samples for this reaction, which were
then optimized using a saddle point optimization. Figure 4 visualizes
the distribution of the generated geometries using t-distributed sto-
chastic neighbor embedding (t-SNE)59 in scikit-learn60. Each dot in the
figure represents a generatedgeometry,while the star andcross-shaped
dots indicate the optimized and reference geometries, respectively. In
addition, each dot has been color-coded to reflect its respective opti-
mization result. For example, all generated geometries represented by
the blue dots were optimized to the geometry represented by the blue
star-shaped dot via the saddle point optimization.

All one hundred generated geometries were successfully opti-
mized to saddle points, resulting in nine different TS conformations.
The images on the right side of Fig. 4 show the optimized conforma-
tions. On the t-SNE projection map, it is evident that similar

conformations tend to cluster together and be closely located to their
respective optimized results. This character of the generated samples
suggests that an efficient search for TS conformations is possible
without having to perform quantum chemical calculations on the
entire generated samples. Many clustering algorithms are already
available, offering an effective means to select representative con-
formation samples. We also present an illustrative experiment in
the Supplementary Discussion, showcasing the practical application of
a clustering algorithm in TS exploration using TSDiff.

The nine different conformations were caused by two rotatable
single bonds closest to oxygen, C–C and C–O. There were three major
conformational changes with different dihedral angles centered on the
C–C bond, and for each there were three minor conformations with
different dihedral angles centered on the C–O bond, resulting in a total
of nine different conformations. Here, the accuracy of the generated
geometries was measured by the mean absolute error (MAE) of
interatomic distances, D–MAE, with respect to their corresponding
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Fig. 1 | Overviewof the proposed TSDiff. a Illustration of the reaction graph (Grxn)
and the denoising network. Themolecular graphs of the reactants (R) and products
(P), denoted GR and GP respectively, are constructed from the SMARTS repre-
sentation of the reaction. Then, the condensed graph Grxn is formed using the node
vectors (V) and edge vectors (E) obtained from them. The denoising network

denoises a given geometry input based on Grxn. b Transition state (TS) generation
procedure of the proposed TSDiff. Starting from a randomly initialized geometry,
the geometry is progressively refined by the denoising network until reaching a
predicted TS geometry. All molecular geometries were plotted using PyMOL71.
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optimized results. A detailedmethod formeasuring theD–MAE is given
in the Measurement details section. The resulting average D–MAE was
very small at 0.045 Å, indicating that the generated samples were
optimized to the respective saddle points with onlyminor adjustments.

The resulting optimized geometries were all confirmed as valid TS
geometries using IRC calculations. A detailed description of the IRC
and validation method is provided in the Computational details sec-
tion. This result indicates that TSDiff can find not only a conformation
that corresponds to the reference geometry but also other valid TS
conformations. Interestingly, the discovered TS conformations
include TSs with lower barrier heights than that of the reference, as
shown in Fig. 4, where the barrier heights were calculated with the
energy difference between the optimized TSs and the reference

reactants. This proves that the reference TS may not be the most
favorable one, even though itwasbuilt using themost stablemolecular
conformation of the reactants43, highlighting the importance of
exploringmultiple TS conformations. As a result, we demonstrate that
the stochastic diffusion model, which has already shown its capability
of accurately generating conformers in equilibrium, can be extended
to TS explorations.

Performance of TS generation
From the perspective of a generative AI, it is important to evaluate the
ability of TSDiff to generate samples that cover the reference TS of the
dataset and how accurate the generated samples are. To this end, we
calculated the following two metrics for all reactions in the test set:
coverage (COV) andmatching (MAT) scores. The COV score measures
the percentage of reference TS geometries covered by the predicted
ones by TSDiff, where a reference is considered to be covered if there
exists any predicted one having a D–MAE within a criterion of δ with
the reference.We used two criterion values: δ =0.1Å and δ =0.2Å. The
value of 0.1 Å was determined based on the accuracy of a state-of-the-
artmodel40 that has demonstrated reliabilitywith a high success rate in
quantum chemical validations. However, this can be a strict criterion,
sowe also evaluated a COV scoreof δ =0.2Å. TheMAT scoremeasures
the similarity between generated and reference samples by calculating
the minimum D–MAE between the generated geometries and the
reference geometry. The mathematical definitions of these two
metrics can be found in the Measurement details section.

While these two metrics are widely used for generative AI eva-
luation, it should be noted that they have a limited application in this
study because there is only one TS conformation for each reaction in
the reference dataset. Therefore, for each individual reaction, the COV
score is either 100% or 0% if only a single sample is used for evaluation.
Thus, Table 1 presents the COV andMAT scores of TSDiff according to
the number of sampling, including a comparison to the scores of
TSDiff without the ensemble method. The distributions of the MAT
scores across the reaction are shown in Fig. 5.

The COV and MAT scores improve rapidly as the number of sam-
pling increases. This is because TSDiff’s performance is underestimated
at small numbers of the sampling, as it generates many different con-
formations, as shown in Fig. 3. In addition, the ensemble method led to
slight performance improvements in both COV and MAT scores. As a
result, TSDiff is expected to be able to generate 84.0% of the reference
TSs with a D–MAE of 0.1 Å or less within ten rounds of sampling.

We compare the features and accuracies of TSDiff and the existing
ML models in Table 2. To the best of our knowledge, Table 2 includes
all the models whose performance has been reported on the Gram-
bow’s dataset43. Previous works commonly used geometries of reac-
tants and products for their input features37–40, and the most recently
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conformations from each other. The reference TS is marked by a red cross posi-
tioned on the probability distribution contour. All molecular geometries were
plotted using PyMOL71.
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reportedmodel by Choi additionally used the interpolated geometries
of reactants and products40. Their prediction targets are broadly
divided into two categories: interatomic distances and atomic posi-
tions. The models that predict interatomic distances require an addi-
tional step of a nonlinear least-squares optimization to restore the
distances to atomic positions. In contrast, Jackson et al. directly pre-
dicted atomic positions using tensor field networks37. TSDiff also tar-
gets atomic positions directly in its generation process. A unique
feature that distinguishes it from the existing models is that TSDiff
uses only 2D graphs as input.

Before comparing the accuracy of the models, it is important to
note that evaluating the accuracy of TSDiff under the same conditions

as existing models is not straightforward because TSDiff can generate
other TS conformations, while we only have a single TS conformation
available as a reference. To address this, we evaluated the accuracy of
TSDiff on a TS conformation only if it directly matches the corre-
sponding reference. To identify these matching samples, we con-
ducted saddle point optimizations on the generated samples. For a
reliable comparison, we aimed to find as many test reactions with a
matched reference as possible, so we performed the optimization on
TS conformations generated with a total of eight rounds of sampling
for each reaction. Samples with a D–MAE between their optimized
result and the reference of less than 0.01 Åwere consideredmatching,
resulting in the covering rates of 53.2% and 84.6% of the test reactions
with one and eight sampling rounds, respectively. One of the gener-
ated samples is randomly selected to calculate the D–MAE when
multiple samples match the same reference TS in a given reaction
graph, which gives a consistent D–MAE value regardless of the number
of sampling rounds to facilitate fair evaluation.

Table 2 shows the D–MAE values of TSDiff with and without
considering conformer matching. The latter is the case for a single
sampling, the resulting conformation of which can be considered an
approximate TS for the respective reference. In this case, the D–MAE
value is 0.137 Å, which is lower than those of all models except Choi’s
one, indicating that TSDiff is fairly accurate when only providing a
single TS without conformer matching. Furthermore, considering the
conformer matching, the D–MAE values become 0.063 Å and 0.067 Å
for one and eight sampling rounds, respectively, which are con-
siderably lower than those of all. Note that while the covering rate
increased from 53.2% to 84.6%, the D–MAE value remained consistent,
suggesting its reliability as a metric to assess accuracy. Thus, it can be

Table 1 | The coverage (COV) and matching (MAT) scores of
TSDiff according to the number of sampling

# of
sampling

Ensemble No ensemble

COVa
↑ COVb

↑ MAT ↓ COVa
↑ COVb

↑ MAT ↓

1 49.1 73.9 0.137 47.9 73.9 0.140

3 67.3 87.5 0.096 65.9 86.7 0.100

5 75.2 92.6 0.079 74.2 91.4 0.084

10 84.0 95.6 0.063 80.4 93.7 0.072

100 91.7 97.7 0.045 89.7 97.2 0.052

The results of two TSDiffmodelswith andwithout the ensemblemethodare compared.Theunits
for COV and MAT values are percent (%) and angstroms (Å), respectively.
aThe COV score was calculated using the mean absolute error of interatomic distance (D–MAE)
threshold of 0.1 Å.
bThe COV score was calculated using the D–MAE threshold of 0.2 Å.

Fig. 4 | Visualization of the geometries generated by TSDiff. a A given chemical
reaction to demonstrate the use of TSDiff. b Visualization of the distribution of
transition state (TS) conformations of the given reaction, using the t-distributed
stochastic neighbor embedding (t-SNE)methodbasedon the interatomic distances
of the geometries. The geometries generated by TSDiff and the optimized results
for them are indicated by dots and star-shaped dots, respectively. The reference
TSs in the dataset are marked with a cross. The four values in this plot indicate the

mean absolute error of the interatomic distances (D–MAE) between the two
selected dots. The contours were plotted using kernel density estimation on the
t-SNE transformed results. c The geometries and barrier heights corresponding to
the nine different TS conformations, represented by the star-shaped dots in (b)
with the same color as the box edges. All molecular geometries were plotted using
PyMOL71.
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concluded that TSDiff generates TS geometries with better accuracy
than the existing models, without computationally expensive 3D
geometric information. Further analysis and methodology involving
quantum calculations will be presented in subsequent sections.

Quantum chemical validation of generated conformations
As an extension of the experiment in Fig. 4, we evaluate the chemical
validity of TS conformations generated by TSDiff across reactions in
the test set. We performed TS optimizations based on DFT using the
generated geometries for 1197 reactions in the test set. Eight geome-
tries were generated for each reaction, and saddle point optimization
was performed on the resulting 9576 geometries. Of these, 9289 were
successfully optimized with a single imaginary vibrational frequency,
giving a high success rate of about 97.0%, which clearly demonstrates
the reliability of TSDiff as an efficient initial TS guesser. To determine
how various TS conformations were found by TSDiff, we counted the
number of differently optimized results. The optimized geometries
were distinguished if the D–MAE between them was greater than 0.01
Å. As a result, we confirmed that 3316 unique TS conformations were

obtained, of which 2303 samples corresponded to different saddle
points than those of the reference TSs.

The IRC validation was carried out to verify that the optimized TS
geometries are on the reaction pathways connecting the correct reac-
tants and products. This verification process enables the validation of
the precision of TSDiff. Due to the huge computational cost, the IRC
calculations were performed on one randomly selected geometry for
each reaction. For 998 reactions, corresponding to 83.4%of the test set,
the IRC calculations successfully converged by linking the optimized
geometries to the correct reactants and products, demonstrating the
high precision of the TSDiff model.

In our investigation of the energetics of the successfully validated
TSs through IRC, we discovered 309 new TSs with energies lower than
those of the reference TSs bymore than 0.1 kcal mol−1. Moreover, after
conducting further geometry optimization on the reactants obtained
from the IRC calculation, we identified 513 pathways with barrier
heights lower than those of the reference. The increase from309 to 513
is attributed to the higher energy of the newly obtained reactants than
the reference reactants, which is traced back to the inclusion of the
conformational search for reactants in the generation of the reference
data. These findings imply that lower equilibrium geometries do not
always correspond to reaction pathways with the lowest overall TS
barriers.

Figure 6 shows an example case where TSDiff found TS con-
formations with lower energies than that of the reference. Five dif-
ferent TS conformations were obtained by saddle point optimization,
and their energy levels are indicatedby the red lines.The lowest energy
conformation in the red box has an energy 6.4 kcal mol−1 lower than
that of the reference, suggesting a more favorable reaction pathway.
This substantial energy difference between the reference and the new
TS conformations is due to the apparent geometric difference
between them, where the hexagonal rings, highlighted in yellow, have
the boat and chair conformations in the reference and the new TS,
respectively. This emphasizes the importance of searching for differ-
ent TS conformations to find a more favorable reaction pathway, and
TSDiff can be used for this purpose. The results of the reaction con-
formational search utilizing TSDiff for more complex reactions can be
found in the section Analysis on multiple reaction pathways explored
by TSDiff.

Table 2 | Comparison of accuracy and features between
machine learning models

Model Input type Target type D–MAE (Å)

Makoś et al.38 CR, CP CMa 0.170

Jackson et al.37 CR, CP Positions 0.244b

Pattanaik et al.39 CR, CP, GR, GP Distances 0.225b

Choi40 CR, CP, (CR+CP)/2 Distances 0.095b

TSDiff GR, GP Positions 0.137c,
0.063d, 0.067d

The input type, target type, and accuracy of the models are compared. CR and CP denote the
geometries of reactants and products, respectively, and GR and GP denote the 2D graphs of
reactants and products, respectively. (CR+CP)/2 denotes the interpolated geometry between CR
and CP.
aCM indicates the Coulomb matrix.
bThe values are borrowed from Choi40.
cThe value was evaluated without considering conformer matching, meaning that a single
generated transition state (TS) for each reactionwas used to evaluate themean absolute error of
interatomic distance (D–MAE).
dThese values were calculated for TSs generated from single and eight sampling rounds, only if
they matched the corresponding reference geometry after saddle point optimization, covering
53.2% and 84.6% of the test reactions, respectively.

ΔE=82.0

ΔE=75.6

Reactant

Product

Reference TS

New TS

Fig. 6 | Comparison of the barrier heights of the reference and those found by
TSDiff. The transition state (TS) conformations were obtained by saddle point
optimization using the initial geometries generated by TSDiff, and their energy
levels are shown as red lines. The geometries of the reference database are visua-
lized in the black boxes, and the newly discovered TS conformation with the lowest
energy is visualized in the red box. The barrier heights (ΔE) are compared for the
reference TS and the new lowest energy TS. All molecular geometries were plotted
using PyMOL71.

Fig. 5 | The distribution of the matching (MAT) scores of TSDiff with the
number of sampling. The percentages represent the coverage (COV) scores
measured using the mean absolute error of interatomic distances (D–MAE)
threshold of 0.1 Å. The source data is provided as a Source data file.
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Analysis on failure cases
To further assess the coverage ability of TSDiff based on DFT calcu-
lations, we analyzed 199 reactions where the model failed to generate
the correct TS within a single sampling. We performed up to four
additional random samplings and validated the generated samples
using the same process as in the previous section. This resulted in the
identification of 89 correct TS geometries among 199. Of the remain-
ing 110 reactions still not covered by TSDiff, we found that several
sampleswere successfully optimized to their reference geometries but
failed the IRC validation. We note that the IRC calculation of the
reference TS may fail due to the lack of an IRC verification step during
the data generation process40,43.

Considering this point, we conducted IRC calculations on the
reference TSs of the 110 reactions to confirm whether or not they are
elementary step reactions. Among them, 95 reference TSs failed the
IRC calculation, which highlights requirements of re-evaluating
TSDiff’s performance on the remaining 1102 reactions after exclud-
ing them. Then, TSDiff achieved a success rate of 97.4%, with 8588 of
the 8816 samples successfully optimized to the saddle point, as
described in Table 3. The success rate of IRC validation for geometries
generatedby the single samplingwas also recalculated to90.6%,which
was reported as 83.4% in the previous section. Finally, 98.6% of the
refined test reactions were successfully covered by TSDiff within five
rounds of sampling, which resulted in the correct TSs on 1087
reactions.

Analysis on multiple reaction pathways explored by TSDiff
We present additional results for four reactions in which TSDiff dis-
covered TS conformations with distinct reaction coordinates. For each
reaction, two TS conformations were obtained by saddle point opti-
mization of the generated TSs, resulting in D–MAE values between two
conformations of 0.29 Å, 0.30 Å, 0.26 Å, and 0.15 Å for the four reac-
tions, respectively. Subsequently, we obtained the energy profiles of
the respective reaction pathways using IRC calculations. As a result, we
identified two different reaction pathways for each reaction, despite
both pathways sharing the same reaction graph. Figure 7 illustrates the
IRC energy profiles of the reaction pathways along with the corre-
sponding reactant, TS, and product geometries, clearly demonstrating
the distinct reaction coordinates.

The reaction pathways depicted in Fig. 7a–c exhibit different
bond breaking/formation sequences. For instance, Fig. 7a displays
two reaction pathways with hydrogen molecules approaching from
different directions in multimolecular reactants, highlighting the
effectiveness of TSDiff in capturing TSs without considering align-
ments. In Fig. 7b, the top reaction involves cleavage of the C–Cbond
followed by the C–N bond, while the sequence is reversed in the
bottom reaction. This difference is also evident in the bond lengths
in the TS conformations shown in the figure. Similarly, in Fig. 7c, the
top reaction involves cleavage of the C–Obond followed by theO–H
bond, whereas the sequence is reversed in the bottom reaction.
Furthermore, we observed the reaction with identical reactant and
product, but involving different reactive atoms, as illustrated in
Fig. 7d. In this reaction, a different hydrogen atom migrates to the
neighboring carbon. For a clearer visualization, we have colored the
migrating hydrogen atom in orange.

Discussion
One of themain advantages of TSDiff is its ability to find TSs without
considering the conformations of the reactants and products and
their alignments. Since TSDiff does not rely on specific conforma-
tions, it allows efficient exploration of TSs in graphically defined
reactions with a more generalized approach. We demonstrated its
usefulness in chemical reaction analysis by generating diverse, high-
quality TSs based on a givenmolecular connectivity. This is amazing

considering that TSDiff learned only one TS conformation for each
reaction during the training phase. TSDiff was able to effectively
capture TS conformations resulting from rotatable bonds in non-
reactive coordinates and different reaction coordinates. Further-
more, TSDiff’s transferability is supported by its successful appli-
cation to another benchmark dataset, as described in
the Supplementary Discussion. Here, TSDiff also proves to be an
effective initial TS guesser, requiring only a small number of force
calls during subsequent TS optimization. Therefore, this study
shows the promising potential of TSDiff for efficient and reliable TS
exploration.

These findings show that the stochastic diffusion method
proven to accurately create diverse conformers in equilibrium
states can be extended to TS explorations. However, it is important
to recognize a limitation of this work, particularly its current
restriction to organic reactions. Although inorganic databases exist,
such as the FH51 set in the GMTKN55 database61, which contains 51
reactions in small inorganic and organic systems, and another
database containing about 400 reactions38 including transition
metals, the lack of large inorganic reaction databases limits the
applicability of machine learning approaches in this domain.
Nevertheless, with the ongoing accumulation of data in the future,
we anticipate that the utility of TSDiff will expand to encompass a
broader range of chemical reactions, including those involving
inorganic species.

Methods
TSDiff
The diffusion process is a stochastic process where atomic positions
change into chaotic states at discrete time steps. For a reference TS
geometry C0 and a geometry at time step t of the diffusive process Ct ,
we define the probability distribution q of the diffusive process as
follows:

qðCt jCt�1Þ=N ðCt ;
ffiffiffiffiffi
αt

p Ct�1,βt IÞ,
qðCt jC0Þ=N ðCt ;

ffiffiffiffiffi
�αt

p
C0,ð1� �αtÞIÞ,

ð1Þ

where the hyperparameters βt and αt(=1 − βt) denote the noise and
signal schedulers, respectively, which determine how much noise to
add and howmuch of the existing signal to preserve at time step t, and
�αt =

Qt
s = 1 αs. The neural network model learns a distribution para-

meterized by θ, pθ, that simulates the reverse process of the diffusion
process:

pθðCt�1jCt ,GrxnÞ=N Ct�1;μθ Ct ,Grxn,t
� �

,σ2
t I

� �
, ð2Þ

where Grxn denotes the input reaction graph, and μθ and σ2
t denote the

mean and the variance of the distribution, respectively. The loss form
is defined as the KL divergence between the posterior of q and pθ at

Table 3 | Success rates of quantum chemical validations on
geometries generated by TSDiff

Test reaction # of reactions Saddle point IRC

Original 1197 97.0% 83.4%

Refined 1102 97.4% 90.6%

Refined 1102 99.9%a 98.5%a

For a total of 1197 reactions, the saddle point optimization was performed on the transition state
(TS) geometries generatedwith eight rounds of sampling, while the intrinsic reaction coordinate
(IRC) calculation was performed on one randomly selected geometry for each reaction. We
found 95 invalid reactions in the original test set for which the reference TS failed the IRC
validation. Therefore, the success rates of the quantum chemical calculations were recalculated
with the refined 1102 reactions, after excluding the failed ones.
aThe value is the cumulative success rate over five rounds of sampling.
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each time step t ≤ T:

logpθðC0jGrxnÞ≥ �
XT
t = 2

KLðqðCt�1jCt ,C0Þ k pθðCt�1jCt ,GrxnÞÞ

� KL qðCT jC0Þ k pθðCT Þ
� �

+EqðC1 jC0Þ logpθðC0jC1,GrxnÞ
� �

,

ð3Þ

where pθðCT Þ is a unit Gaussian prior. Minimizing the KL divergence of
Eq. (3) implicitly maximizes logpθðC0jGrxnÞ which is the main objective
of the reference TS generation.

From the Gaussian distribution assumption of pθ and q, the KL
term is derived to the simple form as:

KL qðCt�1jCt ,C0Þ k pθðCt�1jCt ,GrxnÞ
� �

=Eq
β2
t

2αtð1� �αtÞσ2
t
ε� εθðCt ,Grxn,tÞ
�� ��2

2

" #
,

ð4Þ

where ε=
Ct�

ffiffiffiffi
�αt

p
C0ffiffiffiffiffiffiffiffi

1��αt

p = �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
∇Ct logqðCt jC0Þ and

εθ =
ffiffiffiffiffiffiffiffi
1��αt

p
βt

Ct �
ffiffiffiffiffi
�αt

p
μθ

� �
62. The tractable loss formof Eq. (4), k ε� εθk22,

can be interpreted as the score matching loss51,63,64. In practice, all
coefficient terms in Eq. (4) were set to 1, following the previous study62.

The distribution pθðC0Þ should be SE(3) invariant. To ensure this,
each backward transition is required to follow an SE(3) equivariant
distribution,whichcanbe addressedbyutilizing thepairwise distances
d= fdijgði,jÞ2E . According to Shi et al.65, the equivariance of∇Ct logqðCt j�Þ
can be addressed by decomposing it into ∂dt

∂Ct ∇dt
logqðdt j�Þ. This

ensures that the score function calculated in the distance coordinate is
SE(3) invariant, and the partial derivative term is SE(3) equivariant. By

assuming ∇dt
logqðdt jd0Þ= � dt�

ffiffiffiffi
�αt

p
d0

1��αt
, the approximation target ε is

re-formulated as ∂dt
∂Ct

dt�
ffiffiffiffi
�αt

p
d0ffiffiffiffiffiffiffiffi

1��αt

p . Accordingly, the neural network model

was designed to predict the score function in distance coordinate,

which is then converted to the Euclidean coordinate by applying ∂dt
∂Ct .

TSDiff employed a total of seven modified SchNet layers. A geo-
metric reaction graph is constructed by adding the noised positions to
the 2D reaction graph, and it is fed to the GNN layers. The node-vector
update step is a conventional message-passing process defined as

hl + 1
i =MLPl

1 MLPl
2ðhl

iÞ+
X
j2N ðiÞ

ml
ij

0
@

1
A, ð5Þ

Fig. 7 | Intrinsic reaction coordinate (IRC) energy profile of four reactions. The
energy profiles were obtained by IRC calculation of optimized transition states
(TSs) based on the geometries generated by TSDiff. The points on the plots
represent the IRC points, which are then connected by line segments. For each

reaction, two reaction pathways were plotted, along with the corresponding geo-
metries of the reactants, TS, and products. All molecular geometries were plotted
using PyMOL71. The source data is provided as a Source data file.
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wherehl
i denotes the i-th node-vector at the l-th layer, andml

ij denotes
the message from the j-th node connected to the i-th node. The
message is constructed using both atom-pair distances dij and edge-
features f rxnij :

ml
ij =MLPl

2ðhl
j Þ πl

rbf ðdijÞ � πedgeðf rxnij Þ
� 	

, ð6Þ

where πl
rbf and πedge denote a radial basis kernel and an edge-

feature embedding function, respectively, and ⊙ denotes element-
wise multiplication. A node-embedding function πnode is used to
generate the initial node-vector h1

i by processing a node-feature
vector of the reaction graph f rxni . The node-features and edge-
features of the reaction graph are first constructed by concatenat-
ing those of GR and GP , respectively: f

rxn
i = fRi � fPi and f rxnij = fRij � fPij .

The edge-features contain bond-type information, and the node-
features contain various atomic information, such as aromaticity,
formal-charge, hybridization, valency, chirality, and whether the
atom is in a ring. When an edge does not exist on one side of GR or
GP , the edge-feature of the molecular graph is adjusted with a zero
feature vector. To utilize the reaction graph more informatively,
we extended GR and GP to include edges within the 3-hop and
encoded their edge-features based on the graph-distances. In
addition, we added edges between nodes within cutoff radius τ of
the pairwise distances and assigned zero vectors as edge-features.
All hyperparameters of TSDiff are summarized in the Supplemen-
tary Notes.

In summary, the neural network approximates the score func-
tion ε by utilizing the noisy geometry Ct and the reaction graph Grxn,
resulting in less noisy geometry Ct�1. In practice, it first computes
the score function on the distance coordinate using the outcomes
from the last layer and the edge information. These changes are
then converted to atomic position changes via the chain rule. The
overall inference phase is a Markov process, iteratively sampling
Ct�1 from pθðCt�1jCt ,GrxnÞ, starting from noise CT ∼N ð0,IÞ and
resulting in C0. Further details of the sampling algorithm are
described in the Supplementary Methods.

Data
In this study, we used a publicly available chemical reaction dataset
provided by Grambow et al.43. This consists of gas-phase elementary
reactions involving up to seven C, O, or N atoms per molecule. Reac-
tants were sampled from GDB-7, a subset of GDB-1766. The dataset
contains a wide range of reactions with up to six bond changes, and
most reactions occur with two or three bond changes, where the
number of bond changes only counts the changes in connectivity
between atoms, regardless of bond order. It also includes reactions
with a wide range of barrier energies, up to 200 kcal mol−1, to ensure
that themodel is not biased toward reactions with low energy barriers.

The reaction pathways were first elucidated using DFT calcula-
tions, specifically the single-ended GSM, and the TS geometries were
computed using the saddle point optimization at the same level of
theory. There are two types of datasets calculated by different DFT
methods, namely B97-D3/def2-mSVP and ωB97X-D3/def2-TZVP, and
we used the ωB97X-D3 dataset. Out of the 11,961 reactions in the
ωB97X-D3 dataset, we excluded two that involved non-reactive mole-
cular nitrogen. Since our model only captures reaction information
with 2D graphs, including these non-reactive molecules could lead to
erroneous graph-embedding. We used a total of 11,959 reactions and
randomly split the dataset in a ratio of 8:1:1. To improve the perfor-
mance of ourmodel, we also augmented our training data by including
reverse reactions, i.e., swapping the reactants and products, resulting
in a total of 19,132 training data points.

Measurement details
To measure the accuracy of the generated TS geometries, we used
the D–MAE metric, which is the MAE of the interatomic
distances. The D–MAE between two different geometries, C and Ĉ,
is defined as

D-MAE ðC, ĈÞ= 2
NatomðNatom � 1Þ

XNatom

i<j

dij � d̂ij

��� ���, ð7Þ

wheredij and d̂ij denote the interatomic distances between the i-th and
j-th atoms of C and Ĉ, respectively, and Natom is the number of atoms.
We performed an atom index alignment between C and Ĉ to minimize
the D–MAE between them. This is necessary to match the indices of
nodes that are indistinguishable on the molecular graph, such as
hydrogen in a methyl group.

To evaluate TSDiff from the perspective of a generativemodel, we
used the COV and MAT scores. The two scores are defined as

COV ðSgen, Sref Þ=
1

Sref
�� �� C 2 Sref jD-MAE ðC, ĈÞ< δ, Ĉ 2 Sgen

n o��� ���, ð8Þ

MAT ðSgen,Sref Þ=
1

Sref
�� �� X

C2Sref
min
Ĉ2Sgen

D-MAE ðC, ĈÞ, ð9Þ

where Sgen and Sref denote the sets of generated and reference geo-
metries, respectively, and δ denotes a criterion value, and �j jmeans the
number of elements in a given set. Note that the number of the
reference geometry for each reaction is one, which means Sref

�� ��= 1 in
our evaluations.

The COV score is variable depending on the choice of δ. We first
adopted the value of 0.1 Å based on the accuracy of a state-of-the-art
model. To validate this choice, we investigated theD–MAEdistribution
of the generated geometries with their optimized results as a refer-
ence. We confirmed that approximately 25% of the samples have a
D–MAE greater than0.1Å, despite being well driven to their reference,
suggesting that the criterion may be stringent. To mitigate this, we
further evaluated the COV score with δ of 0.2 Å, which gives less than
4% of such cases.

Computational details
To validate the TS conformations generated by TSDiff, we used two
quantumchemical calculations based onDFT and assessed the success
rates in the two calculations. All quantum chemical calculations in this
study were performed with Orca67 at the ωB97X-D3/def2-TZVP level of
theory, the same as in Grambow’s database43.

The saddle point optimization was performed using the Berny
algorithm20, and the detailed options are as follows. The maximum
number of iterations was set to 200, and the Hessian was computed in
the first optimization step only. The convergence criteria for the gra-
dients, displacements, and energies were set to 3e-4, 4e-3, and 5e-6 in
atomic units, respectively. To evaluate the success of the saddle point
optimization, we verified that the computations converged and the
resulting geometry had a single imaginary frequency lower than
−100 cm−1, which is the same criterion as in the case of Grambow
et al.43.

The maximum number of iterations for both the forward and
backward IRCs was set to 200, and the convergence criterion for the
gradients was set to 2e-3 in the atomic unit. Upon completion of the
IRC, to ensure that the resulting reactant and product geometries
successfully matched those of the reference, we checked the con-
sistency of their molecular connectivity using Open Babel68.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The organic gas-phase reaction database used in this study is available
at https://doi.org/10.1038/s41597-020-0460-4. The TS geometries
generated in this study and their quantum chemical calculation results
have been deposited in a Zenodo repository at 10.5281/
zenodo.1022407169. Source data are provided with this paper.

Code availability
An implementation of the proposed model, TSDiff, is available at
https://github.com/seonghann/tsdiff70.
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