Skip to main content
. 2024 Jan 6;14:692. doi: 10.1038/s41598-024-51329-8

Table 3.

Comparative analysis of the classification performance of the trained TwinCNN using the Softmax, KNN, RF, MLP and DTree algorithms.

Classifier Histology Mammography
Accuracy AUC Accuracy AUC
KNN 0.788806 0.83349 0.780933 0.607248
RF 0.938817 0.917418 0.799797 0.673917
MLP 0.952187 0.932702 0.791684 0.632857
DTree 0.341491 0.763873 0.791684 0.637675
Softmax 0.708698 0.794726
Avg 0.755325 0.861871 0.791024 0.637924