Table 3.
Comparative analysis of the classification performance of the trained TwinCNN using the Softmax, KNN, RF, MLP and DTree algorithms.
Classifier | Histology | Mammography | ||
---|---|---|---|---|
Accuracy | AUC | Accuracy | AUC | |
KNN | 0.788806 | 0.83349 | 0.780933 | 0.607248 |
RF | 0.938817 | 0.917418 | 0.799797 | 0.673917 |
MLP | 0.952187 | 0.932702 | 0.791684 | 0.632857 |
DTree | 0.341491 | 0.763873 | 0.791684 | 0.637675 |
Softmax | 0.708698 | – | 0.794726 | – |
Avg | 0.755325 | 0.861871 | 0.791024 | 0.637924 |