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Theory predicts 2D chiral polaritons based
on achiral Fabry–Pérot cavities using
apparent circular dichroism

Andrew H. Salij 1, Randall H. Goldsmith2 & Roel Tempelaar 1

Realizing polariton states with high levels of chirality offers exciting prospects
for quantum information, sensing, and lasing applications. Such chirality must
emanate from either the involved optical resonators or the quantum emitters.
Here, we theoretically demonstrate a rare opportunity for realizing polaritons
with so-called 2D chirality by strong coupling of the optical modes of (high
finesse) achiral Fabry–Pérot cavitieswith samples exhibiting “apparent circular
dichroism” (ACD). ACD is a phenomenon resulting from an interference
between linear birefringence and dichroic interactions. By introducing a
quantum electrodynamical theory of ACD, we identify the design rules based
on which 2D chiral polaritons can be produced, and their chirality can be
optimized.

Addressing and storing chirality in the optical fields of cavities and
other resonators is of fundamental and technological importance. This
issue has gained urgency with the rapid developments in the areas of
quantumcomputing, quantum sensing, and quantumcommunication,
prompting interest in photons as candidate quantum information
carriers1–5. Photons are both highlymobile and weakly interacting, as a
result of which their quantum state can be transported over long dis-
tances, while quantum information can be conveniently stored in their
internal spin degree of freedom. Importantly, the manifestation of
photonic spin as circularly-polarized light allows this information to be
transduced to matter by means of chiroptical interactions, allowing
photons tobe straightforwardly incorporated inquantumnetworks6–11.
Optical resonators provide a viable means to amplify the intrinsically-
weak light–matter interactions, allowing the strong coupling regime to
be reached12. Within this regime, photons hybridize with excitations of
the involved material (quantum emitter), producing polaritons13–18.
Chiral polaritons, where strong coupling is combined with high
degrees of chiral dissymmetry, would offer the ideal conditions for
photon-to-matter quantum transduction. Moreover, it would be of
interest to chiral sensing19,20 and provide an opportunity to realize
chiral lasing.

While previous studies of chiral strong coupling have focused on
plasmonics21–26, such implementations suffer fromconsiderable ohmic
losses that inhibit the functionalities offered by polaritons. In that

regard, high finesse Fabry–Pérot (FP) cavities27 make for a preferred
optical resonator. Accordingly, the chiral symmetry should be broken
for either the cavity or the quantum emitter (or both). The former is an
interesting line of inquiry28–36, but involves the challenge of simulta-
neously optimizing for chiral dissymmetry and for the finesse. Break-
ing the chiral symmetry in quantum emitters, on the other hand, is
subject to a rather restrictive constraint imposed by (ordinary) FP
cavities, namely that chiral dissymmetry is inverted for counter-
propagating light. The latter is due to circular polarization switching
handedness upon reflection at a mirror (i.e., switching from left- to
right-handed and vice versa), as depicted in Fig. 1e37. As such, the
quantum emitter must invert its handedness upon plane reflections
parallel to the light propagation direction; a phenomenon referred to
as two-dimensional (2D) chirality38,39. Optically-active samples40

instead exhibit three-dimensional (3D) chirality associated with point
reflections, thereby undergoing identical chiroptical interactions with
counter-propagating light, as a result of which they do not produce
chiral polaritons in a FP cavity. Perhaps due to these constraints, chiral
polaritons based on FP cavities have to our knowledge not yet been
experimentally realized.

In this paper, we demonstrate a rare opportunity for realizing 2D
chiral polaritons in FP cavities based on quantum emitters exhibiting
“apparent circular dichroism” (ACD). Not unlike FP cavities them-
selves, ACD as a scientific phenomenon traces back many decades41,
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but in recent years has seen a marked increase in interest42,43. It results
fromoblique dichroic andbirefringent axes of a sample, giving rise to a
net difference in the absorption of clockwise and counter-clockwise
rotating optical fields [corresponding to a differential absorption of
left-handed and right-handed circularly-polarized light for a given
irradiation direction41,44 as depicted in Fig. 1c]. WithinMueller calculus,
where light–matter interactions are described by matrices that
manipulate polarization vectors45, the leading contribution to ACD is
given by

ACDðωÞ= 1
2

LDðωÞ � LB0ðωÞ � LD0ðωÞ � LBðωÞ� �
: ð1Þ

Here, LD and LB represent linear dichroism and linear birefringence,
respectively, and the prime indicates a 45° axis rotation in the plane of
polarization. ACD in principle fulfills the 2D chirality requisite for
inverted chiroptical response, as shown in Fig. 1d. Moreover, ACD is of
second (or higher) order in terms of optical interactions, such that its
magnitude increases with sample thickness. As a result, (chiral) dis-
symmetry factors typically exceed those commonly found for optical

activity46. This suggests ACD to provide a unique opportunity for
producing 2D chiral polaritons based on FP cavities.

In a recent work, we presented a microscopic yet semiclassical
theory of ACD under weak light–matter coupling wherein the Mueller
calculus treatment embodied by Eq. (1) was combined with a Lorentz
oscillator model47. This allowed us to identify geometric sample
properties that enable this process, namely the presence of oriented
molecules featuring a pair of bright, nondegenerate, and oblique
transition dipoles, as depicted in Fig. 1a, b. This workwasmotivated by
a recent series of spectroscopic studies on ACD in organic thin films
performed by Di Bari and coworkers46,48–52. In prior decades, ACD was
mostly considered to be anoptical artifact53–56 arising especially in dye-
doped cholesteric liquids57–61, self-assembled fibers in solution62,63,
dyes bound in a linear orientation via a supporting matrix64,65, and
nanowires63. Indeed, ACD is not related to optical activity and is not to
be confused with “real” CD, yet it may contaminate real CD
measurements53. Perhaps for that reason, earlier theoretical works on
ACD66–70 restricted themselves to macroscopic Mueller or Jones71

treatments, although there are some notable early efforts at con-
necting ACD to microscopic sample properties41,72.

In demonstrating 2D chiral polaritons, the present Paper intro-
duces a quantum electrodynamical theory of ACD. Departing from the
semiclassical treatment from our previous work47, which fails to
describe strong coupling and polariton formation, the current theory
is based on an appropriately-extended Jaynes–Cummings model73,
providing a quantum-mechanical treatment of a single quantum
emitter in an ideal (lossless) cavity. It is shown that dissymmetries near
the theoretical maximum can be achieved even within the single-
molecule limit, as the FP cavity allows light to repeatedly interact with
the quantum emitter, thereby increasing the optical path length.
Generic rules are presented based on which the dissymmetry can be
optimized, while particular attention is paid to the utilization of ben-
zo[1,2−b:4,5-b0]dithiophene-based (BDT-based) oligothiophene as a 2D
chiral quantum emitter.

Results
2D chiral interaction terms
Our quantum electrodynamical theory of ACD is based on a suitably
modified Jaynes–Cummings model73. Accordingly, the optical polar-
ization isdescribedusing thenatural basisoforthogonal clockwise and
counter-clockwise rotating modes (for a given observer direction)
inside an idealized Fabry–Pérot (FP) cavity74, referred to as λ = + and
λ = −, respectively. The light–matter interaction Hamiltonian (within
the rotating wave approximation) then takes the form

Ĥint = i
X
n

X
λ= ±

A0,λωn~μn,λ ây
λb̂n � âλb̂

y
n

� �
, ð2Þ

where A0,λ is the vector potential associated with the mode of polar-
ization λ, and where ây

λ and âλ are the associated photon creation and
annihilation operators, respectively. If instead, the light–matter inter-
action Hamiltonian was expressed in terms of the more commonly-
used x and y linearly polarized optical basis, our analysis would not
change but the resulting expressions would be less intuitive.

In Eq. (2), n runs over the excited states of the sample, with b̂
y
n and

b̂n as the corresponding creation and annihilation operators, respec-
tively. Moreover, ℏωn is the associated excited state energy (where the
ground state energy is taken to be zero as a reference), and ~μn,λ is the
projection of the associated transition dipole vector onto the λ
polarization (which therefore obeys the same inversion anti-
symmetry). Notably, achiral as well as 3D chiral samples have
~μn, + = ~μn,�, as a result of which there is no selectivity with regard to the
λ = + and λ = − polarization modes of the FP cavity. This selectivity will
similarly vanish for a full three-dimensional orientational average of an
ACD sample. Indeed, the ACD phenomenon relies on oriented
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Fig. 1 | Schematic depiction of apparent circular dichroism (ACD) and its
implementationwithin an achiral Fabry–Pérot (FP) cavity. Energy level diagram
(a) and schematic of the transition dipoles (b) of a minimal ACD sample involving
two bright, nondegenerate, and oblique transition dipoles. Angular transition fre-
quencies ω1 and ω2, transition dipoles μ1 and μ2, and inter-dipole angle β12 are
indicated. Shown below is a schematic depiction of ACDdue to linear birefringence
(LB) and linear dichroism (LD) resulting from forward (c) and backward (d) pro-
pagation, yielding absorption of left-handed (green) and right-handed (orange)
circularly-polarized light, respectively. The prime on LD indicates a 45° rotation in
the plane of polarization. Also shown is a depiction of the interactions between an
ACD sample and an achiral FP cavity (e) involving the selective absorption of the
λ = + polarization mode.
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samples, although rotations in the plane normal to the light propa-
gation direction do not diminish its effect47.

It is important to emphasize that ACD (different from real CD)
is not the result of a single chiroptical event at the microscopic
level. Rather, it is a double-scattering event consisting of sub-
sequent birefringent and dichroic interactions. Instead, the Hamil-
tonian given by Eq. (2) implicitly assumes a single absorptive event.
Our approach to incorporate ACD in this Hamiltonian is, therefore,
to only explicitly invoke the (second) dichroic interaction, and to
include the (first) birefringent interaction through its effect on the
transition dipole projection ~μn,λ. In doing so, we first proceed to
treat ACD semiclassically and within the regime of weak
light–matter coupling. This treatment is agnostic to the presence or
absence of a cavity, and merely considers ACD as a chiroptical
response resulting from light with a given optical frequency pro-
pagating through a sample for a given optical path length l. Within
this treatment, and assuming molecular crystals where inter-
molecular interactions are negligible, we have previously shown
that the ACD transition rate takes the form47

ACDðωÞ= 1
2
l2ξ2ω2

X
n,m

μ2
nωnμ

2
mωmVnðωÞWmðωÞ sinð2βmnÞ, ð3Þ

where ω is the optical (angular) frequency. Here, n and m run over
the excited states of the involved molecule, with μ2

n = ~μ2
n, + + ~μ2

n,� as
the squared total dipole moment of state n, and βmn as the angle
between the transition dipoles associated with states n and m. It is
assumed that all transition dipoles lie in the plane perpendicular to
the light-propagation direction (xy plane), or that any transition
dipoles appearing in our analysis have been projected into this
plane. In Eq. (3), ξ � ð_cvϵ0

ffiffiffiffiffiffi
ϵ1

p Þ�1 with v being the unit cell volume
of the molecular crystal and ϵ∞ being its effective high-frequency
dielectric constant. Also appearing in Eq. (3) are the lineshape
functions

WnðωÞ � ω2
n�ω2

ðω2
n�ω2Þ2 + γ2nω2

,

VnðωÞ � γnω

ðω2
n�ω2Þ2 + γ2nω2

:
ð4Þ

These correspond to the real and imaginary frequency-dependent
components of the dielectric susceptibility due to excited state n,
respectively, and γn is the associated damping parameter accounting
for lineshape broadening. As can be verified by examination of Eq. (3),
aminimal requisite forACDsignals incorporating thedesired inversion
antisymmetry is to have a minimum of two nondegenerate and
nonparallel transition dipoles as well as macroscopic ordering47.

Eq. (3) embodies a Fermi’s Golden Rule treatment of ACD, simi-
larly to that of mean (linear) absorption, the latter of which is given by

�AðωÞ= lξω
X
n

μ2
nωnVnðωÞ: ð5Þ

Alternatively, mean absorption can be expressed as
�AðωÞ= 1

2 A+ ðωÞ+A�ðωÞ
� �

, with the λ = ± contributions given by

AλðωÞ � 2lξω
X
n

~μ2
n,λωnVnðωÞ: ð6Þ

Key to establishing the form of ~μn,λ is that ACD can equivalently be
expressed as ACDðωÞ= 1

2 ðA+ ðωÞ � A�ðωÞÞ. By comparison with Eq. (3),
it then follows that

~μn,λ � μn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
+
1
2
τλσn

r
, ð7Þ

where τ± = ± 1 is an indexing variable, andσn is the “2Dchiral interaction
term” defined as

σn � 1
2
lξω

X
m≠n

μ2
mωmWmðωÞ sinð2βmnÞ: ð8Þ

Here, it canbe seen that for a given excited state n, other excited states
project onto the 2D chiral interaction terms through their real
dielectric dispersion,Wm(ω). As a result, ~μn,λ attains an ω dependence
through σn. Importantly, the underlying birefringent interaction lends
a linear dependence of σn on l. While σn should in principle be physi-
cally bounded by − 1 and 1, corresponding to transition dipoles being
entirely−or + polarized, respectively, its linear dependence on l may
violate this, leading to unphysical values of σn as detailed below. The
latter is a consequenceof the second-orderMueller calculus treatment
applied in order to arrive at Eq. (3).

Having established expressions for ~μn, + and ~μn,�, we will proceed
to consider a quantum electrodynamical model of ACD tailored to FP
cavities. Accordingly, we replace the optical frequency ω by the reso-
nance frequency of the FP cavity Ω set by the mode volume. Here, we
will limit ourselves to the lowest-frequency resonance. Furthermore, l
now denotes the total path length due to repeated passes through the
sample under internal cavity reflection. It should be noted that the
Mueller calculus treatment underlying our ACD formalism implicitly
considers the cavity mirrors to represent reciprocal boundaries
imposed on the sample (seeMethods). In practice, the path length will
be limited by the cavity finesse. In this work we will ignore this effect,
reserving its inclusion to a follow-up study. Instead, we loosely define
the path length as the distance required for the average electro-
magnetic intensity to decay to e−1 of its original magnitude when
(repeatedly) propagating through the sample, meaning the value at
which �AðΩÞ= 1 (assuming Arrhenius-type isotropic absorption). This
yields

l =
1

Ωξ
P

n μ
2
nωnVnðΩÞ , ð9Þ

where we note that l attains a Ω dependence due to the dispersion of
the sample absorption. Substituting Eq. (9) into Eq. (8) then yields

σn =
1
2

P
m≠n μ

2
mωmWmðΩÞ sinð2βmnÞP
m μ2

mωmVmðΩÞ : ð10Þ

Interestingly, this form of σn is independent of the path length.
It is instructive to consider σn for the case of two transition

dipoles, which is theminimal configuration giving rise to finite ACD. In
this case, Eq. (10) simplifies to

σ1 =
1
2
W 2ðΩÞ=V2ðΩÞ
1 + ΓV Γμ2 Γω

sinð2β21Þ,

σ2 = � 1
2
W 1ðΩÞ=V 1ðΩÞ
1 + Γ�1

V Γ�1
μ2
Γ�1
ω
sinð2β21Þ,

ð11Þ

where

ΓV � V 1ðΩÞ
V2ðΩÞ , Γμ2 � μ2

1

μ2
2

, Γω � ω1

ω2
: ð12Þ

We furthermore have that the numerators in Eq. (11) can be simplified
as WnðΩÞ=VnðΩÞ= ðω2

n �Ω2Þ=ðγnΩÞ. Eq. (11) elucidates how different
parameters impact the 2D chiral interaction terms. Specifically, their
signs are governed by the sign of β21, while both their magnitudes are
maximizedwhenβ21 = ± 45°,whichwaspreviously recognized tobe the
angle of maximum ACD47,48,62. Interestingly, ∣σ1∣ and ∣σ2∣ are oppositely
impacted by ΓV, Γμ2 , and Γω, as increasing their values minimizes ∣σ1∣
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while itmaximizes ∣σ2∣. It is also noteworthy thatWn(Ω) = 0 atΩ =ωn, as
a result of which σ1 = 0 at Ω =ω2 and σ2 = 0 at Ω =ω1.

All of the trends discussed in the above are captured in Fig. 2,
which shows σ1 and σ2 obtained through Eq. (11) under sweeps of the
various parameters. Here, we have chosen the damping parameter to
be proportional to ωn, such that γn = γωn for constant γ, in order to
account for the lifetimes of higher-lying states being typically shorter.
From Fig. 2a it can be seen that σ1(Ω −ω1) ≈ σ2(ω2 −Ω), which would be
a rigorous equality if we assumed γ1 = γ2. Figure 2b reflects the afore-
mentioned scaling of both 2D chiral interaction terms with Γμ2 . In this
and the remaining Panels the 2D chiral interaction terms are depicted
atΩ ≈ω1, for which ΓV increases with increasing frequency gap,ω2 −ω1,
and with decreasing γ. For the overall γ dependence of ∣σ1∣, this con-
tribution counteracts that of Wn(Ω)/Vn(Ω), rendering ∣σ1∣ nearly con-
stant under variations of γ, as demonstrated in Fig. 2c. For ∣σ2∣, on the
other hand, both contributions act constructively as a result of which
this term decreases with γ. Lastly, Fig. 2d depicts how ∣σ1∣ decreases
with increasing ω2 −ω1 (through an increase in ΓV) with the reverse
dependence apparent for ∣σ2∣. These trends break down near
ω2 −ω1 = 0 at which point we instead find that σ2 = − σ1, since all para-
meters appearing in Eq. (11) are identical. We note that whereas the 2D
chiral interaction terms are proportional to ACD normalized to total
absorbance, we previously analyzed the dependence of ACD itself on
the frequency gap, and found that for ACD to be appreciable the
involved transitions should be within each other’s linewidth47.

From Fig. 2a it becomes obvious that Eq. (11) may yield 2D chiral
interaction terms that break the physical bounds of −1 and 1. This is
particularly so forΩ off resonance with ω1 and ω2, where an increasing

path length l causes a failure of the underlying second-order Mueller
calculus treatment, as previously mentioned. This failure can be
remedied by replacing the second-orderMueller calculus treatment by
its infinite-order variant, following previous work by Brown75,76.
Accordingly, 1

2 l in Eq. (8) is replaced by an oscillatory function B1(l)/l
(see Methods). Within this treatment, assessing the path length needs
the e−1 decaydistance to be evaluated numerically. Results for σnwithin
this improved treatment are shown alongside those from Eq. (11) in
Fig. 2, and are indeed found to obey the physical bounds. Notably, for
Ω in resonance with ω1 and ω2, results from Eq. (11) are seen to be in
close agreement with the infinite-order treatment. Importantly, even
when physically bounded, the 2D chiral interaction terms are seen to
approach ± 1 for reasonable parameter values, meaning that levels of
2D chirality near the theoretical maximum can be achieved for ACD
under ideal FP cavity confinement. We note that ϵ∞ and v have no
impact on the second-order treatment, but that they do have a (minor)
effect on the infinite-order 2D chiral interaction terms, which we
employ for the remainder of this Paper.

2D chiral polaritons
We will proceed to evaluate the polaritonic states arising from ACD
samples embedded in an idealized achiral FP cavity. Assuming the light
propagation direction to be normal to the cavity plane at all times, the
relevant optical modes organize in degenerate pairs with orthogonal
polarization. Such cavity by itself does not break the symmetry
between the two modes, and as such modes within any orthogonal
polarization basis will form valid intrinsic modes of the cavity.
Embedding of an ACD sample breaks this symmetrywithin the basis of
λ = + and λ = −polarized modes. To describe this, we extend the
light–matter interaction Hamiltonian from Eq. (2) within the single-
molecule limit in order to include the diagonal photonic andmolecular
excitation energies, yielding the total Hamiltonian

Ĥ = _Ω
X
λ= ±

ây
λâλ +

X
n

_ωnb̂
y
nb̂n

+ i
X
n

X
λ= ±

A0,λωnμn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
+
1
2
τλσn

r
ây
λb̂n � âλb̂

y
n

� �
:

ð13Þ

Here, we introduced the 2D chiral interaction terms through Eq. (7).
The polaritonic eigenstates of this Hamiltonian follow from the time-
independent Schrödinger equation, Ĥ Ψα

�� �
= Eα Ψα

�� �
. Within the mani-

fold of single excitations (meaning a single photon or molecular
excited state) the eigenstates take the general form

Ψα
�� �

=Cα
e ψα

e

�� �
+Cα

γ ψα
γ

��� E
,

ψα
e

�� �
=
X
n

dα
n nj i,

ψα
γ

��� E
=
X
λ

dα
λ λ
�� �,

ð14Þ

where we first applied an expansion into the total contributions from
the molecular excited states (denoted “e”) and those from the optical
modes (denoted γ), effectively invoking Hopfield coefficients77, fol-
lowed by sub-expansions of each. In the above, nj i � b̂

y
n 0j i and

λ
�� � � ây

λ 0j i, with 0j i representing the vacuum state without molecular
or optical excitations.

In order to characterize the polaritonic eigenstates it proves
convenient to define a set of scalar metrics, the first of which is given
by

gα � 2
jdα

+ j2 � jdα
�j2

jdα
+ j2 + jdα

�j2
: ð15Þ

Fig. 2 | Survey of 2D chiral interaction terms. 2D chiral interaction terms σn for
two transition dipoles as a function of cavity frequency Ω (a), transition dipole
moment ratio μ2: μ1 with μ1 fixed (b), damping parameter γ (c), and transition
frequency gap ω2 −ω1 with ω1 fixed (d). Shown are results from a second-order
Mueller calculus treatment, using Eq. (11) (dotted curve), alongside those from an
infinite-order treatment (solid curve; see text), with ω1 = 2.0 eV ℏ−1 and
ω2 = 3.0 eVℏ−1 [except for (d)], while the angle between transition dipoles is set to
β21 = 45°. Unless otherwise noted, γ =0.10, μ2: μ1 = 1.0, and Ω = 2.1 eV ℏ−1 in order to
be slightly off-resonant with ω1. Other material parameters are set to μ1 = 10.0 D,
v = 4.5 nm3, and ϵ∞ = 8.0, with v being the unit cell volume of the involved crystal
and with ϵ∞ being its effective high-frequency dielectric constant. The orange
vertical line indicates points with the same parametrization across the different
panels.
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This metric is analogous to the dissymmetry factor commonly used to
characterize chiroptical signals, g ≡ 2(A+ −A−)/(A+ +A−), and quantifies
the anisotropy in the admixture of both optical polarizations into the
polariton. Note that g α is bounded as− 2 ≤ g α ≤2. A second metric is
introduced in order to quantify the polaritonic mixing,

χα � 2jCα
eC

α
γ j: ð16Þ

This metric is maximized for eigenstates evenly split between mole-
cular and photonic excitations, and is bounded as 0 ≤ χ α≤ 1. While gα

and χ α quantify the degree of 2D chirality and light–matter hybridi-
zation, respectively, combining them yields a single scalar metric
quantifying 2D chiral light–matter hybridization. Accordingly, the
“polaritonic dissymmetry factor” is defined as

~gα � gαχα , ð17Þ

which is bounded as �2≤ ~gα ≤ 2. Maximal j~gαj implies both optimal
polaritonic mixing and optimal 2D chirality, whereas a vanishing ~gα

implies that either polaritonic mixing or 2D chirality (or both) is
absent. It should be noted that any sign changes in ~gα are due to g α,
since χα >0 by construction.

Shown in Fig. 3 are polariton dispersions, combined with a
representation of the polaritonic dissymmetry ~gα as a function of the
cavity frequency Ω, assuming an achiral FP cavity by setting
A0, + =A0,� =A0=

ffiffiffi
2

p
, such that the total vector potential obeys the

Pythagorean equality A2
0 =A

2
0, + +A2

0,� between orthogonal modes.
These results were obtained by solving the time-independent

Schrödinger equation through numerical diagonalization of the total
Hamiltonian given by Eq. (13) while representing the molecule by the
minimal configuration of two transition dipoles with μ1 = μ2 and
β21 = 45°. Combined with the two orthogonal photonic states, this
yields a total of four eigenstates. These states are depicted in Fig. 3 for
two values of A0 (the largest of which being still amenable to the
rotating-wave approximation). The dispersions shown in Fig. 3 exhibit
the known behavior of achiral polaritons, including a Rabi splitting in
the regions where Ω crosses the excited state transitions. Unsurpris-
ingly, this Rabi splitting is seen to increase with A0, replicating the
behavior of an achiral Jaynes–Cummings model73. Importantly, how-
ever, there is an undispersed state following the light line in each
crossing region.

In Fig. 3, ~gα is seen to assume a bisignate profile that changes
minimally with increasing A0, apart from an overall increase in ampli-
tude. This suggests that theA0 dependence is primarily confined to the
polaritonic mixing χα in Eq. (17), while the (bare) dissymmetry gα is
largely insensitive to A0. Importantly, the polaritonic dissymmetry
reaches values of ~gα ∼ 1:0, which is a substantial fraction of the
theoretically-maximum value. This is particularly remarkable since we
are considering a singlemolecule which within a conventional Mueller
calculus treatment of absorption would not have an ACD response
(this response being a second-order effect at the minimum) but which
is allowed to strongly and repeatedly interact with itself within the FP
cavity. Within the resulting sequence of interactions the 2D chirality
continuously increases; an effect that is limited by the optical path
length, l.

Figure 4 systematically explores the behavior of ~gα for the lowest-
energy polaritonic eigenstate, α = 1, which is expected to be the most
thermodynamically stable and therefore the most likely candidate for

Fig. 3 | Polaritonic dissymmetry ~gα asa functionof (angular) cavity frequencyΩ
for the minimal configuration of two transition dipoles. Shown are results for a
vector potential A0 = 35 eV e−1c−1 (a, b) and for A0 = 70 eV e−1c−1 (c, d). Depictions of
~gα are separated over twoPanels to avoid overlap, and in each Panel corresponds to
the polariton dispersions indicated by the solid curves (other polariton dispersions
are indicated by the dashed curves as a reference). Results are obtained by
numerical diagonalization of the Hamiltonian given by Eq. (13), with inter-dipole
angle β21 = 45°, (angular) transition frequencies ω1 = 2.0 eV ℏ−1 and ω2 = 3.0 eVℏ−1,
transition dipole moments μ1 = μ2 = 10.0D, crystal unit cell volume v = 4.5 nm3, and
high-frequency dielectric constant ϵ∞ = 8.0.

Fig. 4 | Polaritonic dissymmetry for the lowest-energy polariton, ~gα = 1. Shown
are results as a function of (angular) cavity frequency Ω (a), transition dipole
moment ratio μ2: μ1 (b), damping factor γ (c) and (angular) transition frequency
difference ω2 −ω1 (d). Unless noted otherwise, A0 = 35 eV e−1c−1 and all other para-
meters are identical to Fig. 2, including an inter-dipole angle β21 = 45°, a crystal unit
cell volume v = 4.5 nm3, and aneffective high-frequency dielectric constant ϵ∞ = 8.0.
The orange vertical line indicates points with the same parametrization across the
different panels.
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steady-state chiroptical applications. Shown in Fig. 4a is the Ω
dependence of ~gα = 1, emphasizing the bisignate profile previously
observed in Fig. 3, and further confirming that an increase in A0 pri-
marily acts as an overall rescaling of this quantity governed through
χ α = 1. Based onFig. 4b–d it is tempting to assert that the dependenceof
~gα = 1 on μ2: μ1, γ, and ω2 −ω1 is instead governed by the bare dis-
symmetry g α = 1, seeing the strong similarities with the trends depicted
in Fig. 2b–d, but further analysis is necessary in order to sub-
stantiate this.

Three-state approximation
To better understand the computational results shown in Figs. 3
and 4, we will proceed with a purely-analytical treatment of the
total Hamiltonian given by Eq. (13). This Hamiltonian generally
assumes a dimensionality of (N + 2) × (N + 2) for a total of N excited
states of the sample. Hence, for the minimal configuration of two
transition dipoles, one would have to analytically diagonalize a 4 × 4
matrix, which is generally not feasible. However, to an approx-
imation, it is possible to describe the polaritons resulting from Eq.
(13) by restricting the explicit Hilbert space to a single excited state
(n), while including the other excited states through their con-
tribution to the 2D chiral interaction term σn. This would be a good
approximation provided that excited state n mixes more strongly
with the photons than all other states due to having larger coupling
elements or due to its transition frequency being closer in reso-
nance with the cavity frequency, ωn ≈Ω. Within this “three-state
approximation” (TSA) the time-independent Schrödinger equation
takes the form

_Ω 0 Φn
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where Φn ≡ ∣A0∣ωnμn is the achiral light–matter interaction strength,
taken here to be purely real without loss of generality, and where the
subscript (n) emphasizes the sample excited state for which the TSA
is taken.

The eigenvalue equation given by Eq. (18) is analytically solvable
due to the sparsity of the 3 × 3 Hamiltonianmatrix. Three solutions are
found, one of which consists of purely-photonic contributions,
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with an associated eigenenergy Eγ
ðnÞ = _Ω. This explains the undis-

persed state observed at each crossing in Fig. 3. The other two solu-
tions constitute an upper (u) and lower (l) polariton branch, and are
given by
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and where Δn ≡ 2ℏ(ωn −Ω) is twice the energetic detuning. The corre-
sponding eigenenergies are given by
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Ω+ωn
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±
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2
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q
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Substituting the above eigensolutions into the (bare) dis-
symmetry factor defined in Eq. (15) yields (see Supplementary Meth-
ods 1 for details)

gu=l
ðnÞ =2σn: ð23Þ

Interestingly, within the second-order Mueller calculus treatment this
dissymmetry factor is independent of A0, cf. Eq. (10), with a (weak)
dependence only being possible through higher-order effects con-
tained in the oscillatory function B1(l)/l. This substantiates our
observations in Figs. 3 and 4 that the effect of A0 is largely manifested
in the polaritonic mixing. Within the TSA, this mixing is obtained by
substituting the above eigensolutions in Eq. (16), yielding (see
Supplementary Methods 1)

χu=lðnÞ =
Φnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
n +Φ

2
n

q : ð24Þ

As expected, this mixing is bounded by 1, corresponding to a perfect
split between photonic and electronic states at resonance, Δn = 0, and
decreases with increasing Δn or decreasing Φn.

In order to assess the accuracy of the TSA, we compare in Fig. 5
TSA results for n = 1 against the numerical solutions of the full Hilbert
space for the A0 = 35 eV e−1c−1 case previously considered in Fig. 3.
Shown as a function of Ω are the polariton dispersions and the
polaritonic dissymmetry factors. The dispersions are indistinguishable
from those predicted by the full Hilbert space, indicating that mixing

due to n = 2 has a negligible impact on Eu=l
ðn = 1Þ. In contrast, discrepancies

are observed for the polaritonic dissymmetry factors. Within the TSA
the upper and lower polariton pair have identical 2D chirality,

gu
ðn = 1Þ = g

l
ðn = 1Þ, while the overall polaritonic dissymmetry is seen to be

monosignate.Within the full Hilbert space, gu
ðn = 1Þ = g

l
ðn = 1Þ is violated for

polaritonic states close to the light line (forwhichEu=l
ðn = 1Þ≈Ω), giving rise

Fig. 5 | Polaritonic dissymmetry and dispersion with and without the three-
state approximation (TSA). Polaritonic dissymmetry ~gα as a function of (angular)
cavity frequencyΩ for theminimal configuration of two transition dipoles obtained
through a numerical diagonalization of the Hamiltonian given by Eq. (13) (a), and
comparative results within the TSA (b) which only includes explicitly the lowest-
energy excited state (n = 1). Unless noted otherwise, parameters are identical to
Fig. 2, while the vector potential is taken to beA0 = 35 eV e−1c−1. Note that colors have
been linearly interpolated for a smoother gradient.
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to bisignate dissymmetry factors. Discrepancies between the TSA and
the full Hilbert space results are rationalized by the two excited states
of the sample coupling only indirectly to one another through the
photonic states. When separated from the light line, polaritonic states
have a substantialmatter contribution due to a single resonant excited
state, and the other excited state mixes only weakly through the

photonic component. As a result, gu=l
ðnÞ = 2σn governs the polaritonic

dissymmetry, rendering this relationship a useful (albeit approximate)
manner with which one can tune 2D chirality. Close to the light line,
however, polaritonic states instead contain a predominant photonic
component that couples more equally to both excited states (both

being offresonant), as a result of which gu=l
ðnÞ ≠ 2σn, rendering the TSA

inaccurate.

With the analytical insights offered by the TSA we now revisit
Fig. 4. For the lowest-energy polaritonic state depicted here, the
regime of validity of the TSA is whereΩ >ω1 (away from the light line)
while Ω still being sufficiently separated from ω2. Within this regime,
~gα = 1≈χα = 1σ1, and the profile of ~gα = 1 as a function of Ω can be ratio-
nalized based on the dispersion of σ1 in Fig. 2a, while appreciating that
χ α = 1 monotonically decreases away from the resonanceΩ ≈ω1. We also
note that the sign change of ~gα = 1 at ~ 3 eV is due to a change of sign of
σ1. However, at ~ 2 eV, which lies outside the TSA regime, the sign
change of ~gα = 1 is instead due to amixing of the n = 2 excited state. The
TSA analysis furthermore confirms that the A0 dependence is confined
to χ α = 1 whereas the μ2: μ1, γ, and ω2 −ω1 dependence is confined to
g α = 1. In particular, for the results shown in Fig. 4b–d we have χ α =1 ≈ 1
(due to Ω ≈ω1) as a result of which ~gα = 1 ≈ 2σ1, which is readily verified
through a comparison with Fig. 2b–d. We further note that in Fig. 3,
σ1(Ω −ω1) ≈ σ2(ω2 −Ω) governs the behaviors of ~gα = 1 and ~gα = 2 in their
respective regions away from the light line (which follows from an
application of the TSA to both excited states). Lastly, it should be
pointed out that the polaritonic dissymmetry undergoes a global sign
change upon inverting the inter-dipole angle (see Supplementary
Fig. 1). Such is evident from the analytical expressions within the TSA
(seeing that it depends on the 2D chiral interaction terms, and cf. Eq.
(11)), and can generally be understood by the principle that such angle
inversion represents a sample flipping, which for 2D chiral samples
returns their (2D) enantiomer.

Design rules for 2D chiral polaritons
Through both our numerical and approximate analytical treatments of
the quantum electrodynamical theory of ACD, we have arrived at a set
of design rules for optimizing the 2D chirality of polaritons, embodied
by ~gα . These design rules can be summarized as follows.
1. As with polaritonic states in general, the frequency of the cavity

mode should be approximately resonant with that of some tran-
sition of the quantum emitter, Ω ≈ωn [see Eq. (24)].

2. Other quantum emitter transition frequencies (ωm) must be suf-
ficiently close to Ω for the ACD interactions to be relevant, while
being sufficiently separated from ωn to have well-resolved
polariton states [see Fig. 4d].

3. Dipole moments of those other transitions are preferably large
compared to that of the resonant transition, μm≫ μn, while their
mutual angle approaches 45° [see Eqs. (11) and (23)].

4. Lastly, there are considerations regarding energetic stability (not
studied in the present work), which suggests that the resonant
transition preferably involves the lowest-energy excited state of
the quantum emitter, rendering the resulting polariton optimally
stable against relaxation pathways.

The minimal configuration for generating 2D chiral polaritons
based on ACD is that of a quantum emitter featuring two bright,
nondegenerate, and nonparallel transitions. For such minimal config-
uration, the above design rules predict that polaritons reach the

highest degree of 2D chirality once the weakest transition is approxi-
mately resonantwith the cavitymode,whereas the strongest transition
is energetically well-separated yet sufficiently close to the first, while
the two transitions have a mutual orientation angle of 45°.

Application to BDT-based oligothiophene
Having in place the design rules for optimizing 2D chiral polaritons
based on ACD, we now turn our attention to BDT-based oligothio-
phene. Thin films composed of thismoleculewere the specific focus of
our previous work introducing a microscopic yet semiclassical treat-
ment of ACD under weak light–matter coupling47. Importantly, the
intermolecular electronic interactions were found to beweak for these
films47, as a result of which our microscopic treatment was directly
applicable. Excellent agreement was found for linear absorption and
ACD spectra against experimental results48 upon including three
electronic ground-to-excited state transitions coupled to a high-
frequency intramolecular vibration, and parametrized based on elec-
tronic structure calculations and spectral fitting. We will proceed to
theoretically predict the 2D chiral polaritons that would arise when
BDT-basedoligothiophene serves as a quantumemitter in anachiral FP
cavity. As in the previous Sections, we describe this setup within the
limit of a single molecule through application of the modified
Jaynes–Cummings model incorporating the quantum-
electrodynamical theory of ACD.

Figure 6a shows the calculated polaritonic dissymmetry and dis-
persions. We refer to our previous work47 for the applicable molecular
parameters (and reiterate the procedure followed for determining

Fig. 6 | 2D chiral polaritons in BDT-based oligothiophene. Polaritonic dis-
symmetry ~gα for BDT-based oligothiophene as predicted by our theory (a). Over-
lapping states drawn in order of j~gα j such that states with greatest j~gα j are visible.
The molecular model of the BDT-based oligothiophene was adopted from our
previouswork47 (see text for details).Molecular structure shown in (b) with relevant
ground-to-excited state transition dipoles indicated, labeled 1, 2, and 3, in order of
increasing transition energy (orientation of dipoles relative to the molecular
structure is arbitrary to within variations between electronic structure calculations
and spectral fitting47). Also shown are results without the vibrational modes and
only including transitions 1 and 3 (c, d).

Article https://doi.org/10.1038/s41467-023-44523-1

Nature Communications |          (2024) 15:340 7



these parameters under Methods), but note that we adjusted the unit
cell volume to v = 4.46 nm3, in order to more adequately account for
the oligothiophene side chains, and the high-frequency dielectric
constant to ϵ∞ = 8.0, to better agree with relevant experimental high-
frequency dielectric constants78. As previously discussed47, ACD in
BDT-based oligothiophene is due to interactions of a strong electronic
transition at ω1 = 2.6 eV (with μ1 = 13.7 D) interfering with two weaker
transitions at ω2 = 3.1 eV (with μ2 = 6.7 D) and ω3 = 4.0 eV (with
μ2 = 6.4 D) under angles β12 = −10.5° and β13 = 31. 5°. The lowest transi-
tion is furthermore coupled to a vibrational mode with an energy of
185meV. The resultingmanifold of vibronic excited states gives rise to
a large number of pairwise interactions between transitions that con-
tribute to the 2D chiral interaction terms, and thus a large number of
2D chiral polaritons. This is borne out in Fig. 6a where a panoply of
polariton resonances can be seen. What is immediately obvious is that
very largepolaritonicdissymmetries are reached,with values of j~gα j up
to ~1.8, which forms a stark contrast with bare BDT-based oligotio-
phene thin films that reach typical dissymmetry values of ~0.0248.
Again, the significant gain in dissymmetry upon polariton formation is
due to themolecule being able to strongly and repeatedly interactwith
itself within the FP cavity.

In spite of the large number of states, the regions of large j~gα j can
largely be understood based on a simplified model including the
electronic transition at 4.0 eV interactingwith the electronic transition
at 2.6 eV (andwithout the inclusion of vibronic coupling). This is borne
out in Fig. 6c, d where we reproduce the salient features shown in
Fig. 6a by restricting the model to this pair of transitions. Both the
dispersions and polaritonic dissymmetries resulting from this reduced
model can in turn be understood based on our analysis of the two-
dipole system in Fig. 3. Moreover, the involved transitions can be
shown to satisfy the majority of the design rules presented in the
previous Section, especially with the cavity frequency in resonance
with the molecular transition at 4.0 eV. In that case, ~gα benefits from
the comparatively larger dipole moment of the transition at 2.6 eV,
which adds to the favorable inter-dipole angle of 31.5°47. A potential
pitfall would be that the resonantmolecular transition is the highest in
energy rather than the lowest, and a reversal of these excited state
properties is likely to yield 2D chiral polaritons with an improved
energetic stability. Regardless, these results offer encouraging pro-
spects for the practical implementation of 2D chiral polaritons based
on existing ACD samples.

Discussion
In this paper, we have shown that a rare opportunity for generating
2D chiral polaritons is provided by embedding ACD samples in
achiral FP cavities. We have predicted and characterized such
polaritons based on a suitably-modified Jaynes–Cummings model
incorporating a quantum electrodynamical theory of ACD, and
shown that (chiral) dissymmetry factors approach their theoretical
maximum values even when taking the quantum emitter in the
single-molecule limit. This is due to ACD being of second or higher
order in terms of the light–matter interaction, allowing
exceptionally-high dissymmetry factors to be realized as the quan-
tum emitter interacts with itself through the cavity. Moreover, the
inverted chiroptical response originating from ACD proves com-
patible with achiral FP cavities. As such, 2D chiral polariton engi-
neering efforts can optimize exclusively for cavity finesse, without
having to additionally achieve chiral selectivity of the cavity. We
applied our theory to BDT-based oligothiophene, which was pre-
viously experimentally48 and theoretically47 scrutinized for its pro-
nounced ACD response, and provided indications that high
dissymmetries are attainable for experimentally realizable samples.

Our future efforts will be directed towards understanding the
role of cavity finesse as well as collective effects arising from mul-
tiple cavity-confined ACD quantum emitters. The finesse is

expected to predominantly affect the effective path length, which in
turn impacts the 2D chiral interaction terms through Eq. (8). On the
other hand, an increasing number of quantum emitters increases
the chiroptical interaction strength per cavity cycle. We a priori
expect the results presented in the current manuscript to have
minor sensitivity to the dark state manifold that is purported to act
as a reservoir for polariton dynamics under collective strong
coupling18, because the 2D chiral discrimination manifests in
experimentally-observed Rabi components, and since the relevant
chiroptical phenomena manifest in the impulsive photoexcitations
rather than in thermalized polaritonic states. However, for the
purpose of using ACD samples to temporarily store 2D chiral
polarizations, it will be important to understand the role of the dark
state reservoir in directing the polarization evolution beyond the
initial photoexcitation. For the photoexcitation event itself, per-
haps a more pertinent issue is the possibility of helically-stacked
molecules giving rise to a 3D form of ACD with non-inverted chir-
optical selection rules47. This will inhibit the 2D polaritonic chirality,
and will need to be suppressed in the synthesis of ACD samples. It
will also be of interest to consider resonances between ACD samples
and higher-energy modes of a cavity, and to assess whether
polaritonic dissymmetry factors can be enhanced or suppressed
through mode profiles.

Chiral polaritons based on FP cavities have to our knowledge
yet to be experimentally realized. In addition to the challenge of
engineering high-finesse chiral cavities and/or strongly-chiral
quantum emitters, the constraint of 2D chirality imposed by FP
cavities radically reduces engineering opportunities. Due to its 2D
chiral properties and high chiral discrimination, we anticipate ACD
to provide perhaps the most plausible route towards the experi-
mental realization of cavity-based 2D chiral polaritons. Since the
clockwise and counter-clockwise rotating cavity modes correspond
to right- or left-handed circularly-polarized light traveling in a given
direction, any leakage out of the cavity will be circularly polarized.
Hence, an immediate application enabled by cavity-based 2D chiral
polaritons is chiral lasing without the use of macroscopic optical
components. This adds to the prospect of harnessing 2D chiral
polaritons for the transduction between photonic spin and polar-
ized excitations in matter. Here, we foresee that ACD samples can
serve the role of the matter component, such as explored in the
present study, but that it may also enable a symmetry breaking
between 2D chiral excitations in monolayer transition-metal
dichalcogenides33 or porphyrin molecules34 by simultaneous
strong coupling with such materials on the one hand and ACD
samples on the other, which is worthy of further exploration.

A related implementation is one where 2D chiral samples are
embedded in FP cavities in order to break the degeneracy between the
clockwise and counter-clockwise rotatingmodes, without the need for
strong coupling. Recent work has followed this approach by using a
polystyrene layer under torsional shear stress, which under oblique
incidence gives rise to 2D chiral effects emanating from an inter-
ference between LD and LB35. ACD samples draw from similar inter-
ferences, but instead exhibit LDLB interactions native to the sample
itself, with strong 2D chiral selectivity at normal incidence, simplifying
the experimental implementation of 2D chiral cavities, the principles
of which we explored in a recent preprint79. We further wish to note
recent theoretical studies predicting 3D chiral polaritons based on FP
cavities with handedness-preserving mirrors, outlining a non-
perturbative framework80 as well as analytical solutions81. Altogether,
these efforts pave the way to experimental realizations of chiral
polaritonic phenomena, through which new technological opportu-
nities are achievable.

Note added in proof: While this paper was in review, 2D chiral
polaritons based on achiral FP cavities using ACDwere experimentally
reported for perovskite films82.
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Methods
To determine the eigensolutions to Eq. (13), this Hamiltonian was
expressed as a matrix in the photonic and molecular (electronic
and vibrational) number bases. This matrix was then numerically
diagonalized (Python 3.8, numpy version 1.22.383), producing a set
of eigenenergies and associated eigenvectors. These eigenvectors
are then characterized by scalar metrics, as discussed in the
main text.

Parameterization of the BDT-based oligothiophene is based on a
combination of time-dependent density functional theory (TD-DFT)
and spectral fitting as reported in previouswork47. TD-DFT calculations
were performed using QChem 5.384. Two geometries (all-cis and all-
trans) of the BDT-based oligothiophenemolecule were first optimized
in vacuum using the 6–311G(d,p) basis set and ωB97X-D functional85.
Following this optimization, TD-DFT calculations were performed on
the BDT-based oligothiophenemolecule in vacuum and in chloroform
using direct inversion of the iterative subspace86 with CAM-B3LYP87 as
the functional and def2-TZVPPD88 as the basis set of choice. The
chloroform solvent was represented using an integral expansion
formalism of a polarizable continuum model89 with a dielectric con-
stant of ϵ = 4.81.

The oscillatory function B1(l)/l featured in the infinite-order
Mueller calculus treatment was evaluated based on previous work by
refs. 75,76. The underlyingMueller calculus formalism relies on Stokes
vectors, representing the polarization properties of light. For a plane-
wave electric field propagating in the z-direction as

E=
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the Stokes vector is given by
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with the phase difference δ ≡ δy − δx. In order, the Stokes parameters
appearing in this column vector correspond to total light intensity,
x − y intensity difference, x0 � y0 intensity difference, where x0 is the
bisector of the x and y axes and y0 is at a 90° clockwise rotation from x0,
and circular polarization intensity difference (right-handed polariza-
tion minus left-handed polarization, or r − l). Within Mueller calculus,
changes to light polarization due to interactions with a sample are
governed by a linear transformation of the Stokes vector by a matrix,
such that the final polarization is given by Sf =MS0, where M is the
macroscopic “Mueller matrix” of the sample and S0 the initial
polarization.

For a homogeneous sample, M relates trivially to its derivative
H= d

dzM by M = e−Hz, which decomposes as H= �αI+B+D, where �α is
the mean absorption and B and D relate the differential birefringence
and dichroism, respectively90. Factoring out mean absorption, there
are six unique polarization characteristics whose Lie algebras are
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Here, β1, β2, and β3 represent linear (x − y), linear prime (x0 � y0), and
circular (r − l) birefringence, respectively, and d1, d2, d3 are the analogs
for dichroism.

Treating its anisotropic aspects according to their Lorentz group
symmetries, the Mueller matrix to infinite order then follows as75,76

M= exp�Hl = e��αlm = e��αl B0I+B1ðB +DÞ2 +B2ð�B�DÞ+B3ðDB � BDÞ
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ð28Þ
Here, l is the through-sample path length in the z-direction.
Furthermore,
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are the incorporations of the dichroism and birefringence parameters
onto the generators of birefringence and dichroism, respectively, and
Bi are l dependent and real-valued “polarizance” parameters. These
parameters detail the behavior of the restricted Lorentz group,
SO+(1, 3), and follow upon combining B and D, yielding
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Here, N, R, and I are governed by
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where d = (d1, d2, d3) and β = (β1, β2, β3) are the dichroism and bire-
fringence vectors, respectively76. The polarizance parameter B1 serves
as the oscillating part of the function B1(l)/l. Indeed, seeing that N, I,
and R are constants, the oscillatory behavior of B1 becomes apparent.
From the above, the approximations B0 ≈ 1 and B1 =

1
2 l

2 taken for small
path length l are readily motivated (see Supplementary Methods 1),
bringing Brown’s treatment in line with the second-order Mueller
calculus treatment.

As previously noted, within our quantumelectrodynamical theory
of ACD, the underlying Mueller calculus treatment considers cavity
mirrors to represent reciprocal boundaries imposed on the sample.
Importantly, within the applied boundaries, light of one handedness
going forward corresponds to light of the opposite handedness going
backwards. This is justified by noting that the (microscopic) Mueller
matrix for forward (F) propagation mF is equal to the matrix after a
round trip incorporating twomirror reflections (M) and backwards (B)
propagation, mMmBmM, given that only LD and LB contribute (see
Supplementary Methods 2).

Data availability
All relevant data is available at https://doi.org/10.5281/zenodo.10152500,
which directs to github.com/andrewsalij/2DChiralPolACD91. Source data
are provided with this paper.

Code availability
The code used for simulations is available at https://doi.org/10.
5281/zenodo.10152500, which directs to github.com/andrewsalij/
2DChiralPolACD91.
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