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Abstract

Transcription-replication conflict is a major cause of replication stress that arises when replication 

forks collide with the transcription machinery. Replication fork stalling at sites of transcription 

compromises chromosome replication fidelity and can induce DNA damage with potentially 

deleterious consequences for genome stability and organismal health. The block to DNA 

replication by the transcription machinery is complex and can involve stalled or elongating 

RNA polymerases, promoter-bound transcription factor complexes or DNA topology constraints. 

In addition, studies over the past two decades have identified co-transcriptional R-loops as 

a major source for the impairment of DNA replication forks at active genes. However, how 

R-loops impede DNA replication at the molecular level is incompletely understood. Current 

evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases 

and condensed chromatin states associated with R-loops contribute to the impediment of fork 

progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric 

structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. 

Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent 

on their specific structural composition. Here, we will summarize our current understanding of the 

molecular basis for R-loop-induced replication fork progression defects.
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Introduction

R-loops are three-stranded nucleic acid structures that form when RNA binds to DNA to 

create a stable RNA:DNA hybrid, leaving a single-stranded DNA (ssDNA) loop exposed. 

R-loops have been observed in all domains of life and are involved in biological processes, 

such as transcriptional regulation, immunoglobulin (Ig) class switch recombination (CSR), 
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chromosome segregation, telomere maintenance and DNA replication. However, if occurring 

in an unscheduled manner, they can compromise genome stability and contribute to human 

diseases, including cancer, neurodegenerative disorders, and autoimmune diseases (Richard 

and Manley 2017; Garcia-Muse and Aguilera 2019; Wells et al. 2019; Brickner et al. 2022; 

Petermann et al. 2022). Understanding the etiology of pathological R-loops and their impact 

on genome integrity is, therefore, relevant to human health and may ultimately help uncover 

therapeutic vulnerabilities in associated diseases.

R-loops most commonly form during transcription when the nascent transcript threads back 

into the DNA template upstream of the RNA polymerase (RNAP). Normally, R-loop levels 

are tightly controlled by a host of cellular proteins that prevent the formation of R-loops 

or mediate their resolution. However, when R-loop homeostasis is perturbed, unscheduled 

R-loops accumulate across the genome, threatening genome stability. One way in which 

R-loops compromise genome stability is by impeding DNA replication. Since RNAPs and 

replisomes move processively along DNA, collisions between transcription and replication 

can occur in a co-directional (CD) or head-on (HO) orientation (Figure 1). In the CD 

orientation, RNA:DNA hybrids are located on the leading strand template and the displaced 

ssDNA loop forms the lagging strand template, whereas in the HO orientation, RNA:DNA 

hybrids occur on the lagging strand and the displaced ssDNA loop forms the leading strand 

template. Although the genome-destabilizing potential of R-loops is well-documented, the 

molecular mechanisms involved are incompletely understood. In part, this is due to the 

fact that cellular R-loops are structurally diverse, featuring distinct sizes, DNA secondary 

structures and chromatin states that may each individually influence fork progression and 

are, therefore, difficult to parse in vivo. In addition, common approaches, such as 2D 

gel-analysis of replication intermediates or DNA fiber labeling to monitor replication fork 

progression in vivo, are limited in their ability to resolve differential defects in replisome 

progression, leading and lagging strand synthesis. Recent biochemical studies involving 

reconstituted E. coli and budding yeast replisomes have begun to address these issues and 

characterize fork collisions with R-loops at the molecular level. Here, we will review the 

mechanisms implicated in the block to DNA replication at R-loops.

R-loops form co-transcriptionally across the genome

Initially, the ability of RNA molecules to hybridize to dsDNA and form R-loops was 

demonstrated in vitro and developed as a tool to physically map gene positions in DNA 

templates by electron microscopy (Thomas et al. 1976). RNA hybridization to dsDNA 

in these R-loop mapping studies was mediated by reaction conditions that promote the 

denaturation of dsDNA, such as 70 % formamide and elevated temperature. However, 

subsequent biochemical studies demonstrated that stable R-loops could also form under 

native conditions as a product of transcription (Itoh and Tomizawa 1980; Kadesch and 

Chamberlin 1982; Reaban and Griffin 1990). While R-loop formation in trans, i.e., via 

invasion of the DNA by an RNA molecule post transcription, has been documented at 

specific chromosomal loci involved in gene-regulation (Cloutier et al. 2016; Ariel et al. 

2020), telomere length control (Feretzaki et al. 2020), or CSR (Ribeiro de Almeida et al. 

2018), and either cis or trans mechanisms have been observed in cellular reporter systems 
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(Wahba et al. 2013; Lafuente-Barquero et al. 2020), evidence from genomic R-loop profiling 

studies suggests that R-loops most commonly form co-transcriptionally in cis.

Methods to map R-loops generally rely on the RNA:DNA hybrid-specific S9.6 monoclonal 

antibody or catalytically inactive forms of RNase H to isolate RNA:DNA hybrids by affinity 

purification for high-throughput sequence analyses (Ginno et al. 2012; Chen et al. 2017). 

Genomic R-loop locations have also been deduced from S9.6 or RNase H binding sites 

mapped by cleavage under targets and release using nuclease (CUT&RUN) (Yan et al. 

2019), cleavage under targets and tagmentation (CUT&Tag) (Wang et al. 2021; Lyu et al. 

2022), or RNase H UV crosslinking and analysis of cDNA (H-CRAC) (Aiello et al. 2022). 

An orthologous approach exploits the sensitivity of exposed cytosine bases in the displaced 

ssDNA to chemical deamination by bisulfite, which results in cytosine-to-uracil conversions 

(Yu et al. 2003). R-loops will characteristically exhibit cytosine conversions specifically on 

one strand, while ssDNA generated by other forms of DNA unwinding will generally expose 

cytosines on both strands. Bisulfite treatment may also be coupled to RNA:DNA hybrid 

affinity purification (Dumelie and Jaffrey 2017; Wulfridge and Sarma 2021).

Collectively, the genomic profiles reveal that R-loops are widely distributed, covering 3–

10% of eukaryotic genomes (Ginno et al. 2012; Ginno et al. 2013; Sanz et al. 2016; Wahba 

et al. 2016; Chen et al. 2017; Xu et al. 2017; Sanz and Chedin 2019; Crossley et al. 2020; 

Promonet et al. 2020; Wang et al. 2021; Lyu et al. 2022). While this represents a population 

average, recent estimates suggest a steady state level of ~ 300 R-loops per human cell 

(Crossley et al. 2020). Given an average R-loop half-life of 10–15 minutes, this corresponds 

to thousands of R-loops being formed and resolved per human cell cycle (Brickner et al. 

2022). R-loop-forming regions cover several hundred and up to a few thousand base pairs. 

However, single molecule analyses of human R-loops using long-range sequencing indicate 

that R-loop-forming regions often encompass several individual R-loops averaging 200–400 

bp in length, with few R-loops exceeding 2,000 bp (Malig et al. 2020). This agrees with a 

recent electron-microscopic analysis of human cellular R-loops (Stoy et al. 2023).

The genomic R-loop profiles support the co-transcriptional origin of cellular R-loops in 

multiple ways. First and foremost, a large fraction of genomic R-loops maps to genic 

regions and features RNA corresponding to the annotated gene transcripts. R-loop levels 

also often peak at gene boundaries, i.e., transcription start sites (TSSs) and transcription 

termination sites (TTSs), and promoter-proximal R-loops generally exhibit well-defined 5’ 

ends that coincide with the TSS (Sanz et al. 2016; Dumelie and Jaffrey 2017; Crossley et 

al. 2020; Promonet et al. 2020). Moreover, R-loops globally correlate with gene activity, 

open chromatin, and active promoter and enhancer states (Sanz et al. 2016; Chen et al. 

2017; Lyu et al. 2022). Accordingly, R-loops are prevalent at highly expressed loci, such 

as rRNA and tRNA genes (El Hage et al. 2010; Chan et al. 2014; Wahba et al. 2016; 

Abraham et al. 2020). Finally, R-loops often extend across exon-intron junctions, indicating 

that they are formed from unspliced pre-mRNA (Chen et al. 2017; Sanz and Chedin 2019; 

Malig et al. 2020). Despite the predominant sense-orientation of R-loops across gene bodies, 

anti-sense R-loops also occur near promoters, where they are involved in transcriptional 

regulation (Boque-Sastre et al. 2015; Sanz et al. 2016; Dumelie and Jaffrey 2017; Wulfridge 

and Sarma 2021). Moreover, R-loops can promote antisense transcription, likely through 
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promoter-independent transcription of the displaced ssDNA loop, to control gene-regulation 

and transcription termination (Skourti-Stathaki et al. 2014; Tan-Wong et al. 2019).

Molecular determinants of co-transcriptional R-loop formation

The co-transcriptional formation of R-loops in cis may be unexpected as RNAPs from 

all domains of life are designed to prevent extensive hybridization of nascent RNA with 

template DNA by unpeeling the nascent transcript from the template DNA strand and 

directing it out of the RNAP core through a specialized RNA exit channel that is distinct 

from the DNA exit channel (Westover et al. 2004; Vassylyev et al. 2007; Bernecky et 

al. 2016). Consequently, nascent RNA needs to thread back into the DNA upon exiting 

the RNAP to form an R-loop. This mechanism is supported by the sensitivity of co-

transcriptional R-loops to RNase T1, which specifically degrades single-stranded RNA (Roy 

et al. 2008). Although the thread-back mechanism is likely the predominant mechanism 

of co-transcriptional R-loop formation, an alternative mechanism involves the formation 

of R-loops on the anterior side of RNAPs following RNAP backtracking (Zatreanu et al. 

2019). The threading of nascent RNA into DNA depends on the ability of the RNA to pass 

between separated DNA strands upstream of RNAP and wind around the template DNA 

strand. Accordingly, R-loop formation may be disfavored at greater distances from the TSS 

as the ability of the 5’ RNA tail to pass between locally unpaired DNA strands will decrease 

with the size of the 5’ RNA tail (Castillo-Guzman and Chedin 2021; Belotserkovskii and 

Hanawalt 2022). Conversely, conditions that aid co-transcriptional R-loop formation (i) 

increase the conformational flexibility of the nascent RNA emerging from the RNAP, (ii) 

destabilize the DNA duplex in the wake of elongating RNAP, or (iii) promote the stability of 

RNA:DNA hybrids relative to their dsDNA counterparts.

The ability of nascent RNA to invade the template DNA is promoted by conditions that 

prevent the physical sequestration of mRNA chains in co-transcriptional mRNA processing 

complexes. For example, in bacteria, nascent mRNA is translated by ribosomes that 

track closely behind RNAP. Consequently, R-loop formation in E. coli is enhanced by 

the inhibition of co-transcriptional translation (Masse and Drolet 1999). In eukaryotes, 

pre-mRNA is co-transcriptionally processed into mature mRNA by multi-subunit protein 

complexes that mediate the capping, splicing, 3’ cleavage and polyadenylation of the nascent 

transcript, as well as the packaging of the mature mRNA into ribonucleoprotein particles, 

mRNPs, for export to the cytoplasm (Bentley 2014). Consequently, mutations in eukaryotic 

mRNA processing factors can increase cellular R-loop levels and R-loop-dependent genome 

instability. This was first demonstrated for mutations in the Saccharomyces cerevisiae 
(S. cerevisiae) THO/TREX complex, which licenses mRNAs for nuclear export, and 

subsequently supported by observations in chicken DT40 cells depleted for the ASF/SF2 

splicing factor (Huertas and Aguilera 2003; Li and Manley 2005). Since then, many 

additional mutations in mRNA biogenesis factors with similar phenotypes have been 

identified (Garcia-Muse and Aguilera 2019). The observation that spliceosome recruitment 

in the absence of splicing is sufficient to attenuate R-loop formation supports the notion 

that physical sequestration of the transcript and not mRNA processing in itself underlies the 

prevention of co-transcriptional R-loop formation (Bonnet et al. 2017).
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As described in the ‘twin supercoil domain’ model, transcription of topologically 

constrained DNA generates negative DNA supercoils in the wake of RNAP and positive 

supercoils ahead of it (Liu and Wang 1987). The underwound state of negatively supercoiled 

DNA may promote R-loop formation by inducing local DNA strand separation. Consistent 

with this model, negative DNA supercoiling has been linked to R-loop formation in E. coli 
and promotes co-transcriptional R-loop formation in vitro (Drolet et al. 1994; Stolz et al. 

2019). Alternatively, based on the fact that R-loops absorb negative supercoils, it has been 

suggested that R-loop formation is favored on negatively supercoiled DNA because of the 

ability of R-loops to convert topologically strained DNA into an energetically more stable 

relaxed state (Chedin and Benham 2020). Supporting the in vitro data, depletion of DNA 

topoisomerases that relax DNA supercoils globally drives R-loop formation in bacteria and 

eukaryotic cells (Masse and Drolet 1999; Tuduri et al. 2009; El Hage et al. 2010).

Finally, R-loop formation is significantly influenced by the DNA sequence at transcribed 

loci. In general, R-loop formation is promoted by G-richness of the RNA strand due to the 

exceptional thermodynamic stability of rG:dC base pairs (Stolz et al. 2019). Accordingly, 

GC-richness coupled to G/C-skew is a prevalent feature of R-loops across the human 

genome (Ginno et al. 2012; Ginno et al. 2013). This feature was noted early on at Ig switch 

(S) regions, which form R-loops far more efficiently when transcribed in the physiological 

orientation, i.e., when producing a G-rich transcript (Reaban et al. 1994; Daniels and Lieber 

1995; Shinkura et al. 2003). However, high G-content in the RNA alone was found not 

to be sufficient for R-loop formation at Ig S regions in vitro. Instead, efficient R-loop 

formation was specifically promoted by G clustering (Roy et al. 2008). While certain G 

clusters in the displaced ssDNA of R-loops can form G-quadruplexes (G4s) that stabilize 

R-loops (Duquette et al. 2004), G clusters at Ig S regions promote R-loop formation even 

under conditions that disfavor G4s, suggesting that they act instead as nucleation sites for the 

hybridization of the RNA to DNA (Roy et al. 2008). Once formed, G density in the RNA 

without clustering is sufficient to stabilize the R-loop (Roy and Lieber 2009). Of note, A/T 

skew and poly(A) tracts rather than G/C skew appear to be associated with hybrid-prone 

regions in the budding yeast genome (Wahba et al. 2016).

R-loops induce replication-dependent and -independent genome instability

R-loops threaten genome integrity in multiple ways. One inherently destabilizing feature 

of R-loops is their partially single-stranded structure, which renders them susceptible to 

nucleolytic degradation. For example, R-loop junctions are targets for the structure-specific 

nucleotide excision repair endonucleases XPF and XPG (Tian and Alt 2000; Sollier et al. 

2014). Processing of R-loops by XPF and XPG may generate single-stranded DNA breaks 

(SSBs) or double-stranded DNA breaks (DSBs), depending on which strands are targeted 

by XPF and XPG, respectively. Alternatively, XPF/XPG-induced SSBs may be converted 

into DSBs by DNA replication. DSBs may also result from XPF/XPG-induced SSBs when 

these occur close to SSBs on the opposite strand, as has been suggested for R-loops 

accumulating at transcription-stalling topoisomerase 1 cleavage complexes (TOP1ccs) that 

are processed into SSBs by TDP1 (Cristini et al. 2019). Intriguingly, R-loop processing 

by XPF/XPG can induce an autoimmune response linked to Aicardi-Goutières syndrome, 

a neuroinflammatory disease, suggesting that R-loop cleavage may induce the release of 
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immunogenic ssDNA or RNA:DNA fragments into the cytoplasm (Lim et al. 2015; Cristini 

et al. 2022). Consistent with this notion, XPF/XPG activity was recently demonstrated to 

promote the accumulation of nuclear R-loop-derived RNA:DNA hybrids in the cytoplasm 

of human cells with defective R-loop homeostasis, activating an innate immune response 

(Crossley et al. 2023).

DNA breaks at R-loops may also be triggered by the modification or damage of bases 

exposed in the displaced ssDNA and their subsequent processing by DNA repair enzymes. 

For example, the base excision repair (BER) machinery has been linked to DNA breaks 

at R-loops following the deamination of cytosines in the displaced ssDNA by cytosine 

deaminases, such as mammalian activation-induced deaminase (AID) or yeast Fcy1 

(Gomez-Gonzalez and Aguilera 2007; Su and Freudenreich 2017). Uracils resulting from 

cytosine deamination are excised by uracil DNA glycosylase to generate abasic sites that 

in turn are processed into SSBs by an apurinic/apyrimidinic (AP) endonuclease. In theory, 

multiple such ssDNA breaks or nicks may be converted into DSBs if they occur in close 

proximity and on opposite strands. In addition, R-loops may be processed into DSBs by 

mismatch repair (MMR) nucleases following cytosine deamination (Su and Freudenreich 

2017). The prevalence of such repair-induced DNA breaks at R-loops under physiological 

conditions remains to be determined, as AID expression is effectively restricted to B cells, 

where it targets R-loops at Ig S regions to induce CSR. However, AID also targets non-Ig 

genes in B cells to induce translocations to Ig S regions associated with B cell lymphomas, 

which was recently shown to be promoted by R-loops induced by the loss of TET family 

cytosine dioxygenases (Robbiani et al. 2008; Chiarle et al. 2011; Shukla et al. 2022). 

Whether related cytosine deaminases of the APOBEC family target R-loops in other cell 

types is not known.

While the presence of ssDNA accounts for some of the instability of R-loops, a major source 

of R-loop-induced genome instability was revealed by the finding that co-transcriptional R-

loops impede normal fork progression. In one study, depletion of Topo I in mammalian cells 

resulted in transcription-dependent and RNase H1-sensitive DNA breaks and replication 

defects (Tuduri et al. 2009). Notably, DNA breaks resulting from Topo I deficiency 

occurred predominantly in S phase, suggesting a causative role for DNA replication in 

R-loop-mediated genome instability. In another study, co-transcriptional R-loops in E. 
coli were shown to induce a block to replication fork progression as well as replication-

dependent recombination and genome instability, while R-loop induction in HeLa cells by 

depletion of the splicing factor SRSF1 caused S phase-specific DNA damage and replication 

impairment (Gan et al. 2011). These findings agreed with prior studies in budding yeast, 

demonstrating that transcription-associated recombination (TAR) is mediated by replication 

fork impairment and is dependent on R-loops (Huertas and Aguilera 2003; Prado and 

Aguilera 2005; Wellinger et al. 2006). Together, these studies established that R-loops could 

induce genome instability due to replication fork stalling during transcription-replication 

conflict (TRC).
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Co-incidence of replication and transcription can cause transcription-

replication conflict

TRC is a major inducer of genome instability in both bacteria and eukaryotes (Lang and 

Merrikh 2018; Gomez-Gonzalez and Aguilera 2019). In bacteria, transcription-replication 

collisions are inevitable as these processes are not temporally separated and replication fork 

progression rates greatly exceed those of RNAP (Mirkin and Mirkin 2005). In contrast, in 

eukaryotes the spatial and temporal compartmentalization of transcription and replication 

permits at least partial mitigation of TRC (Lalonde et al. 2021). However, certain long genes 

associated with common fragile sites (CFSs) require more than one cell cycle to complete 

transcription and many genes required for cell proliferation are specifically expressed in S 

phase, limiting the possibility to confine transcription and replication to separate subnuclear 

compartments (Helmrich et al. 2011). Despite the apparent inevitability of collisions 

between DNA replication and transcription, eukaryotic replication forks progress at largely 

uniform rates across most of the genome, indicating that transcription is not a major obstacle 

for DNA replication under normal conditions (Sekedat et al. 2010; Claussin et al. 2022). 

Consistent with these observations, a recent study employing a live cell imaging approach 

in budding yeast to monitor fork progression across a galactose-inducible reporter gene 

found that transcription did not present a major obstacle to replication forks in wild-type 

cells (Tsirkas et al. 2022). However, as discussed below, uninterrupted fork progression is 

highly dependent on ancillary proteins, in particular DNA helicases. Thus, transcription does 

present a potential barrier to replication forks.

In eukaryotes, DNA helicases implicated in facilitating replisome progression through 

active genes include Rrm3 and Sen1/senataxin, while DinG, Rep, UvrD and PcrA perform 

analogous functions in bacteria (Ivessa et al. 2003; Azvolinsky et al. 2009; Guy et al. 

2009; Boubakri et al. 2010; Alzu et al. 2012; Merrikh et al. 2015; Osmundson et al. 

2017; Tran et al. 2017; Hawkins et al. 2019; Aiello et al. 2022; Claussin et al. 2022). In 

addition to ancillary helicases, cells employ a variety of additional mechanisms to mitigate 

transcription-replication collisions. For example, in eukaryotes, transcription-coupled H3K4 

methylation (H3K4me) can slow down replication forks to buffer active genes from TRC 

(Chong et al. 2020). Topoisomerase I has been suggested to buffer gene bodies from TRC 

by promoting the stable pausing of replication forks at the 3’ end of HO-oriented genes 

(Promonet et al. 2020). Replisome progression can also be controlled directly to limit 

TRC. For example, stress-activated protein kinases (SAPKs) can slow down replication 

forks by phosphorylating Mrc1/Claspin in response to environmental stress and unscheduled 

transcription (Duch et al. 2013; Duch et al. 2018; Ulsamer et al. 2022). Fork progression 

is also controlled by the replication checkpoint, which may slow down replication forks 

in response to TRC by inducing the phosphorylation of Mrc1 and Mcm10 (Seiler et al. 

2007; Gomez-Gonzalez et al. 2009; Hamperl et al. 2017; Bacal et al. 2018; Devbhandari 

and Remus 2020; Promonet et al. 2020; Frattini et al. 2021; McClure and Diffley 2021). 

Conversely, the replication checkpoint may also down-regulate gene expression to limit TRC 

under conditions of replication stress (Nguyen et al. 2010).
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Collision orientation influences transcription-replication conflict

Since RNAPs encircle both DNA strands during transcription, they may be expected to 

present an impediment to replication forks irrespective of orientation. However, in principle, 

replisomes might simply follow behind RNAPs moving in the same direction. While this 

may happen in eukaryotes, where RNAP and replisomes progress at similar rates, bacterial 

replisomes advance at a ~ 20x greater rate than RNAP, making CD collisions in bacteria 

inevitable (Mirkin and Mirkin 2005). Moreover, RNAP progression during transcription is 

often punctuated by distinct pauses, which increases the potential for CD RNAP-replisome 

collisions. For example, promoter-proximal RNAP pausing occurs following transcription 

initiation but prior to elongation, while RNAP pausing is also specifically induced 

during elongation to coordinate transcription with RNA folding, processing, translation or 

repair (Mayer et al. 2017). A particularly stable form of RNAP stalling involves RNAP 

backtracking, which is induced by the misincorporation of rNTPs or when RNAP encounters 

physical obstacles and involves the disengagement of the RNA 3’ end from the RNAP 

catalytic site. Consequently, backtracked RNAPs exacerbate replisome-RNAP collisions, 

causing DSBs specifically during CD collisions in E. coli (Dutta et al. 2011). Similarly, 

RECQL5, a RECQ family helicase that controls transcription by suppressing RNAP stalling, 

alleviates TRC in human cells, indicating that stalled RNAPs pose a strong impediment to 

replication forks also in eukaryotes (Saponaro et al. 2014; Urban et al. 2016).

Although studies in Bacillus subtilis (B. subtilis) demonstrate that CD collisions can 

challenge uninterrupted fork progression (Merrikh et al. 2011; Mangiameli et al. 2017), HO 

transcription-replication collisions are generally considered a greater obstacle to replication 

forks. This had been hypothesized early on based on the observation that genes in the 

E. coli genome are predominantly co-oriented with replication (Brewer 1988) and was 

subsequently confirmed experimentally in an electron-microscopic study monitoring fork 

progression through the highly transcribed rrnB ribosomal RNA operon in E. coli (French 

1992). Several later studies in both E. coli and B. subtilis confirmed the increased stalling 

of replication forks at HO-oriented genes and demonstrated that HO TRC correlates with 

reduced replication fidelity and genome stability (Mirkin and Mirkin 2005; Wang et al. 

2007; Srivatsan et al. 2010; Paul et al. 2013; Sankar et al. 2016; Lang et al. 2017). While 

several of these studies analyzed TRC at genes featuring RNAP arrays, biochemical studies 

with reconstituted E. coli or T4 replisomes showed that even single stalled RNAPs could 

block replisomes in the HO orientation, whereas RNAPs in the CD orientation presented 

a minor obstacle (Liu et al. 1993; Liu and Alberts 1995; Pomerantz and O’Donnell 2008; 

Pomerantz and O’Donnell 2010).

Early studies in yeast demonstrated that eukaryotic replication forks are also more sensitive 

to stalling during HO encounters with highly active genes, such as tRNA genes (Deshpande 

and Newlon 1996). Although a later genome-wide study found that replication fork stalling 

at tRNA genes is not strictly dependent on collision orientation, a greater proportion 

of HO collisions caused fork stalling than CD collisions (Osmundson et al. 2017). 

HO transcription-replication collisions in yeast were also found to induce significantly 

higher levels of transcription-associated mutagenesis and recombination than CD collisions 

(Prado and Aguilera 2005; Kim et al. 2007). Similarly, at yeast ribosomal RNA gene 
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(rDNA) repeats, where polar replication fork barriers (RFBs) ensure the co-orientation of 

transcription and DNA replication, loss of co-orientation in the absence of functional RFBs 

resulted in increased recombination (Takeuchi et al. 2003).

Genome-wide replication profiles also reveal a bias towards the co-orientation of 

transcription and replication in human cells, with replication origins often situated upstream 

of highly expressed genes and replication termination occurring preferentially downstream 

of HO-oriented genes (Petryk et al. 2016; Chen et al. 2019). Consequently, perturbation of 

this organization by oncogene activation or replication stress is linked to genome instability 

(Barlow et al. 2013; Kotsantis et al. 2016; Stork et al. 2016; Chen et al. 2019). A direct 

assessment of the importance of collision orientation on TRC was hampered for a long time 

by the lack of origin specificity in higher eukaryotes. This problem was eventually overcome 

in human cells with the help of episomes harboring the Epstein-Barr virus replication 

origin (oriP), which directs the site-specific establishment of unidirectional replication forks 

(Hamperl et al. 2017). Using this approach, HO transcription-replication collisions were 

demonstrated to reduce transcription and decrease plasmid stability to a greater degree than 

CD collisions.

Molecular impediments to replication forks at active genes

Transcription can clearly form an impediment to replication forks that imposes a 

dependency on ancillary factors and specific genome organization to ensure error-free 

and complete genome replication. However, the molecular mechanisms underlying TRC 

remain incompletely understood and may indeed be diverse. Biochemical studies involving 

reconstituted replisomes suggest that RNAPs sterically block replisome progression (Liu 

and Alberts 1995; Pomerantz and O’Donnell 2010; Bruning and Marians 2020) (Figure 2a). 

This is consistent with the observation that mutations that stabilize RNAP II on chromatin 

exacerbate TRC, while factors that promote the removal of stalled RNAPII attenuate TRC 

(Felipe-Abrio et al. 2015; Poli et al. 2016; Landsverk et al. 2020; Tsirkas et al. 2022). In 

addition to RNAP, promoter-bound transcription factor complexes can also create a block 

to replication forks independently of transcription (Yeung and Smith 2020) (Figure 2b). 

Moreover, superhelical strain accumulating in the DNA between opposing replisomes and 

RNAPs or resulting from the physical tethering of active genes to nuclear pore complexes 

may also stall replisomes (Bermejo et al. 2011; Promonet et al. 2020; Lang and Merrikh 

2021; Tsirkas et al. 2022) (Figure 2c). Prolonged stalling of replication forks at DNA 

supercoils may eventually cause fork collapse due to degradation by structure-specific 

nucleases, such as Mus81 (Matos et al. 2020; Promonet et al. 2020). Positive torsional strain 

building up in the DNA between converging RNAPs and replisomes may also be absorbed 

by reversal of stalled replication forks, generating potentially unstable four-way junctions 

(Postow et al. 2001). Since fork reversal underpins fork slow-down during replication stress, 

fork stalling may be an active process mediated by fork remodeling enzymes and not just a 

consequence of steric inhibition (Vujanovic et al. 2017; Chappidi et al. 2020; Andrs et al. 

2023; Stoy et al. 2023) (Figure 2d).
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R-loops exacerbate transcription-replication conflict

Importantly, the observation that RNase H overexpression can rescue replication defects 

and TRC-associated genome instability identified R-loops as another source for the block 

to fork progression at active genes. In eukaryotes, this was originally demonstrated in cells 

harboring mutations in Topo I, the splicing factor SRSF1, or the mRNA export licensing 

complex THO/TREX (Wellinger et al. 2006; Tuduri et al. 2009; Gan et al. 2011). Since 

then, many more proteins impacting R-loop homeostasis and R-loop-dependent genome 

instability have been identified (Garcia-Muse and Aguilera 2019; Brickner et al. 2022). 

Globally, these can be grouped into four broad functional categories: Factors that (i) prevent 

the formation of R-loops, (ii) promote the formation of R-loops, (iii) resolve R-loops, or (iv) 

stabilize R-loops.

Factors preventing the formation of R-loops include proteins involved in mRNA processing 

and mRNP biogenesis (Garcia-Muse and Aguilera 2019). As described above, mutational 

inactivation of these complexes may physically expose nascent RNA and thus facilitate 

RNA:DNA hybridization. Alternatively, the dissociation of pre-mRNA processing factors 

may also be induced by RNAP pausing at DNA lesions to facilitate RNAP backtracking, 

with similar effects on R-loop formation (Tresini et al. 2015). Accordingly, proteins 

preventing extended pausing of RNAP elongation complexes, such as RECQL5, or 

promoting transcript release from paused RNAP, such as Sen1/senataxin, Xrn2 and BRCA1, 

also prevent R-loop formation (Mischo et al. 2011; Skourti-Stathaki et al. 2011; Saponaro et 

al. 2014; Hatchi et al. 2015; Morales et al. 2016; Urban et al. 2016). In bacteria, the physical 

association of the PcrA helicase with RNAP near the RNA and DNA exit channels may 

actively suppress R-loops by preventing RNA:DNA hybridization (Urrutia-Irazabal et al. 

2021). R-loop formation is also suppressed by proteins inhibiting the formation of ssDNA. 

In addition to topoisomerases mentioned earlier these include PrimPol, which suppresses 

ssDNA formation by promoting leading strand restart following replisome uncoupling 

from leading strand synthesis (Svikovic et al. 2019). R-loop homeostasis in eukaryotes 

is also greatly influenced by chromatin regulators, such as histone chaperones, chromatin 

remodelers, and histone modifiers (Bayona-Feliu and Aguilera 2021). Whether these act 

directly on R-loops or indirectly control chromatin access of R-loop processing factors 

remains to be determined.

Several proteins, such as Rad51AP1 at telomeres and DSBs (Ouyang et al. 2021; Kaminski 

et al. 2022; Yadav et al. 2022), PRC2 at polycomb response elements (PREs) (Alecki et al. 

2020), or Ddx1 at Ig S regions (Ribeiro de Almeida et al. 2018), drive R-loop formation 

by facilitating RNA:DNA hybridization. However, these cases occur in non-pathological 

contexts and may not involve co-transcriptional R-loops. Curiously, although the DHX9 

helicase preferentially unwinds RNA:DNA hybrids in vitro and suppresses CPT-induced 

R-loops in human cells, loss of DHX9 reduces pathological R-loops in cells defective for 

splicing factors (Chakraborty and Grosse 2011; Chakraborty et al. 2018; Cristini et al. 

2018). To reconcile these observations, DHX9 was proposed to resolve RNA secondary 

structure in nascent RNA, which may normally promote mRNP assembly but promote 

RNA:DNA hybridization in the absence of splicing factors.
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Once formed, R-loops can be resolved by the unwinding or degradation of RNA:DNA 

hybrids. RNA:DNA hybrid unwinding is catalyzed by RNA/DNA helicases or branchpoint 

translocases. Examples for the latter include FANCM in eukaryotes and RecG in bacteria, 

which may extrude RNA strands from hybrids by catalyzing the annealing of the DNA 

template strands (Hodson et al. 2022). A host of RNA/DNA helicases has been implicated in 

R-loop removal. In bacteria, these include DinG and UvrD, while a large number of DEAD-

box RNA helicases (DDXs), Sen1/senataxin, Aquarius and Sgs1/BLM have been implicated 

in R-loop suppression in eukaryotes (Boubakri et al. 2010; Garcia-Muse and Aguilera 2019; 

Bruning and Marians 2021; Brickner et al. 2022). The involvement of multiple helicases in 

R-loop homeostasis may indicate that they act in a context-specific manner. Such specificity 

may be established by proteins, such as PARP1, that target helicases to R-loops (Lin et al. 

2022; Laspata et al. 2023). Alternatively, helicases may be cell cycle-regulated and directed 

to select R-loops via physical association with replisomes, such as Sen1 (Alzu et al. 2012; 

Achar et al. 2020; Appanah et al. 2020; San Martin-Alonso et al. 2021; Zardoni et al. 2021; 

Aiello et al. 2022).

R-loop resolution by nucleolytic degradation of the RNA strand is predominantly carried 

out by RNase H enzymes (Hyjek et al. 2019). While E. coli contains a single RNase H 

enzyme, eukaryotes contain two RNase H enzymes, RNase H1 and RNase H2, which act 

in a context-specific manner (Zimmer and Koshland 2016; Parajuli et al. 2017; Zhao et 

al. 2018; Lockhart et al. 2019). In addition to RNase H, RNA exonucleases, such as Xrn2 

and the exosome complex, have also been implicated in R-loop resolution (Gavalda et al. 

2013; Richard et al. 2013; Morales et al. 2016; Mersaoui et al. 2019). To gain access to 

their RNA substrate, these nucleases may act coordinately with helicases, such as SETX 

and DDX5 (Skourti-Stathaki et al. 2011; Richard et al. 2013; Mersaoui et al. 2019). DDX5 

has moreover been implicated in an alternative R-loop resolution mechanism involving 

RNA/DNA decatenation by TOP3B (Saha et al. 2022).

Factors that may influence the stability of RNA:DNA hybrids include RNA:DNA hybrid-

binding proteins. One example is yeast Yra1, which binds RNA:DNA hybrids in vitro 
and can be recruited to chromatin in an R-loop-dependent manner, where it exacerbates 

TRC-associated genome instability (Garcia-Rubio et al. 2018). Interestingly, Yra1-binding 

even converts CD-oriented R-loops that do not normally present a threat to genome stability 

into an obstacle to replication forks, illustrating the potential of R-loop-binding proteins to 

modulate the block to replication forks at R-loops. In humans, modification of the RNA 

by N6-methyladenosine (m6A) may either stabilize or destabilize R-loops. In the case of 

DNA damage-induced pathological R-loops, TonEBP targets the m6A methyltransferase 

METTL3 to R-loops, which recruits the m6A reader YTHDF2 to induce the degradation of 

the RNA (Abakir et al. 2020; Kang et al. 2021). Conversely, m6A modification of TERRA 

by METTL3 stabilizes telomeric R-loops by recruiting the m6A reader YTHDC1 (Chen et 

al. 2022).

R-loop orientation influences transcription-replication conflict

Consistent with HO transcription-replication collisions generally presenting a more potent 

block to fork progression than CD collisions, specifically R-loops associated with HO-
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oriented genes impair fork progression and genome stability in bacteria (Gan et al. 2011; 

Lang et al. 2017). Moreover, in both human cells and B. subtilis, R-loop levels are by 

some unknown mechanism aggravated during HO collisions (Hamperl et al. 2017; Lang 

et al. 2017). While R-loop levels did not correlate with collision orientation in a yeast 

reporter system, R-loop-mediated genome instability was also here specifically linked 

to HO collisions (Garcia-Rubio et al. 2018). However, neither R-loop levels nor R-loop-

induced DNA damage strongly correlate with collision orientation across the yeast genome, 

indicating that R-loops can present an impediment to replication in either orientation 

(Costantino and Koshland 2018; Achar et al. 2020). In agreement with this hypothesis, both 

CD and HO R-loops induce DNA damage in human cells (Hamperl et al. 2017). Strikingly, 

the DNA damage in the two orientations is not equivalent as HO R-loops induced an ATR-

dependent DNA damage response (DDR), whereas CD R-loops induced an ATM-dependent 

DDR.

R-loops present multiple distinct impediments to DNA replication

How R-loops block DNA replication at the molecular level is incompletely understood. 

Fork stalling at R-loops may be an active process involving fork reversal, as inhibition 

of fork reversal by ZRANB3 depletion suppresses the block to fork progression during 

R-loop-induced replication stress (Chappidi et al. 2020; Andrs et al. 2023; Stoy et al. 2023). 

Moreover, since not all replication forks are expected to collide with R-loops at any given 

time, global fork slowing may also be an indirect consequence of replication checkpoint 

signaling (Seiler et al. 2007; Mutreja et al. 2018; Promonet et al. 2020). However, several 

lines of evidence indicate that R-loops also present steric obstacles to replication forks. 

The mechanistic dissection of these impediments has been hampered by the fact that 

cellular R-loops are structurally complex and diverse. For example, R-loops exhibit a 

range of sizes (Malig et al. 2020), associate with many different proteins (Cristini et al. 

2018; Wang et al. 2018; Wu et al. 2021; Yan et al. 2022), exhibit distinctive chromatin 

states (Castellano-Pozo et al. 2013; Skourti-Stathaki et al. 2014; Sanz et al. 2016), and 

can feature a variety of DNA secondary structures (Duquette et al. 2004; Loomis et al. 

2014; Neil et al. 2018; Svikovic et al. 2019), each of which may individually present a 

block to normal fork progression. Moreover, as both R-loops and replication forks are 

structurally asymmetric, collision orientation determines which part of an R-loop will be 

initially encountered by the replicative DNA polymerases or the helicase. In this regard 

it is important to note that bacterial and eukaryotic replisomes fundamentally differ from 

each other in that the eukaryotic replicative DNA helicase, CMG (Cdc45-MCM-GINS), 

encircles the leading strand template, while bacterial replicative DNA helicases, e.g. E. 
coli DnaB, encircle the lagging strand template. Recent biochemical studies involving 

reconstituted E. coli and budding yeast replisomes have begun to dissect how RNA:DNA 

hybrids, DNA secondary structures and stalled RNAPs associated with R-loops differentially 

impact replisome progression and DNA synthesis on leading and lagging strands (Bruning 

and Marians 2020; Bruning and Marians 2021; Kumar et al. 2021). These studies also 

demonstrated that R-loops are not obligatory impediments to fork progression, which agrees 

with the observations that R-loop orientation influences the outcome of R-loop-replisome 

collisions and that only a subset of R-loops is associated with DNA damage in eukaryotic 
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cells (Gan et al. 2011; Hamperl et al. 2017; Lang et al. 2017; Costantino and Koshland 2018; 

Promonet et al. 2020).

The impact of RNA:DNA hybrids on replisome collisions with R-loops

At CD R-loops in eukaryotes, the RNA:DNA hybrid on the leading strand template will 

be initially encountered by the replicative DNA helicase. CMG can unwind RNA:DNA 

hybrids, provided the 5’ end of the RNA strand is not hybridized to the DNA, which may 

explain why replisomes reduce CD R-loop levels in human cells (Hamperl et al. 2017; 

Kumar et al. 2021) (Figure 3a). CMG can also translocate over RNA:DNA hybrids if the 

RNA 5’ end is annealed to the DNA (Kumar et al. 2021). This will transfer the RNA:DNA 

hybrid to the back of the replication fork, where it is encountered by the leading strand 

polymerase, Pol ε. Since Pol ε lacks strand displacement activity, RNA:DNA hybrids can 

induce uncoupling of replisome progression from leading strand synthesis (Kumar et al. 

2021). Intriguingly, the RNA strand of RNA:DNA hybrids is able to prime leading strand 

restart in vitro (Kumar et al. 2021) (Figure 3b). Continued replisome progression at CD 

R-loops thus comes at the cost of retaining RNA in the daughter DNA, which would require 

post-replicative repair for RNA:DNA hybrid resolution. Interestingly, RNA:DNA hybrid 

accumulation behind replication forks was recently also observed by electron microscopy 

in human cells experiencing hormone-induced R-loop-dependent replication stress, raising 

the possibility that such leading strand restart may occur vivo (Stoy et al. 2023). In addition 

to RNA:DNA unwinding and bypass, fork stalling also occurs at some CD R-loops in 
vitro (Kumar et al. 2021). This stalling is prevented by RNase H treatment but exacerbated 

by pyridostatin, a G4-stabilizing ligand, confirming RNA:DNA hybrids as the cause and 

implicating G4s in the DNA or RNA strand in the block to replisome progression (Figure 

3c). Unlike fork stalling at protein-DNA barriers, fork stalling at CD R-loops is independent 

of Csm3-Tof1, a subcomplex of the fork protection complex (FPC), indicating that the stall 

is due to steric hindrance (Kumar et al. 2021).

In bacteria, RNA:DNA hybrids at CD R-loops are encountered by the leading strand 

DNA polymerase. In the reconstituted E. coli DNA replication system, short RNA:DNA 

hybrids of 19 bp length on the leading strand were efficiently unwound, presumably via 

strand-displacement by DNA Pol III, and thus did not disrupt leading strand synthesis 

or replisome progression (Bruning and Marians 2020) (Figure 4a). Longer RNA:DNA 

hybrids of 100 bp length were also readily bypassed by the replisome, but bypass was 

delayed. This delay was suppressed by UvrD, indicating that RNA:DNA hybrids on the 

leading strand can interfere with replisome progression despite the fact that the replicative 

DNA helicase, DnaB, tracks along the lagging strand template. The molecular basis for 

this is unknown. More importantly, longer RNA:DNA hybrids on the leading strand were 

retained in the replicated DNA following replisome bypass, resulting in leading strand gaps. 

Replisome bypass can involve either leading strand skipping, i.e., re-priming of the leading 

strand by DnaG primase downstream of the RNA:DNA hybrid, or mRNA takeover, i.e., 

priming of leading strand restart by the RNA of RNA:DNA hybrids (Figure 4b). Replisome 

skipping is favored at longer RNA:DNA hybrids, while mRNA takeover dominates at 

shorter RNA:DNA hybrids (Bruning and Marians 2020; Bruning and Marians 2021). Thus, 
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CD R-loops can principally be bypassed by bacterial replisomes in vitro, which is consistent 

with observations in vivo (Gan et al. 2011; Lang et al. 2017).

Since CMG encircles the leading strand template, eukaryotic replisomes can generally 

bypass steric blocks on the lagging strand (Fu et al. 2011; Kose et al. 2019). Accordingly, 

reconstituted budding yeast replisomes could bypass RNA:DNA hybrids on the lagging 

strand at HO R-loops in vitro (Kumar et al. 2021). Interestingly, although RNA primers 

at the 5’ end of Okazaki fragments are efficiently processed by Pol δ and Fen1 during 

normal lagging strand synthesis, R-loop-associated RNA:DNA hybrids were resistant to 

such processing and were retained in the newly synthesized lagging strand (Figure 5a). 

The reasons for this are not clear, but this may provide yet another mechanism for the 

accumulation of RNA:DNA hybrids behind replication forks in human cells (Stoy et al. 

2023).

In the reconstituted E. coli replication system, R-loop-associated RNA:DNA hybrids on the 

lagging strand that are less than 100 bp in length do not present a significant obstacle to 

replisome progression and may either get unwound by DnaB (Figure 5b) or strand-displaced 

by DNA Pol III following DnaB translocation over the RNA:DNA hybrid (Figure 5c) 

(Bruning and Marians 2020). However, a low level of leading strand blockage was observed 

at 100 bp long RNA:DNA hybrids, indicative of replisome pausing. Moreover, longer 

RNA:DNA hybrids remained largely associated with replicated DNA in vitro (Figure 5d), 

which is consistent with the recent observation of RNA:DNA hybrids behind replication 

forks following HO R-loop-replisome collisions in B. subtilis cells (Bruning and Marians 

2020; Stoy et al. 2023).

Stalled RNAPs exacerbate the R-loop-dependent block to DNA replication

As mentioned above, stalled RNAPs are a major contributor to TRC. Importantly, R-loop 

formation and RNAP stalling mutually reinforce each other. For example, deregulated 

promoter-proximal RNAP pausing, RNAP stalling at DNA lesions and uncontrolled RNAP 

backtracking are potent inducers of R-loops (Sordet et al. 2009; Zhang et al. 2017; Shivji 

et al. 2018; Herold et al. 2019; Zatreanu et al. 2019). Conversely, R-loops impede RNAP 

progression (Kireeva et al. 2000; Huertas and Aguilera 2003; Chakraborty et al. 2018). 

The contribution of stalled RNAPs to the R-loop-dependent block to DNA replication was 

recently examined in the reconstituted E. coli DNA replication system (Bruning and Marians 

2020; Bruning and Marians 2021). RNAPs were stalled by nucleotide restriction and the 

impact of single stalled RNAPs or arrays of up to three stalled RNAPs at 19–100 bp long 

R-loops was investigated. Collectively, the data demonstrate that stalled RNAPs exacerbate 

the impact of R-loops on fork progression and that the impact scales with the number of 

stalled RNAPs. CD RNAP-R-loop complexes disrupted leading strand synthesis but caused 

only minor delays in replisome progression, allowing leading strand restart by mRNA 

takeover downstream of short R-loops associated with a single RNAP (Figure 6a) or by 

DnaG-catalyzed repriming of the leading strand downstream of larger and more complex 

CD RNAP-R-loop complexes (Figure 6b). Thus, while a ‘naked’ short R-loop of 19 bp 

length on the leading strand did not prevent continuous leading strand synthesis, even a 

single stalled RNAP complex associated with a 19 bp R-loop blocked continuous leading 
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strand synthesis, imposing a requirement for leading strand restart. While the replisome 

could dislodge CD RNAPs from R-loops, HO RNAP-R-loops presented a strong block to 

replisomes that had to be cleared by UvrD for uninterrupted fork progression (Figure 6c).

DNA secondary structures can inhibit DNA synthesis and replisome 

progression at R-loops

Non-B-form DNA secondary structures frequently form in repetitive or low-complexity 

DNA sequences and can impede DNA replication with potentially deleterious consequences 

for genome stability (Mellor et al. 2022). The folding of many DNA secondary structures, 

such as hairpins, G-quadruplexes (G4s), H-DNA or i-motif DNA, is facilitated in ssDNA. 

Consequently, R-loops have an increased potential to form secondary structures on the 

displaced ssDNA loop. This was first documented at co-transcriptional R-loops featuring 

G4s on the G-rich displaced strand (Duquette et al. 2004). G4s are compact stacks of 

G-quartets, each stabilized by Hoogsteen hydrogen-bonded guanines arranged in a planar 

ring configuration, that form at G-rich repeats composed of at least four tracts of 2–3 

Gs (Burge et al. 2006). The characteristic GC-skew associated with many R-loop forming 

regions thus seems conducive to G4 formation. Indeed, genomic regions exhibiting a high 

G4 potential, e.g. telomeres, rDNA repeats, and Ig S regions, are well-known to form 

R-loops and G4 and R-loop positions also correlate globally in mammalian genomes (Yu 

et al. 2003; El Hage et al. 2010; Chan et al. 2014; Chen et al. 2017; Feretzaki et al. 

2020; Lyu et al. 2022). Moreover, R-loops are a source for genome instability induced by 

chemical G4 ligands in cancer cells, further illustrating the link between R-loops and G4s 

(De Magis et al. 2019). Importantly, the presence of G4s on the displaced ssDNA loop and 

an RNA:DNA hybrid on the opposite strand gives rise to potential simultaneous leading 

and lagging strand obstacles, which complicates the interpretation of which is the primary 

replication stress-causing element.

G4s have long been recognized to inhibit DNA polymerase progression (Lerner and 

Sale 2019). In addition, G4s specifically in the leading strand template can inhibit DNA 

unwinding by CMG (Kumar et al. 2021; Batra et al. 2022). Consequently, G4s especially 

on the leading strand template are a source for DNA replication stress associated with 

genetic or epigenetic instability (Sarkies et al. 2010; Lopes et al. 2011; Sato et al. 2021). In 

contrast, a recent live cell imaging study in budding yeast found that G4 sequences inhibited 

fork progression specifically when placed on the lagging strand template, indicating that 

the impact of G4s on DNA replication may be context-dependent (Dahan et al. 2018). 

Moreover, G4s are structurally diverse and exhibit a range of thermodynamic stabilities 

that determine their impact on DNA replication (Piazza et al. 2015; Piazza et al. 2017). 

Accordingly, G4-stabilizing chemical ligands are potent aggravators of G4-dependent 

replication stress (Piazza et al. 2010; Piazza et al. 2012; Rodriguez et al. 2012). Conversely, 

many DNA helicases, including WRN, BLM, Sgs1, DDX11, Pif1, FANCJ and RTEL1 in 

eukaryotes or Rep in bacteria, have been implicated in destabilizing G4s and promoting the 

replication of G4 DNA (Lerner and Sale 2019).
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The impact of G4s on replisome collisions with R-loops was recently investigated using the 

reconstituted budding yeast DNA replication system (Kumar et al. 2021). In this system, 

R-loops were formed by transcription of a 1.4 kb region of the mouse Airn gene that was 

previously shown to be prone to form R-loops (Ginno et al. 2012; Kumar and Remus 2022). 

This sequence element features a pronounced G/C skew and an array of sequences with G4 

potential. Electron-microscopic analysis revealed that R-loops formed at this sequence in 
vitro were heterogeneous in size and distribution and, therefore, likely featured variable G4 

potential on the displaced ssDNA (Kumar et al. 2021). At CD R-loops, when the displaced 

ssDNA forms the lagging strand template, G4s could be bypassed by the replisome but 

created gaps in the newly synthesized lagging strand (Figure 7a). In contrast, at R-loops in 

the HO orientation, i.e., when the displaced ssDNA forms the leading strand template, G4s 

induced replisome stalling (Figure 7b) or disrupted leading strand synthesis that could be 

restarted by repriming downstream of the R-loop (Figure 7c). The variability in outcomes 

is likely derived from the heterogeneity of R-loops. As observed at RNA:DNA hybrids, 

replisome stalling at G4s was independent of Csm3-Tof1, indicating that G4s present a 

steric block to the replisome. Moreover, the replication impediments on both the leading and 

lagging strand were suppressed by the Pif1 helicase, consistent with the ability of Pif1 to 

promote replication fork progression at G4s in vivo (Ribeyre et al. 2009; Paeschke et al. 

2011).

Other secondary structure-forming sequences associated with R-loops include tri-nucleotide 

repeats (TNRs) implicated in neurodegenerative diseases (Grabczyk et al. 2007; Lin et al. 

2010; Reddy et al. 2011; Groh et al. 2014; Loomis et al. 2014; Su and Freudenreich 2017; 

Neil et al. 2018; Laverde et al. 2020). The secondary structures formed at TNR-associated 

R-loops are diverse. For example, CGG repeats associated with fragile X syndrome form 

simple hairpins on the displaced ssDNA, whereas GAA repeats associated with Friedreich’s 

ataxia may form H-loops in which the displaced strand engages in triplex formation 

(H-DNA) (Loomis et al. 2014; Neil et al. 2018). How TNRs affect DNA replication at 

R-loops is not clear but pathologically long TNRs are known to stall replication forks 

and induce replication-dependent instability (Krasilnikova and Mirkin 2004; Chandok et al. 

2012; Gerhardt et al. 2016; Gellon et al. 2019). One mechanism was suggested by studies 

in a chicken DT40 cell model, in which even a non-pathological short (GAA)10 repeat 

could induce replisome uncoupling from leading strand synthesis (Svikovic et al. 2019). 

Interestingly, this uncoupling was suppressed by RNase H1 overexpression, indicating that 

R-loop formation rendered the short TNR inhibitory to DNA replication, potentially by 

forming an H-loop. Moreover, uncoupling was shown to promote further R-loop formation 

in the absence of PrimPol, indicating that single-stranded DNA generated in the wake of 

uncoupled replisomes promotes de novo R-loop formation. Genomic R-loop profiles suggest 

that such uncoupling is suppressed by PrimPol across the genome at sequences exhibiting 

G4 and H-DNA potential. Collectively, the data thus demonstrate that secondary structures 

influence the replication-stalling potential of R-loops by modulating R-loop structure and 

stability and generating strand-specific obstacles to replicative DNA polymerases and 

helicases.
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The chromatin state contributes to the block to replication at R-loops

As mentioned above, R-loops exhibit specific associated proteomes that may influence 

the fork stalling potential of R-loops, as illustrated by the RNA:DNA hybrid-binding 

protein Yra1 in yeast, that converts R-loops into orientation-independent replication blocks 

(Garcia-Rubio et al. 2018) (Figure 8a). In addition, R-loop-forming regions are marked by 

specific chromatin signatures. Globally, R-loops correlate with sites of increased chromatin 

accessibility and regions marked by active promoter and enhancer histone modifications, 

such as H3K4me2, H3K4me3, H3K9ac and H3K27ac, and suppress the establishment of 

repressed chromatin states by modulating the binding of histone modifying complexes 

(Chen et al. 2015; Sanz et al. 2016; Chen et al. 2017; Lyu et al. 2022). Moreover, R-loops 

maintain active gene states by regulating the recruitment of DNA methyltransferases and 

DNA demethylases to suppress the methylation of CpG island promoters (Ginno et al. 

2012; Grunseich et al. 2018; Arab et al. 2019). Conversely, R-loops also contribute to the 

establishment or maintenance of repressed chromatin states at TTSs, PREs, and TNRs, and 

associate with phosphorylated H3S10 (H3S10p), a mark of condensed chromatin, which 

may add another layer of fork stalling potential at R-loops (Castellano-Pozo et al. 2013; 

Groh et al. 2014; Skourti-Stathaki et al. 2014; Skourti-Stathaki et al. 2019; Alecki et al. 

2020) (Figure 8b). Intriguingly, histone mutations that prevent the accumulation of H3S10p 

suppress R-loop-dependent genome instability in hpr1 and sen1 mutant yeast strains, which 

has been interpreted to indicate that R-loops inherently do not present an obstacle to fork 

progression (Garcia-Pichardo et al. 2017). While perhaps difficult to reconcile with histone-

independent fork stalling mechanisms implicated in inducing fork stalling at R-loops, this 

result confirms the potential of specific chromatin states to impede DNA replication at R-

loops. This is also supported by the observation that R-loop-dependent TRC is exacerbated 

in the absence of various histone chaperones and chromatin remodelers, such as FACT, SWI/

SNF, and INO80, which promote fork progression through chromatin across the genome 

(Bayona-Feliu and Aguilera 2021). How H3S10p contributes to R-loop-dependent genome 

instability, or how chromatin remodelers and histone chaperones facilitate fork progression 

specifically at R-loops, is mechanistically not understood. Since the three-stranded structure 

of R-loops is likely refractory to nucleosome assembly, it remains to be determined if and 

how R-loops and specific chromatin states coincide spatially and temporally. Notably, while 

condensed chromatin states appear to exacerbate R-loop-dependent TRC in some contexts, 

they also mitigate TRC by restricting R-loop formation in other contexts (Zeller et al. 2016; 

Taneja et al. 2017; Almeida et al. 2018). Thus, the detailed mechanisms by which chromatin 

impacts fork progression at R-loops remain to be clarified.

Concluding remarks

The studies summarized here demonstrate that the R-loop-dependent block to replication 

forks is complex and determined by multiple structural features associated with R-loops, 

including RNA:DNA hybrid length, secondary structure on the displaced ssDNA loop, 

stalled RNA polymerases, RNA/DNA binding proteins and chromatin structure. This 

diversity in R-loop structures may in part explain the involvement of a plethora of factors in 

R-loop removal. Moreover, it suggests that the consequences of R-loop-replisome collisions 
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are unlikely to generalize across the genome but have to be considered in a context-specific 

manner.

The diversity in R-loop structures implies that the specific mechanisms of fork arrest and 

restart at R-loops are likely to vary between individual R-loops. For example, in eukaryotes, 

G4s in the leading strand template can induce the uncoupling of replisome progression 

from leading strand synthesis, which may potentially promote fork restart via fork reversal 

upstream of the replisome, as recently observed in the context of other replication stress 

conditions (Kavlashvili et al. 2023; Liu et al. 2023). In contrast, fork uncoupling would be 

prevented at obstacles that present a physical block to replisome progression, which may 

involve either protein-DNA complexes or DNA secondary structures. In this instance, fork 

restart may require the physical coordination of obstacle resolution by ancillary helicases 

with replisome progression. How such coordination is achieved is not clear but likely 

involves differential interactions between ancillary helicases and replisome components as 

exemplified in eukaryotes by Pif1 and Sen1, which are coupled to replisomes via PCNA or 

Ctf4/Mrc1, respectively (Dahan et al. 2018; Appanah et al. 2020).

In budding yeast, fork restart at HO R-loops may also occur directly via repriming of 

the leading strand downstream of G4s, as has been observed in vitro (Kumar et al. 

2021). However, analogous leading strand restart by repriming was previously found to 

be highly inefficient downstream of non-bulky DNA lesions (Taylor and Yeeles 2018), 

raising the question whether the efficiency of leading strand restart is influenced by the 

type of obstacle in the DNA. Moreover, in some higher eukaryotes, leading strand restart 

appears to be promoted by the specialized priming activity of PrimPol (Svikovic et al. 

2019). Since PrimPol is not universally conserved in eukaryotes, it may be interesting to 

determine if similar R-loop structures have distinct consequences on fork progression in 

different organisms. At CD R-loops, reconstituted budding yeast replisomes have also been 

observed to restart leading strand synthesis by extending the RNA strand of the RNA:DNA 

hybrid (Kumar et al. 2021). Such a mechanism involves the translocation of CMG on the 

RNA:DNA duplex, which may bear the risk of ubiquitin-mediated replisome disassembly 

in vivo analogous to that occurring on dsDNA (Deegan et al. 2020; Jenkyn-Bedford et 

al. 2021; Vrtis et al. 2021). Completion of DNA replication in this case may require 

recombination-based mechanisms or replication rescue by an opposing fork. Future studies 

involving R-loops with defined structural attributes will be required to dissect the variety of 

outcomes of R-loop-replisome collisions and to determine the differential involvement of the 

many factors modulating R-loop stability.
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Figure 1. Co-directional (CD) and head-on (HO) collisions between replisomes and co-
transcriptional R-loops in bacteria and eukaryotes.
Parental DNA strands are indicated in black, nascent leading and lagging strands are in red 

and blue, respectively. Dashed arrows represent directions of replication and transcription.
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Figure 2: R-loop-independent blocks to replication fork progression during transcription-
replication conflict.
a, Steric inhibition of fork progression by RNA polymerase. b, Steric inhibition of fork 

progression promoter-bound transcription factor complexes. c, Fork stalling due to positive 

torsional strain accumulating between converging replication and transcription machineries. 

d, Fork stalling due to active fork reversal mediated by fork remodeling enzymes.
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Figure 3. Consequences of CD R-loop-replisome collisions in eukaryotes.
a, CMG unwinding of RNA:DNA hybrids featuring RNA with 5’ flap. b, CMG 

translocation across RNA:DNA hybrid featuring annealed RNA 5’ end followed by mRNA 

takeover-mediated leading strand restart. c, Replisome stalling at RNA:DNA hybrids 

containing secondary structure, such as G4 in DNA or RNA.
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Figure 4. Outcomes of CD R-loop-replisome collisions in bacteria.
a, CD collisions between replisomes and short naked R-loops allow continued replisome 

progression and uninterrupted leading strand synthesis. b, Replisome bypass of long naked 

R-loops or RNAP-associated R-loops can involve mRNA takeover or primase-mediated 

leading strand restart.
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Figure 5. Consequences of HO R-loop-replisome collisions in eukaryotes and bacteria.
a, Bypass and retention of RNA:DNA hybrid on lagging strand at eukaryotic replication 

fork. b, Unwinding of RNA:DNA hybrid featuring RNA with unannealed 3’ end by 

replicative DNA helicase in bacteria. c, Bacterial replisome bypass of short RNA:DNA 

hybrid featuring RNA with annealed 3’ end followed by RNA displacement by replicative 

DNA polymerase. d, Bacterial replisome bypass of long RNA:DNA hybrid featuring RNA 

with annealed 3’ end accompanied by retention of RNA:DNA hybrid in replicated daughter 

strand.
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Figure 6. Bacterial replisome collisions with RNAP-associated R-loops.
a, Short R-loops associated with RNAP result in mRNA takeover-mediated leading strand 

restart in CD orientation. b, Long RNAP-associated R-loops cause primase-mediated 

leading strand restart in CD orientation. c, HO RNA-associated R-loop are strong blocks 

to fork progression.
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Figure 7: DNA Secondary structures exacerbate consequences of R-loop-replisome collisions in 
eukaryotes.
a, G4s in the displaced ssDNA loop on lagging strand cause gaps in lagging strand. b, 
Replisome stalling at G4s in displaced ssDNA loop on leading strand. c, Replisome bypass 

and leading strand restart at G4s in displaced ssDNA loop on leading strand.
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Figure 8: Effect of chromatin on R-loop-replisome collisions in eukaryotes.
a, Replisome stalling at Yra1-stabilized R-loop. b, Replisome stalling at R-loop-associated 

condensed chromatin.
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