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Abstract

Background: Altered gut microbiota has been associated with cognitive dysfunction and 

Alzheimer's disease, but little is known among people living with HIV.

Objective: To examine associations between gut microbiota and cognitive impairment among 

women with or without HIV.
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Methods: This is a cross-sectional study of 446 women (302 HIV+) who had completed 

a neuropsychological test battery and stool sample collected within 1 year. Gut microbiota 

composition was quantified using 16SV4 rRNA gene sequencing and microbial functional 

pathways were predicted using PICRUSt. Cognitive domains included attention, executive 

function, learning, memory, fluency, processing speed, and motor function. Cognitive impairment 

was defined as two or more domains with T scores<1 SD below mean. ANCOM-II was used to 

identify taxa and functional pathways associated with cognitive impairment, and the associations 

were further examined by multivariable logistic regression.

Results: In overall sample, adjusting for multiple covariates including HIV status, we 

found that higher abundance of Methanobrevibacter, Odoribacter, Pyramidobacter, Eubacterium, 

Ruminococcus, and Gemmiger, and lower abundance of Veillonella were associated with cognitive 

impairment. The associations between these taxa and cognitive impairment were more profound in 

HIV+ women compared to HIV− women. Most associations with bacterial taxa were observed for 

learning and memory. We found accompanying microbial functional differences associated with 

cognitive impairment, including twelve enriched pathways and three depleted pathways.

Conclusion: In women with or without HIV infection, this study identified multiple altered 

gut bacterial taxa and functional pathways associated with cognitive impairment, supporting the 

potential role of gut microbiota in cognitive dysfunction and Alzheimer's disease.
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Introduction

With the availability of combination antiretroviral therapy (cART), the overall mortality 

of people living with Human Immunodeficiency Virus (HIV) has decreased greatly and 

more attention has shifted to aging related diseases among this population. When including 

asymptomatic disease, 31-47% of people living with HIV (PLWH) are estimated to have 

cognitive impairment. [1, 2] Among PLWH, the majority of individuals with cognitive 

impairment now demonstrates mild forms of disease. [1] A previous study in the Women’s 

Interagency Health Study (WIHS) found that HIV infection status was associated with 

significant cognitive deficits in processing speed, attention, verbal learning and delayed 

memory.[3] In addition, older PLWH are also at risk for Alzheimer's disease which might 

be due to compounding effects of HIV and aging.[4] The potential causes of cognitive 

impairment in PLWH have been suggested, including incomplete viral suppression in 

the central nervous system (CNS), neural injury due to viral proteins and inflammatory 

responses, neurotoxicity of ART, metabolic disorders and increased amyloid-β deposition in 

the brain. [5] However, the actual mechanism is still not well understood.

The gut-brain axis involves bi-directional communication between gut microbiota (GMB) 

and the CNS through neuronal, endocrine, and immune-mediated processes.[6-8] Studies 

have shown that GMB may play a part in the development of neurodegenerative 

diseases.[9, 10] It has been reported that, as compared with people with normal 

cognitive function, those with mild cognitive impairment and Alzheimer’s disease 
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showed altered GMB profiles, including reduced Lachnospiraceae, Ruminococcaceae, 

Clostridiaceae, Mogibacteriaceae, Turicibacteaceae and Peptostreptococcaceae families, 

Lachnospira, Ruminiclostridium, Dialister, Clostridium and Bifidobacterium genera, 

and enriched Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Rikenellaceae, 

Alistipes, Prevotella, Odoribacter, and Barnesiella. [10-14] Microbial dysbiosis, such 

as increased abundance of pro-inflammatory bacteria and decreased abundance of anti-

inflammatory bacteria, may influence the immune system and lead to local and systemic 

inflammation. [15] Translocation of bacteria and increased permeability of the gut epithelial 

barrier and blood-brain barrier result in neuroinflammatory response in the brain.[16] 

Additionally, microbial-produced bioactive metabolites, such as short-chain fatty acids 

(SCFA), serotonin, kynurenine and amyloids, play essential roles in neurotransmission and 

neuromodulation. [15, 16]

While prior evidence provides a basis for linking the gut-brain axis with cognitive disorders, 

the sample sizes of existing studies are relatively small (N<200) and most studies included 

participants in the hospital setting. Moreover, to the best of our knowledge, no study has 

investigated the relationship between GMB and cognitive impairment in the context of HIV 

infection, although PLWH are at risk for gut dysbiosis.[17] Thus, in this study, we examined 

associations between gut bacterial features (overall diversity, individual bacterial taxa and 

bacterial functional pathways) and cognitive impairment among 446 women with or without 

HIV from a community-based HIV cohort, the WIHS. Moreover, we hypothesized that 

some of the associations might be stronger in PLWH due to gut barrier dysfunction, which 

may enhance microbial translocation,[18] compared to those without HIV. Thus, we also 

explored potential effect modification by HIV serostatus on the association between GMB 

and cognitive impairment.

Materials and Methods

Study population

The WIHS is a prospective cohort study of women with and at risk for HIV since 1994, now 

part of the MACS WIHS Combined Cohort Study (MWCCS). [19-21] Participants were 

recruited from 10 cities in the United States were followed up every 6 months to collect 

biospecimens, medical history, medication use, health-related behaviors and anthropometry. 

To ensure comparability with HIV+ women, HIV− women who engaged in high risk 

behaviors for HIV were recruited.[19] Since 2009 to 2019, participants were administered a 

comprehensive neuropsychological testing every 2 years.[3] From 2016 to 2019, the Bronx, 

Brooklyn, and Chicago WIHS sites collected stool samples from participants.[22] Written 

informed consent was obtained from participants. The study was approved by institutional 

review boards at each site.

We included 466 WIHS participants who provided stool samples, which were obtained 

within about 1 year either before or after completion of a neuropsychological test battery. 

After excluding 11 samples with low sequencing depth (<2000 sequence reads per sample) 

and 9 samples with missing data >3 domains of a neuropsychological test, a total of 446 

participants were in the study sample, 302 of whom were HIV+ women.
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Cognitive function.—Participants completed a neuropsychological test battery assessing 

the following domains: learning (Hopkins Verbal Learning Test-Revised [HVLT-R]-

total learning across trials 1 to 3); memory (HVLT-R-delay free recall); psychomotor 

speed (Symbol Digit Modalities Test, Stroop-Trial 2); attention/working (Letter Number 

Sequencing); motor function (Grooved Pegboard dominant and non-dominant hands); verbal 

fluency (letter and semantic); and executive function (Trail Making Test Part B and 

Stroop Test Interference Trial). [23] Timed outcomes were log transformed to normalize 

distributions and reverse scored, so higher equated to better performance. As previously 

described,[2, 3, 23] demographically-adjusted T scores were then derived for each cognitive 

domain using data from the HIV− women. Age, years of education, Wide Range Abilities 

Test (WRAT)-3 Reading Recognition subtest score, race/ethnicity, and number of prior 

neuropsychological test completions were included in the regression equations,[3] and 

domain-specific T-scores were then created. Most of the participants (94%) included in 

the study sample had scores available in all 7 domains. Impairment on each domain was 

defined as T-scores < 1 standard deviation (SD) below the mean of the HIV− women. [2, 

23] If participants had two or more domains with impairment, they were considered to 

have global cognitive impairment. [2] The primary outcome of interest is global cognitive 

impairment. The secondary outcomes are impairment in each domain. In addition, we also 

created a global performance score by averaging domain-specific T-scores as a continuous 

global cognitive measure.

Stool sample collection and microbiome measurement.—Stool samples were 

collected using a home-based self-collection kit containing RNAlater prepared in the 

laboratory of Dr. Robert D Burk at Albert Einstein College of Medicine. [22] In brief, 

stool sample was self-collected and placed in a supplied container including a stabilizer 

(RNAlater) and 0.5 mm diameter glass beads and instructed to shake the tube in order to mix 

the stool and the preservative which stabilizes DNA and RNA.[24] After collection, stool 

samples were stored at room temperature and mailed back to the lab through USPS. The lab 

froze the samples immediately at −80 °C upon receipt. As described previously, 16S rRNA 

V4 gene region amplification was performed on DNA extracted from stool samples using a 

bead-beating procedure by the MiSeq platform (Illumina, San Diego, CA) at Albert Einstein 

College of Medicine Sequencing Core.[25]

Bioinformatic analysis

Microbiome bioinformatics analyses were performed using the Quantitative Insights Into 

Microbial Ecology (QIIME2) software package (2019.10) with the Deblur pipeline.[26] The 

α-diversity indices (Shannon index and observed amplicon sequencing variant (ASV)) and 

β- diversity Jensen Shannon Divergence were calculated using QIIME2 and R phyloseq 

package after rarefication at 40 different sequencing depths (from 20 to 35,000 sequence 

reads per sample).[27] The functional potential of the GMB was imputed by PICRUSt 

(to calculate estimated relative abundances of KEGG ortholog groups).[28] We excluded 

samples with sequencing depths <2000 sequence reads per sample after the Deblur 

workflow.[25] After this exclusion, the lowest sequencing depth was 2507 in the study 

sample. Detailed quality control assessment was previously reported. [25]
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Covariates

Data on age, race, education, annual income, health behaviors (recreational drug use and 

smoking status) and medication use, and blood samples were collected using standardized 

protocols at semiannual core study visits.[29] Recreational drugs include marijuana, crack, 

cocaine, heroin or injection drug use. Smoking status was assessed by current, ever or 

never smoking. ART include protease inhibitors, nucleoside and non-nucleoside reverse 

transcriptase inhibitors, and information on participant use of each type of drugs in the 

past six months was collected. HIV serostatus was ascertained using the enzyme linked 

immunosorbent assay method and confirmed by Western blot. Hepatitis C virus (HCV) 

infection was based on a serological test for antibodies or a nucleic acid test for viral RNA. 

Other HIV-related characteristics include cluster of differentiation 4+ (CD4+) cell count, 

HIV RNA and ART use. Undetectable HIV-1 viral load was defined as ⩽20 copies/mL.

Statistical analysis

Characteristics of HIV+ and HIV− women were compared using t-test for continuous 

variables and chi-squared test for categorical variables. Microbial α-diversity indices 

Shannon index and number of observed ASVs were compared by cognitive impairment 

using Wilcoxon rank-sum test. Permutational multivariate ANOVA (PERMANOVA) and 

principal-coordinate analysis (PCoA) were used to examine the differences in microbial β-

diversity by cognitive impairment. For taxa and functional pathways analysis, we conducted 

the Analysis of Composition of Microbiomes (ANCOM-II), given its good control of false 

discovery rate (FDR), to identify candidates associated with global cognitive impairment.

[30] We kept taxa that were present in at least 25% of samples with mean relative abundance 

> 0.01%. All models adjusted for age, race, education (below high school, high school 

and above high school), poverty (annual income ⩽$12000), recreational drug use, HIV 

status, HCV infection, site, antibiotic use, smoking (never, former and current), HIV viral 

load and ART use (only among HIV+ women). We included HIV viral load (detectable 

vs. undetectable) and ART use as categorical variables in which an additional level was 

created for HIV− women. These covariates were considered as potential confounders based 

on our previous analyses on GMB or cognitive function in the WIHS.[23, 31] We conducted 

ANCOM-II using raw count data and FDR threshold at 0.10, at multiple taxonomic levels 

including phylum (n=14), class (n=25), order (n=41), family (n=74), genus (n=168), and 

species (n=142), and for functional pathways (n=353). The analysis excluded unknown taxa 

at these taxonomic levels. An ANCOM-II detection level ≥ 0.60 indicates that the ratios of 

a taxon to at least 60% of other taxa were significantly different by cognitive impairment 

status, adjusting for multiple testing (FDR q<0.10). We examined multiple taxonomic levels 

to see whether the results were consistent within a taxonomic lineage, and we controlled for 

multiple testing by using FDR at each taxonomic level.

We used multivariable logistic regression to estimate the odds ratios (OR) of cognitive 

impairment by relative abundance of bacterial taxa or pathways identified in the ANCOM-

II analysis of global cognitive impairment, adjusting for the same covariates as in the 

ANCOM-II models. Centered log-ratio (CLR) transformation in relative abundances of 

taxonomic units or functional pathways were used. A pseudocount of min (relative 

abundance)/2 was added to exact zero relative abundance before taking logs. As a secondary 
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analysis, we also estimated the OR of impairment in each domain by relative abundance of 

the identified taxa or pathways associated with the primary outcome (i.e., overall cognitive 

impairment) in the ANCOM-II analysis. In addition to the primary analysis among all 

women, we also carried out the analysis stratified by HIV serostatus. To test potential 

effect modification by HIV serostatus, we included a product term of taxa and HIV 

serostatus in the regression models. For bacteria found to be associated with cognitive 

impairment, relative abundance between HIV+ and HIV− women was compared using 

Wilcoxon rank-sum test. We examined the associations of the identified taxa with global 

and domain-specific T scores as continuous cognitive outcomes, using linear regression. 

We also conducted sensitivity analysis among women who had stool sample collection and 

neuropsychological test at the same visit. We assessed correlations between identified taxa 

and MetaCyc pathways using CLR transformed relative abundance and spearman correlation 

coefficient. Analyses were performed using R 4.0.3. A two-sided P<0.05 was considered 

statistically significant in regression models.

Results

Table 1 shows characteristics of the 446 women (302 HIV +, mean age 53.1 years). 

Cognitive impairment was identified in 122 (27.4%) women. As compared with HIV− 

women, HIV+ women were slightly older, were more likely to be non-Hispanic white, 

current smoker and have education below high school, and were less likely to have 

recreational drug use and marijuana use. We observed a higher percent of global cognitive 

impairment and impairment in most domains except for memory among HIV+ women as 

compared with HIV− women. However, most of these differences were not statistically 

significant.

Associations of gut microbiome alpha diversity and beta diversity with global cognitive 
impairment

Gut microbiome alpha diversity as measured by Shannon index and number of observed 

ASVs were higher among women with cognitive impairment as compared to those without 

(P≤0.001). The associations were consistent among HIV+ women. (Figure S1) No difference 

in alpha diversity by cognitive impairment status was found among HIV− women. (Figure 

S1) No difference in beta diversity as measured by Jensen-Shannon Divergence (JSD) 

was found in HIV+ or HIV− women using PERMANOVA and PCoA (R2=0.47%-0.59%, 

P>0.05, Figure S2).

Associations of microbial taxa with global cognitive impairment

A total of 7 genera and 5 species showed greater abundance while 1 genus showed lower 

abundance among women with cognitive impairment as compared to women without, using 

the ANCOM-II method adjusting for covariates (detection level ≥ 0.60, FDR q<0.10). The 

identified taxa included Methanobrevibacter, Pyramidobacter, Gemmiger, Ruminococcus, 

Eubacterium, Odoribacter, Veillonella, Pyramidobacter piscolens, Ruminococcus bromii, 
Ruminococcus cadillus, Gemmiger formicilis and Eubacterium biforme. (Figure 1) The 

relative abundances of Methanobrevibacter and Eubacterium biforme were lower while the 
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relative abundance of Ruminococcus bromii was higher among HIV+ women as compared 

with HIV− women. (P<0.05, Figure S3)

The ORs of cognitive impairment decreased with higher abundance of Veillonella while 

increased with higher abundance of other taxa. (Figure 2) The associations of most taxa, 

except for Methanobrevibacter and R. cadillus, with cognitive impairment, were more 

profound in HIV+ women, and there were significant interactions (P<0.03) for Eubacterium, 

Veillonella, E. biforme and R. bromii. (Figure 2) The results were generally consistent in 

analysis using global T score to define cognitive outcomes. (Figure S4) Sensitivity analysis 

among women with concurrent stool sample collection and cognitive assessment showed 

similar results. (Table S1)

Associations of microbial taxa with impaired cognitive domains

For individual bacterial taxa, we found associations of most taxa with impairment in 

learning and memory, with directions consistent with those for global cognitive impairment. 

(Figure 3) There were also suggestive associations of taxa except for E.biforme and 

R.callidus with psychomotor speed and verbal function. (Figure 3) Most taxa were not 

associated with cognitive impairment in attention, executive function or motor function. 

(Figure 3) We also examined these associations in HIV+ and HIV− women separately, and 

most of these findings were predominantly observed in HIV+ women. (Table S2) When 

using domain T scores, the directions of the associations were largely consistent with the 

above findings in most domains except for executive function and motor function. (Figure 

S5) Higher abundance of Ruminococcus, R. bromii and Methanobrevibacter were associated 

with lower T scores for learning, memory, psychomotor speed and verbal function. 

In addition, higher abundance of Odoribacter, Gemmiger, G.formicillis, Pyramidobactor, 
P.piscolens were associated with lower T scores for memory. Unlike null findings with 

cognitive impairment in executive function and motor function, we found that most taxa 

were inversely associated with T scores for executive function and motor function. (Figure 

S5)

Associations of microbial metabolic pathways with global cognitive impairment

We identified 12 functional pathways that were enriched and 3 pathways that were depleted 

in women with cognitive impairment using ANCOM-II, adjusting for covariates. (Table 

S3) Ten of them, which were Archaea related pathways or methanogenesis pathways, 

were highly correlated with Methanobrevibacter (Spearman’s correlation coefficient>0.80). 

(Figure 4) Eubacterium had a strong correlation with lactose and galactose degradation 

I (r=0.56). (Figure 4) Veillonella was negatively correlated with most pathways, whereas 

reductive acetyl coenzyme A pathway, super pathway of glycolysis and Entner-Doudoroff, 

and tricarboxylic acid (TCA) cycle VII pathway were inversely correlated with most 

taxa. (Figure 4) The latter three pathways were mainly correlated with Ruminococcus 
and Gemmiger (r=−0.15 ~ −0.27). (Figure 4) In addition, they were inversely associated 

with cognitive impairment while other pathways were positively associated with cognitive 

impairment. (Table S3). The findings of super pathway of TCA cycle VII, and lactose and 

galactose degradation I pathways were only seen in HIV+ women while the findings of other 

pathways seemed to be present in both HIV+ and HIV− women. (Table S3)
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Discussion

To the best of our knowledge, this is the first large observational study examining 

the associations between GMB and cognitive function in the context of HIV infection. 

In this cross-sectional study of middle-aged women with and without HIV who were 

comparable in demographic and socioeconomic status, we observed that higher microbial 

alpha diversity and abundances of 7 genera and 5 species were associated with cognitive 

impairment. Findings of increased risk for cognitive impairment with higher abundance 

of Pyramidobacter, Eubacterium, Ruminococcus, and Gemmiger, and lower abundance of 

Veillonella were mainly observed among HIV+ women, most of whom had undetectable 

viral load because of long-term ART use. Most of the identified taxa were related 

specifically to cognitive impairment in learning, memory and processing speed.

Previous studies have linked alterations in GMB with neurodegenerative disorders in 

animal models, and in humans through gut dysbiosis and inflammatory response. [10, 

11, 13, 32-36] However, according to a recent review, findings were not consistent across 

published studies.[37] Although our findings suggest that GMB was altered among HIV+ 

women with cognitive impairment, especially in learning and memory domains, they are 

not fully consistent with published findings on correlates of cognitive impairment in the 

general population. We identified several genera that have been reported in literature in 

association with cognitive impairment, including Eubacterium, Odoribacter, Ruminococcus, 

and Veillonella. Eubacterium, Odoribacter and Ruminococcus produce SCFA through 

fermentation of carbohydrates while Veillonella utilizes lactate.[14, 38-41] The role of 

SCFA in inflammation has not been well elucidated, which may partially explain why 

there have been mixed findings in literature about the roles of these taxa in inflammation. 

SCFA are mainly believed to be anti-inflammatory, but may also exhibit multiple effects 

in leucocyte recruitment and chemokine production under different conditions and in 

different types of cells. SCFA may be pro-inflammatory when there is bacterial infection 

or damage of gut epithelium, or in microglial cells.[42] Furthermore, in contrast to the anti-

inflammatory role of butyrate, acetate seems to be involved in cytokine production, which 

might be implicated in amyloid deposition in the brain relating to cognitive dysfunction and 

Alzheimer’s disease. [43]

Consistent with our findings, higher abundance of Odoribacter has been shown among 

patients with Alzheimer’s disease and mild cognitive impairment in comparison to people 

with normal cognitive function. [14, 44] Notably, its genes have been connected with 

Alzheimer’s disease pathway in Kyoto Encyclopedia of Genes and Genomes. [14, 45] In this 

study, Odoribacter was positively associated with impaired memory among HIV+ women, 

which has not been reported before, to the best of our knowledge. Evidence linking altered 

abundance of Eubacterium, Ruminococcus and Veillonella to cognitive impairment are 

mixed. Similar to what we found, some studies reported depleted Veillonella and enriched 

Eubacterium species, E. eligens, among patients with mild cognitive impairment,[13] while 

other studies reported opposite results for Veillonella with mild cognitive impairment, and 

E. eligens, E. hallii, and E. rectale among those with Alzheimer’s disease. [11, 14, 46] 

Interestingly, growth of E. rectale is stimulated by R. bromii, so it is not surprising to see 

both taxa showed positive association with cognitive impairment. [40, 47] Ruminococci 
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are species with high abundance in the human intestines.[48] Some studies found lower 

abundance of Ruminococcus in patients with Alzheimer’s disease and mild cognitive 

impairment and a positive correlation of this genus with better naming function, and 

working memory. [11, 46] Yet, it has also been reported to be pro-inflammatory through its 

role in intestinal immune response.[49, 50] Nevertheless, findings from prior work and the 

current study support a link of GMB alteration (e.g., increased abundance of Odoribacter) 
with cognitive impairment and Alzheimer’s disease.

We also identified three genera that have not been previously related to neurocognitive 

disorders in prior literature, to the best of our knowledge, namely, Gemmiger, 
Methanobrevibacter and Pyramidobacter. G. formicilis has been observed to be lower in 

abundance among men with HIV who progressed to acquired immunodeficiency syndrome 

(AIDS) comparing to those who stayed AIDS-free for 10 years without using antiretroviral 

therapy.[51] It has also been associated with longer survival and developing colitis when 

using ipilimumab to treat patients with metastatic melanoma.[52] P.piscolens has been 

enriched in patients with chronic periodontitis, ischemic stroke, and low-set rectal cancer 

patients after FOLFOX treatment.[53-55] Pyramidobacter belongs to phylum Synergistes, 

which may play a pathogenic role in infections.[56, 57] Methanobrevibacter is a dominant 

archaea commonly found in healthy people, with M.smithii being the major species.[58, 59] 

M.smithii facilitates production of acetate, butyrate and ATP by removing dihydrogen from 

host gut environment.[58] It has been implicated in obesity, severe acute malnutrition in 

children, colorectal cancer, anorexia, inflammatory bowel disease, irritable bowel disease, 

diverticulosis, constipation and periodontitis.[58, 60] These three genera appear to share the 

common link to disease pathology involving immune reactions and inflammatory response. 

We speculate that they may play a role in the development of cognitive disorders in PLWH, 

who may be subject to chronic immune activation.[61] Future research are needed to 

understand the underlying mechanisms.

Among PLWH, HIV virus causes gut mucosa damage and translocation of proinflammatory 

microbial products such as lipopolysaccharide, which induces the release of cytokines 

in CNS, resulting in neuroinflammation.[61, 62] In line with this, we found that the 

associations between gut microbial features and cognitive impairment were more profound 

among HIV+ women. However, it should be noted that the non-significant results in 

HIV− women might be due to relatively smaller sample size in this group. In addition, 

our prior work has found enriched Ruminococcus genus in HIV+ women compared to 

HIV− women.[31] In the current study, we observed enriched abundance of R. bromii 
associated with both HIV infection and cognitive impairment. This supports a hypothesis 

that HIV infection may lead to altered GMB profile, which subsequently contributes to 

the development of cognitive impairment. Furthermore, PLWH are more prone to have 

systemic inflammation and are at higher risk of aging related disease such as cardiovascular 

disease, and neurological disorders compared to those without HIV.[61-64] Of note, among 

the genera we found, Eubacterium, Methanobrevibacter, and Pyramidobacter, have also 

been associated with aging.[65] Aside from a distinct study population of PLWH, another 

explanation for inconsistent findings between this study and other existing studies could 

be the different measures of cognitive functions and endpoints used across studies. Some 

studies used Alzheimer’s disease and dementia as endpoints, which are more severe forms 
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of cognitive impairment. Even among studies investigating mild cognitive impairment, most 

studies did not assess cognitive function using seven domains. A majority of women in 

the present study only demonstrated mild cognitive impairment. Such conflicting results 

by disease severity has been seen in Bacteroides and E. eligens, which were found to 

be depleted in patients with Alzheimer’s disease but increased among people with mild 

cognitive impairment. [13, 14, 35, 36]

Several papers examined potential mechanisms through analysis of microbial gene 

pathways. They have identified increased glycan biosynthesis and metabolism, transport 

and catabolism, and vitamin B metabolism, and depleted butyrate biosynthesis pathways, 

transcription and membrane transport.[11, 14, 46] In our analysis, most pathways related 

to cognitive impairment were connected to Methanobrevibacter. For example, Coenzyme 

B and tetrahydromethanopterin are coenzymes in methanogensis while wyosine, CDP-

archaeol and archaetidylinositol biosynthesis pathways are related to archaea, which 

are methanogens.[66] We found pathways depleted in cognitive impairment related to 

generation of cell energy and precursors of metabolites, including TCA cycle VII (acetate 

producers) and superpathway of glycosis and Entner-Doudoroff, and pathways enriched in 

cognitive impairment related to carbohydrate degradation pathway (lactose and galactose 

degradation I). In addition, we found that pathways related to biosynthesis, including 

the mevalonate pathway, an amino acid related pathway (chorismate biosynthesis II) and 

a vitamin related pathway (flavin biosynthesis II), were enriched among women with 

cognitive impairment. These pathways play fundamental roles in biosynthesis of isoprenoids 

(mevalonate pathway), aromatic amino acids such as phenylalanine, tryptophan and tyrosine, 

indole, vitamin K, and folate (chorismate pathway).[66] Riboflavin is an essential nutrient 

that mammals cannot synthesize, and has been linked with potential antioxidant and 

neuroprotective effects.[67, 68] Similar to our findings, a recent study also reported worse 

functioning in memory domains in association with increased bacterial vitamin metabolism 

related pathways including riboflavin, vitamin B6, folic acid, vitamin B1, and vitamin 

B12.[46] The authors hypothesized that as a result of bacteria competing for vitamins, 

host uptake of vitamins were limited. [46] In contrast, it is possible that bacterial vitamin 

pathways are enriched in cognitive impairment because the host may be vitamin deficient, 

resulting in cognitive impairment and necessitating bacterial synthesis of vitamins. More 

studies are needed to replicate our findings and explore these hypotheses.

Strengths and Limitations

To the best of our knowledge, this is the first study with a considerable sample size to 

examine GMB alterations in association with cognitive impairment among women living 

with HIV, with a comparison group of uninfected women. We conducted comprehensive 

assessment of cognitive functions of seven domains and explored microbiome composition 

change in relation to these functions in each domain. We included a comparison group 

of women at risk of HIV, who were comparable in demographics, socio-economic status 

and health-related behaviors as women with HIV. Such a design allowed us to evaluate 

and interpret the findings more meaningfully. We examined both microbiota compositional 

changes and metagenomic prediction of functional changes, which may shed light on the 

roles of GMB in cognitive disorders among PLWH.
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Limitations included a cross-sectional study design, and thus we were unable to assess 

temporal relationships and establish causation between GMB and cognitive impairment. 

Future studies are needed to examine GMB in association with changes in cognitive 

outcomes. Second, stool sample collection was not always concurrent with cognitive 

function measurement. However, most (80%) of the stool sample collections were completed 

within 6 months of cognitive data collection, which is nondifferential by HIV status. 

Our sensitivity analysis has also shown consistent findings among those with GMB data 

collected at the same visit as cognitive assessment. Third, microbial functional pathways 

examined in our analysis were inferred based on 16S rRNA gene taxonomic data, and thus 

require confirmation in the future using shotgun metagenomic sequencing. Fourth, the study 

may lack power to test effect modification by HIV status due to a relatively smaller sample 

size of the HIV− group. Cognitive impairment was also defined based on data from this 

small group of HIV− women in the current analysis. Moreover, we did not collect diet and 

lifestyle data and cannot account for influences of these factors on GMB and cognitive 

function. Finally, generalization of the results from this study may be restricted to women 

living with HIV in the urban areas of northeast US, who were engaged in HIV research and 

under long-term HIV care.

Conclusions

This study provides evidence for the associations of the GMB with cognitive impairment 

among women with HIV. More studies are needed to validate these findings, understand the 

underlying mechanisms, and assess the potential of the GMB to become biomarkers and/or 

therapeutic targets in cognitive diseases including Alzheimer’s disease among PLWH. 

Further examinations of metabolites such as SCFA, and enzymes in bacterial functional 

pathways may deepen the understanding of the complicated biological mechanisms linking 

the GMB with cognitive function.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Relative abundance of taxa identified using ANCOM2 by cognitive impairment
Taxa were identified using ANCOM-II adjusting for age, race, education, poverty, 

recreational drug use, HCV, site, antibiotics, smoking, viral load and ART use (among 

HIV+) as appropriate. Central-log-ratio-transformed relative abundance are shown among 

women with cognitive impairment and women with normal cognitive function. Taxa were 

ordered by relative abundance at genus and species level, respectively.
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Figure 2. Association between taxa abundance and cognitive impairment among all women and 
according to HIV serostatus
Taxa were identified using ANCOM-II adjusting for age, race, education, poverty, 

recreational drug use, HCV, site, antibiotics, smoking, viral load and ART use (among 

HIV+) as appropriate. Logistic regression was used to show OR of cognitive impairment 

by relative abundance of taxa, adjusting for above covariates used in ANCOM-II. Relative 

abundance were CLR-transformed. P for interaction<0.05 for Eubacterium, Veillonella, 
Eubacterium biforme and Ruminococcus bromii. Taxa were ordered by OR at genus and 

species level, respectively.
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Figure 3. Association between taxa abundance and impairment in cognitive domains among all 
women
Taxa were identified using ANCOM-II adjusting for age, race, education, poverty, 

recreational drug use, HIV, HCV, site, antibiotics, smoking, viral load and art use (among 

HIV+) as appropriate. Logistic regression was used to show OR of cognitive impairment 

by relative abundance of taxa, adjusting for above covariates used in ANCOM-II. Relative 

abundance were CLR-transformed.
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Figure 4. Spearman’s correlation coefficients between taxa and pathways identified using 
ANCOM-II
*: P<0.05 for spearman correlation coefficient.
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Table 1.

Characteristics of WIHS participants by HIV status

All (N=446) HIV+ (N=302) HIV− (N=144) P-value

Age, years, mean (SD) 53.1 (8.3) 53.2 (7.8) 52.8 (9.3) 0.59

Race/ethnicity, % 0.30

 Non-Hispanic black 323 (72.4) 214 (70.9) 109 (75.7)

 Hispanic 92 (20.6) 62 (20.5) 30 (20.8)

 Non-Hispanic white 19 (4.3) 16 (5.3) 3 (2.1)

 Other 12 (2.7) 10 (3.3) 2 (1.4)

Education attainment, % 0.84

 Below high school 180 (40.4) 124 (41.1) 56 (39.2)

 High school 141 (31.7) 93 (30.8) 48 (33.6)

 Above high school 124 (27.9) 85 (28.1) 39 (27.3)

Years of education 11.6 (3.0) 11.7 (3.1) 11.5 (3.0) 0.56

WRAT-3 reading subtest, mean (SD) 87.8 (18.6) 88.0 (19.1) 87.5 (17.8) 0.81

Annual income ≤$12000, % 235 (52.7) 154 (51.0) 81 (56.2) 0.35

Recreational drug use, % 105 (23.5) 66 (21.9) 39 (27.1) 0.27

 Marijuana use, % 90 (20.2) 56 (18.5) 34 (23.6) 0.26

Cigarette use, % 0.10

 Current smoker 181 (40.6) 74 (24.5) 24 (16.7)

 Former smoker 167 (37.4) 114 (37.7) 67 (46.5)

 Never smoker 98 (22.0) 114 (37.7) 53 (36.8)

Alcohol use>7 drinks/week, % 30 (6.7) 18 (6.0) 12 (8.3) 0.46

Antibiotic use, % 23 (5.2) 15 (5.0) 8 (5.6) 0.97

Hepatitis C virus antibody, % 97 (21.8) 70 (23.3) 27 (18.8) 0.34

Among HIV seropositive

 CD4 count 670 (492-923)

 HIV-1 Viral load≤20 copies/ml, % 224 (74.2)

 ART use, % 277 (91.7)

Site 0.45

 Bronx 185 (41.5) 121 (40.1) 64 (44.4)

 Brooklyn 132 (29.6) 95 (31.5) 37 (25.7)

 Chicago 129 (28.9) 86 (28.5) 43 (29.9)

Cognitive impairment 122 (27.4) 89 (29.5) 33 (22.9) 0.18

Impairment in domains

 Learning 74 (16.6) 55 (18.2) 19 (13.2) 0.23

 Memory 73 (16.4) 47 (15.6) 26 (18.1) 0.60

 Attention 62 (14.6) 45 (15.6) 17 (12.5) 0.48

 Executive function 67 (15.1) 54 (17.9) 13 (9.2) 0.02

 Motor function 62 (14.1) 44 (14.9) 18 (12.5) 0.60

 Speed 62 (13.9) 45 (14.9) 17 (11.8) 0.46

 Verbal function 60 (13.5) 46 (15.2) 14 (9.7) 0.15
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Data are N (%) or mean (SD). SD: standard deviation. WRAT: Wide Range Abilities Test. HIV: human immunodeficiency virus. CD4: cluster of 
differentiation 4. ART: antiretroviral therapy. Recreational drug use included marijuana, crack, cocaine, heroin and injection drug use. P-values 
comparing characteristics by HIV status were obtained from t-test for continuous variables, Chi-squared test for categorical
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