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Abstract

Introduction: The diagnosis of Alzheimer’s disease (AD) requires the presence of amyloid and tau pathology,
but it remains unclear how they affect the structural network in the pre-clinical stage. We aimed to assess dif-
ferences in topological properties in cognitively normal (CN) individuals with varying levels of amyloid and
tau pathology, as well as their association with AD pathology burden.
Methods: A total of 68 CN individuals were included and stratified by normal/abnormal (�/+) amyloid (A) and
tau (T) status based on positron emission tomography results, yielding three groups: A�T� (n = 19), A+T�
(n = 28), and A+T+ (n = 21). Topological properties were measured from structural connectivity. Group differ-
ences and correlations with A and T were evaluated.
Results: Compared with the A�T� group, the A+T+ group exhibited changes in the structural network topology.
At the global level, higher assortativity was shown in the A+T+ group and was correlated with greater tau burden
(r = 0.29, p = 0.02), while no difference in global efficiency was found across the three groups. At the local level,
the A+T+ group showed disrupted topological properties in the left hippocampus compared with the A�T�
group, characterized by lower local efficiency ( p < 0.01) and a lower clustering coefficient ( p = 0.014).
Conclusions: The increased linkage in the higher level architecture of the white matter network reflected by
assortativity may indicate increased brain resilience in the early pathological state. Our results encourage further
investigation of the topological properties of the structural network in pre-clinical AD.

Keywords: Alzheimer’s disease; assortativity; diffusion tensor imaging; graph theory; structural connectivity;
tractography

Impact Statement

The present work explored the topological patterns of the brain structural network in subjects with pre-clinical
Alzheimer’s disease (AD) and their correlation with the two AD hallmarks, amyloid and tau. Results showed an
increased linkage in the higher level architecture of the white matter network measured by assortativity, while
global efficiency remained unchanged. The study provides a potential graph-based biomarker of brain con-
nectivity for early identification of AD, and the results encourage further investigation of structural network
properties.

Introduction

Alzheimer’s disease (AD) is characterized by two hall-
marks, namely deposition of b-amyloid (Ab) and ac-

cumulation of phosphorylated tau in neurofibrillary tangles.
These features can appear years before the manifesta-
tion of clinical symptoms. Detecting AD-related pathologi-
cal changes during the asymptomatic stage is crucial for
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understanding the disease mechanisms and progression, en-
abling potential interventions, and facilitating participant
enrollment in clinical trials (Vogt et al., 2022).

At present, confirmation of Ab and tau can only be
achieved through postmortem examination (Scheltens
et al., 2021). This has driven research efforts to identify
in vivo imaging biomarkers that aid in AD diagnosis.
In vivo detection of Ab and tau is possible through positron
emission tomography (PET) and cerebral spinal fluid analy-
sis by lumbar puncture. Nonetheless, the widespread use of
these techniques is hindered due to the limited availability
of radioactive tracers, expensive cost, and inherent invasive-
ness. Structural magnetic resonance imaging (MRI) typi-
cally only reveals reduced hippocampal volume in the late
stages of the disease, but this is not specific to AD since it
can also be related to aging or other types of dementia
(Pini et al., 2016).

Studies have demonstrated that a healthy brain network
follows a highly efficient network topology with a combi-
nation of high segregation and integration (Bullmore and
Bassett, 2011). This leads to a hypothesis of AD as a discon-
nection syndrome (Delbeuck et al., 2003), which suggests
that alterations in communication between anatomically
and functionally connected brain areas could lead to clinical
symptoms in AD.

Graph theory provides a wide range of quantitative mea-
sures for characterization of the network architecture of the
brain (Rubinov and Sporns, 2010), which can offer insights
into the neurodegenerative process. Disruptions in structural
network topology have been observed in AD (Lo et al.,
2010), mild cognitive impairment ( Jacquemont et al., 2017),
subjective cognitive decline (Shu et al., 2018), pre-clinical
AD (Pereira et al., 2018), and carriers of autosomal dominant
AD mutations (Prescott et al., 2022). Additionally, these dis-
ruptions are associated with cognitive decline and AD
pathology (King-Robson et al., 2021). These findings indi-
cate that topological analysis could be a valuable tool for in-
vestigating changes in the structural network at an early
stage.

The definition of AD has shifted from the clinical to bio-
logical construct in the research setting to reflect the under-
pinning neuropathology ( Jack et al., 2018). However, with
the updated research framework, the impact of Ab and tau
on the structural network topology in the pre-clinical stage
is not yet fully understood. Thus, the present work aimed
to study topological properties of the structural connectome
in pre-clinical AD, as indexed by Ab and tau PET imaging
biomarkers.

We first investigated the differences in topological proper-
ties at both global and nodal levels in cognitively normal
(CN) participants with varying levels of Ab and tau burden.
We then evaluated the relationship between network topo-
logical properties and the burden of Ab and tau.

Materials and Methods

All data were acquired from the Alzheimer’s Disease Neu-
roimaging Initiative 3 database (ADNI 3) (http://adni.loni
.usc.edu/), which was launched in 2003 as a public–private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessments can be com-
bined to assess the progression of mild cognitive impairment
(MCI) and early AD.

Men and women aged 55–90 years across CN, mild cogni-
tive impairment, and AD dementia groups were included in
ADNI, where clinical diagnosis was made according to the
criteria of the National Institute of Neurological and Com-
municative Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRAD) (McKhann
et al., 2011). Due to the retrospective nature of the study,
informed consent was waived.

Subjects

In this study, the selection criteria for the database were
CN participants with availability of T1-weighted MRI, flor-
betapir (AV45) PET, flortaucipir (AV1451) PET, and diffu-
sion tensor imaging at baseline. The diffusion imaging was
further limited to acquisition using Siemens scanners with
48 diffusion directions to reduce the impact of scanner
types on tractography and graph construction (Kurokawa
et al., 2021). Demographic data such as age, sex, years of ed-
ucation, clinical dementia rating (CDR), mini-mental state
examination (MMSE), and clinical diagnosis were recorded.

PET biomarkers and group classification

According to the National Institute on Aging and Alz-
heimer’s Association 2018 Research Framework ( Jack
et al., 2018), the presence of Ab determines an individual’s
placement on the Alzheimer’s continuum. Specifically, the
presence of Ab without tau (A+T�) indicates Alzheimer’s
pathologic change, while the presence of both Ab and tau
(A+T+) is indicative of AD.

Following the recommendation, we categorized CN sub-
jects into the following groups: (1) CN subjects with normal
Ab and tau (A�T�); (2) CN subjects with abnormal Ab, but
normal tau (A+T�); and (3) CN subjects with abnormal Ab
and tau (A+T+). The status of Ab and tau was determined
using florbetapir and flortaucipir PET values provided by
the University of California, Berkeley. The florbetapir PET
was used to assess global Ab load.

The mean standardized uptake value ratio (SUVR) on flor-
betapir PET images was determined in anterior/posterior cin-
gulate, lateral parietal, and lateral temporal regions using the
whole cerebellum as the reference region. A cutoff value of
1.11 was applied to determine Ab positivity (A+) (Landau
et al., 2013). The flortaucipir PET SUVR values were used
to quantify tau load.

A size-weighted mean flortaucipir SUVR was calculated in
metatemporal regions, including the amygdala, entorhinal cor-
tex, fusiform, and inferior temporal and middle temporal gyri,
and normalized by inferior cerebellar gray matter. Tau positiv-
ity (T+) was thresholded at SUVR >1.23 (Jack et al., 2017).

MRI acquisition

All data were collected using a 3T Siemens scanner (Sie-
mens Medical Solutions, Erlangen, Germany). Image proto-
cols were standardized across ADNI study sites. Details of
MRI parameters can be found at http://adni.loni.usc.
edu/methods/documents/mri-protocols/. Three-dimensional,
T1-weighted volumetric sequences were acquired with the
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following parameters: echo time = 2.98 ms, repetition time =
2300 ms, inversion time = 900 ms, flip angle = 10�, field of
view = 208 · 240 · 256 mm, and acquired resolution = 1 · 1 ·
1 mm.

Axial diffusion MRI data were acquired with 48 diffusion-
encoding directions at b = 1000 s/mm2 and 6 nondiffusion-
weighted b0 images. Other scanning parameters include
resolution = 2 · 2 · 2 mm; time repetition = 7200–9600 ms;
time echo = 56–82 ms; flip angle = 90�; and field of view =
232 · 232 · 160 mm.

Structural MRI preprocessing

T1-weighted images were corrected for head motion and
intensity inhomogeneity, followed by nonbrain tissue re-
moval using the pipeline implemented in FreeSurfer (version
7.1.1, http://surfer.nmr.mgh.harvard.edu/). The brain was
parcellated into 68 cortical regions based on the Desikan–
Killiany atlas (Desikan et al., 2006) as well as the following
7 subcortical regions in each hemisphere (Fischl et al.,
2002): thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, and accumbens.

Considering that white matter hyperintensities (WMHs)
shown on T2 FLAIR images are possible factors associated
with vascular disease and may confound the fiber tracking
algorithm (Reginold et al., 2018), we controlled for WMH
volumes in the statistical analysis. WMH volumes were
obtained from ADNI, which were estimated with a modified
Bayesian probability structure through histogram fitting.
Briefly, the likelihood estimates of each image were calcu-
lated through histogram segmentation and thresholding.
Then, along with WMH priors (which were estimated from
more than 700 individuals) and tissue constraints, the proba-
bilities were thresholded at 3.5 standard deviations above the
mean to create a binary WMH mask. Finally, the mask was
back-transformed to native space for volume calculation.
WMH volumes were available for all included subjects.

Diffusion MRI preprocessing

Diffusion-weighted imaging (DWI) volumes were pro-
cessed using the FMRIB software library (FSL) toolbox
and MRtrix3 (Tournier et al., 2019) to correct for noise,
Gibbs ringing artifacts, head motion, and eddy current
distortions. b vectors were rotated accordingly (Leemans
and Jones, 2009). All nonbrain tissues were removed
from the diffusion-weighted images using the FSL Brain
Extraction Tool.

A field map was utilized to correct for echo planar imaging
(EPI)-induced susceptibility artifacts, which usually caused geo-
metric distortions at tissue–fluid interfaces. The field map was
calculated from a double-echo gradient echo sequence by taking
the difference between two phase images and dividing that by
the echo time difference. Skull-stripped b0 images were regis-
tered to their respective T1 image based on white matter bound-
aries with the FSLs epi_reg tool to coregister DWI and T1
images. The resulting 3D transformation matrices and deforma-
tion fields were back-transformed and applied to the T1 image,
so all images were coregistered in the diffusion space.

All processed images were visually inspected for quality
control. Fifteen images were excluded from further analysis
due to excessive distortion artifacts, and one image was ex-
cluded due to lack of a field map for EPI artifact correction.

White matter tractography

We performed probabilistic tractography with MRtrix3.
The signal expected for a single-fiber white matter popu-
lation (so-called response functions) was calculated for
constrained spherical deconvolution to estimate fiber orienta-
tion distributions (FODs). The FOD maps were passed to the
iFOD2 algorithm for fiber tracking. Seeding points were de-
termined dynamically using the spherical-deconvolution in-
formed filtering of the tractogram model (Smith et al.,
2015). Anatomical constraints were applied to ensure mini-
mal contamination from spurious streamline trajectories
through gray matter (Smith et al., 2012). A total of 1 million
streamlines were generated for better reproducibility (Roine
et al., 2019). Other default tracking parameters included a
step size of 1 mm, minimum fiber length of 4 mm, and
FOD cutoff of 0.1. Finally, the SIFT2 algorithm was applied
on all tractograms to filter implausible streamlines by assign-
ing weights to each streamline. This step can improve the bi-
ological plausibility of the final connectome reconstruction
(Smith et al., 2015).

Network construction and graph theoretical analysis

Graph theory was used to analyze topological changes in
the brain network. In such analysis, the brain network is rep-
resented by a graph with nodes and edges. Nodes refer to
brain regions, while edges refer to the connection between
them. In this study, we defined nodes as the 82 regions seg-
mented by FreeSurfer (68 cortical +14 subcortical regions)
and edges as white matter links between these regions.
Therefore, an 82 · 82 connectivity matrix was built for
each subject. An overview of the methodology for building
structural networks is shown in Figure 1.

To compare the network topology across different subjects
and minimize the number of spurious connections in each
network, we thresholded and binarized the connectivity ma-
trices to ensure the same number of edges in all subjects.
Fixed-density thresholding can yield a more reproducible
and consistent network architecture while maintaining sensi-
tivity to disease effects (De Brito Robalo et al., 2022).
The network density is defined by the fraction of the num-
ber of edges over the maximal possible number of edges
(i.e., 82 · 81/2 = 3321 possible edges in our case). All self-
connections were excluded.

Considering the lack of a definitive method to select a sin-
gle threshold, we chose to binarize the graph over a range of
density threshold levels (5–9%, in the step of 0.2%) and es-
timated the global network properties at each threshold
value. For global network characteristics, we analyzed global
efficiency and assortativity. Global efficiency is a measure of
network integration and it is calculated by the average in-
verse of the shortest path in the network. Assortativity is a
measure of brain resilience and refers to the tendency of
nodes to link with other similar nodes (Franciotti et al.,
2019; Miraglia et al., 2022). A positive value indicates that
nodes tend to link to other nodes with the same or similar
degree.

For the local network analysis, we constructed structural
networks at a specific threshold of 7.8% (Fig. 3A). This
threshold ensures that all regions are included in the network
while minimizing the number of false-positive connections.
For nodal characteristics, we focused on the hippocampus
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and assessed various nodal topological metrics such as de-
gree, local efficiency, and clustering coefficient.

Degree is calculated as the number of links that are con-
nected to a particular node. Local efficiency reflects the
extent of integration between immediate neighbors of a
given node (Fornito et al., 2016) and it is calculated as the
average shortest path length within the node’s neighborhood.
The clustering coefficient is calculated as the fraction of
a node’s neighbors that are neighbors with each other. All
network topological metrics were calculated by the Brain
Connectivity Toolbox in MATLAB (Rubinov and Sporns,
2010).

Statistical analyses

The normality of continuous variables was first exam-
ined using the Shapiro–Wilk test, in which the assumption
of normality was violated. WMH was log-transformed for
subsequent analysis due to its skewness. For continuous
variables with normal distribution, an analysis of variance,
followed by Scheffe’s tests, was conducted for group
comparison. For continuous variables with skewed distri-
bution, the Kruskal–Wallis test along with the Mann–
Whitney U test for post hoc comparisons was performed.
The chi-square test was employed to analyze categorical
variables.

An analysis of covariance was performed with control of
age, sex, years of education, and WMH volume to evaluate
group differences in network metrics. A false discovery
rate was used to adjust false-positive results in multiple com-
parisons. If the results were significant, then post hoc com-
parisons were performed with the Bonferroni method.

Pearson’s partial correlation coefficient was utilized by
controlling for age, sex, years of education, and WMH vol-
ume to assess the associations of network topological metrics
with global Ab load and tau burden in the temporal metare-
gion of interest (ROI). Network metrics were calculated
under the density threshold of 7.8% to reduce the number
of comparisons. Correlation was examined in the whole sam-
ple as well as within each group.

All statistical analyses were performed using SPSS 26.0
(Armonk, NY). Statistical tests were two-sided, with the sig-
nificance level set to p < 0.05.

Results

Demographics

After selection and image quality control, a total of 68 CN
participants were included and classified as A�T� in 19
cases, A+T� in 28 cases, and A+T+ in 21 cases according
to amyloid and tau PET imaging. The demographic details
are presented in Table 1. The groups were comparable in
terms of sex ( p = 0.13), age ( p = 0.35), years of educa-
tion ( p = 0.42), CDR ( p = 0.35), MMSE ( p = 0.34), WMH
volumes ( p = 0.65), and hippocampal volume ( p = 0.88).
However, they differed significantly in terms of global
amyloid-PET SUVR and tau-PET SUVR (all with p < 0.001).

Global network properties

Results from the comparison of global network metrics
among groups are presented in Figure 2 and Supplementary
Table S1. Overall, no significant differences were observed
in global efficiency across groups at different densities,
while after controlling for age, sex, years of education, and
WMH volume, a significant difference in assortativity was
found.

Specifically, the A+T+ group exhibited increased assorta-
tivity compared with the A�T� group and A+T� group at
the density range of 5.4–8.4% and 6.0–9.0%, respectively.
Additionally, the A+T� group showed higher assortativity
than the A�T� group at the density range of 5.6–6.0%.

Local network properties in the hippocampus

In Figure 3, comparisons among different groups of topo-
logical properties in the hippocampus are presented, such as
degree, local efficiency, and clustering coefficient calculated
under the density threshold of 7.8%, in which all 82 nodes
were included in the largest component of the 3 groups.

In the left hippocampus, significant differences in network
properties were observed across groups for local efficiency
[F (2, 61) = 4.845, p = 0.011] and clustering coefficient
[F (2, 61) = 4.513, p = 0.015], but results were comparable
in terms of degree [F (2, 61) = 1.815, p = 0.171]. The A+T+
group showed lower local efficiency ( p = 0.009) and a

FIG. 1. (A) Flowchart of the brain network construction from DWI. (B) Illustration of the structural brain network. The
nodes in the network are represented by circles, which correspond to anatomical regions. The edges, depicted as connecting
lines between the circles, represent the connections between these regions. DWI, diffusion-weighted imaging.
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lower clustering coefficient ( p = 0.014) than the A�T�
group. Conversely, no significant differences were found
across groups in the right hippocampus (all p values >0.05).

Association of network measures with Ab and tau burden

As significant differences were observed in the assortativ-
ity, local efficiency, and clustering coefficient of the left hip-
pocampus across the three groups, we conducted further
analysis to explore their relationship with global Ab load
and tau burden in the temporal meta-ROI under the density
threshold of 7.8%.

The results showed that in the entire sample, an associa-
tion was observed between assortativity and tau load
(Fig. 4), with higher assortativity correlated with a greater
tau-PET SUVR (r = 0.29, p = 0.02). However, this correlation
was not observed in the subgroups (Table 2). No correlation
was found between assortativity and amyloid load (r = 0.13,
p = 0.31). Nodal metrics, including local efficiency and clus-

tering coefficient, did not show any association with either
amyloid or tau load (Supplementary Table S2).

Discussion

This study aims to describe the structural network changes
in the pre-clinical stage of Alzheimer’s continuum and their
association with amyloid and tau load. The study showed no
significant difference in terms of global efficiency across the
groups, but higher assortativity was observed in the A+T+
group when compared with the A+T� and A�T� groups,
indicating a more robust network organization and higher
brain resilience.

The association between assortativity and tau load, but not
amyloid load, suggests that the brain may possess resilience
to tau pathology. Additionally, the left hippocampus of
A+T+ individuals exhibited lower local efficiency and a
lower clustering coefficient. Our results encourage further in-
vestigation of structural network properties in pre-clinical AD.

FIG. 2. Global topological properties. Mean values of global efficiency (A) and assortativity (B) are shown for A�T�
(green), A+T� (blue), and A+T+ (red) groups at different network densities. *Indicates statistical differences between
A�T� and A+T� (blue) groups, between A�T� and A+T+ (green) groups, and between A+T� and A+T+ (red) groups.
Further details on the statistical differences are shown in Supplementary Table S1. A, amyloid; T, tau.

Table 1. Demographics

A�T� (n = 19) A+T� (n = 28) A+T+ (n = 21) p

Sex: F/M 14/5 13/15 14/7 0.13
Age, years 72.7 (7.5) 74.3 (8.5) 76.2 (6.0) 0.35
Education, years 15.9 (2.2) 16.6 (2.6) 16.9 (2.4) 0.42
CDR 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.35
MMSE 29 (28, 30) 29 (29, 30) 29 (27, 30) 0.34
WMH volumes, cm3 1.7 (0.5, 4.1) 2.0 (0.7, 9.6) 1.8 (0.6, 10.3) 0.65
Global amyloid-PET SUVR 1.02 (0.99, 1.04) 1.17 (1.14, 1.30) 1.35 (1.19, 1.47) <0.001a,b

Tau-PET SUVR 1.16 (1.11, 1.19) 1.16 (1.12, 1.20) 1.27 (1.25, 1.34) <0.001b,c

Hippocampal volume, cm3 8.0 (0.8) 8.0 (0.9) 7.9 (0.8) 0.88

Values are expressed as mean with standard deviation for normally distributed data, otherwise expressed as median with interquartile
range.

aStatistically significant difference between A�T� and A+T� ( p < 0.001).
bStatistically significant difference between A�T� and A+T+ ( p < 0.001).
cStatistically significant difference between A+T� and A+T+ ( p < 0.001).
A, amyloid; CDR, clinical dementia rating; MMSE, mini-mental state examination; PET, positron emission tomography; SUVR, stand-

ardized uptake value ratio; T, tau; WMH, white matter hyperintensity.
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Global network properties

At the global scale, efficiency did not differ significantly
across groups of CN individuals with varying levels of AD
pathology, while assortativity was higher in the A+T+
group than in the A�T� and A+T� groups. Assortativity de-
scribes how nodes in a complex network tend to link with
other similar nodes. A positive assortativity coefficient implies
that nodes in a network are more likely to connect to nodes
with similar degrees, indicating enhanced information pro-
cessing efficiency and greater resistance to random attacks
or deliberate removal of central nodes (Sun et al., 2020).

Therefore, higher assortativity in the A+T+ group suggests
that their brain networks are more robust and resilient.

Brain resilience refers to an individual’s ability to cope
with pathology while remaining CN (Arenaza-Urquijo and
Vemuri, 2018). Our findings support this notion by showing
increased assortativity in groups with greater pathology,
while maintaining comparable global efficiency. Thus, the
network measure could complement identification of pre-
clinical AD.

Assortativity measured from structural connectivity was
rarely reported. In a single study by Coninck et al. (2020), in-
creased assortativity was found in subjects with AD. Our

FIG. 3. (A) The graph shows the largest connected component size of the network in A�T� (green line), A+T� (blue
line), and A+T+ (red line) groups as a function of network density. The largest component size tends to increase with higher
density. The dashed line indicates the lowest density threshold (7.8%) in which networks of the 3 groups included all nodes
(i.e., 82 regions). Local topological properties of the hippocampus such as degree (B), local efficiency (C), and clustering
coefficient (D) were calculated under the density threshold of 7.8%. Significant differences in local efficiency and clustering
coefficient in the left hippocampus were found between the A+T+ and A�T� groups. The box plots show the median and
interquartile range. A�/A+, negative/positive amyloid-PET; L, left; PET, positron emission tomography; R, right; T�/T+,
negative/positive tau-PET.
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results further demonstrate that the increased assortativity
can be detected at the pre-clinical stage. In other AD studies,
assortativity has usually been measured from functional con-
nectivity using functional MRI (Bahrami and Hossein-
Zadeh, 2015; Luo et al., 2021) and electroencephalography
(Fathian et al., 2022; Franciotti et al., 2019; Kim et al.,
2022). However, comparisons with these studies are not
valid because structural connectivity tends to form an assor-
tative network, while functional connectivity tends to form a
disassortative network (Lim et al., 2019).

In the present study, there was no significant difference in
global efficiency between CN participants with different lev-
els of amyloid and tau pathology. However, previous studies
have reported lower global efficiency in individuals with
mild cognitive impairment (Bergamino et al., 2022; Jacque-
mont et al., 2017), subjective cognitive decline (Shu et al.,
2018), and pre-clinical AD (Fischer et al., 2015; Pereira
et al., 2018) and CN individuals with an autosomal dominant
AD mutation (Prescott et al., 2022).

Some studies suggested that amyloid alone may not be
sufficient to disrupt the structural network topology during
the pre-clinical stage (Pereira et al., 2018). The lack of de-
creased global efficiency in the A+T+ group in this study
suggests that deposition of both amyloid and tau may not
be sufficient to alter global efficiency.

Local network properties in the hippocampus

At the nodal scale, the A+T+ group showed a lower clus-
tering coefficient and local efficiency than the A�T�

group. The clustering coefficient measures the proportion
of neighbors of a node that are connected to each other,
and a decrease in this coefficient could indicate reduced con-
nectivity within the local neighborhood or increased connec-
tivity between the node and remote nodes ( Jacquemont et al.,
2017). In the left hippocampus, the degree, or the number of
connected links, remained the same, so the lower clustering
coefficient suggests reduced connectivity within the neigh-
borhood.

The decrease resulted specifically for the left hippocam-
pus, which is more susceptible to AD pathogenesis (Shi
et al., 2009). The reduction in local efficiency indicates a
loss of local integration around the left hippocampus, and
this has also been observed in the amnestic MCI con-
verter (Sun et al., 2019). Therefore, changes in the topology
of the hippocampus could potentially serve as biomarkers for
monitoring the early accumulation of AD pathology sub-
strates.

Limitation

This study has several limitations. First, the size of the co-
hort is relatively small, leading to less statistical power to
distinguish between groups. While multicenter diffusion im-
ages were available in ADNI, the reliability of the graph the-
ory metrics could be reduced by including different scanners
(Kurokawa et al., 2021). We limited the data to Siemens
scanners with 48 diffusion directions to minimize such im-
pact, resulting in the small sample size.

Second, we did not further classify subjects based on the
neurodegeneration profile due to the small sample size. Neu-
rodegeneration factors such as decrease of fluorodeoxyglu-
cose and temporal atrophy may correlate with the disrupted
structural network more than amyloid in pre-clinical AD
(Pereira et al., 2018) and MCI ( Jacquemont et al., 2017).
We controlled the neurodegeneration effect in the comple-
mentary analysis and arrived at the same conclusion. Further
studies may explore the complete spectrum of pre-clinical
AD, assessing additional neurodegeneration factors.

Third, probabilistic tractography was utilized to construct
connectomes, and this method suffers from severe false-

FIG. 4. Scatter plot showing the correlation between assortativity and global amyloid-PET SUVR (left) and between assor-
tativity and tau-PET SUVR in the temporal meta-ROI (right). Temporal meta-ROI includes amygdala, entorhinal, fusiform,
and inferior temporal and middle temporal gyri. ROI, region of interest; SUVR, standardized uptake value ratio.

Table 2. Associations Between Assortativity

and Amyloid and Tau

Cohorts

Amyloid-PET Tau-PET

r p r p

Whole sample 0.13 0.31 0.29 0.02
A�T� �0.38 0.16 �0.17 0.53
A+T� �0.25 0.15 0.14 0.52
A+T+ �0.12 0.66 �0.01 0.97
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positive connections (Sarwar et al., 2019). We applied
the stringent thresholding method to maximize the likeli-
hood of identifying true white matter connections (Buchanan
et al., 2020).

Conclusions

This study investigated the topological properties of the
brain’s structural network in the pre-clinical stage of Alz-
heimer’s continuum and their correlation with amyloid and
tau burden. We found preserved global efficiency across
groups, but increased assortativity correlating with the tau
burden. Such increased linkage in higher level architecture
of the white matter network supports the notion of increased
brain resilience in the early disease state and may be a re-
sponse to tau pathology.

Our study provides a potential graph-based biomarker of
brain connectivity for early identification of pre-clinical
AD and encourages further investigation of changes in the
topological properties of the structural brain network in the
early stage of AD.
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