Gibberellin A₃ Is Biosynthesized from Gibberellin A₂₀ via Gibberellin A₅ in Shoots of Zea mays L.¹

Shozo Fujioka², Hisakazu Yamane, Clive R. Spray, Bernard O. Phinney*, Paul Gaskin, Jake MacMillan, and Nobutaka Takahashi

Department of Biology, University of California, Los Angeles, Los Angeles, California 90024 (S.F., H.Y., C.R.S., B.O.P.); School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom (P.G., J.MacM.); and Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-Ku, Tokyo 113, Japan (H.Y., N.T.)

ABSTRACT

[17-13C, 3H]-Labeled gibberellin A_{20} (GA₂₀), GA₅, and GA₁ were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). ¹³C-Labeled GA₂₉, GA₈, GA₅, GA₁, and 3-epi-GA1, as well as unmetabolized [13C]GA20, were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-13C, 3H]GA20 to all three genotypes. 13C-Labeled GA8 and 3epi-G₁, as well as unmetabolized [¹³C]GA₁, were identified by GC-SIM from feeds of [17-13C, 3H]GA1 to all three genotypes. From feeds of [17-13C, 3H]GA5, 13C-labeled GA3 and the GA3-isolactone, as well as unmetabolized [13C]GA5, were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-13C, 3H]GA5 to [¹³C]GA₁, either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA_{20} , as follows: (a) $GA_{20} \rightarrow GA_1$ \rightarrow GA₈; (b) GA₂₀ \rightarrow GA₅ \rightarrow GA₃; and (c) GA₂₀ \rightarrow GA₂₉. The *in vivo* biogenesis of GA₃ from GA₅, as well as the origin of GA₅ from GA₂₀, are conclusively established for the first time in a higher plant (maize shoots).

Our previous studies on the endogenous GAs³ in vegetative shoots of maize (*Zea mays* L.) seedlings have provided evidence for the presence of the early-13-hydroxylation pathway, leading to GA₁ (7, 16, 18). We have also reported on the natural occurrence of GA₅ and GA₃ in normal, heterozygous *Dwarf-8*, and homozygous *Dwarf-8* seedlings of maize (8) and of trace amounts (less than 0.2 ng/100 g fresh weight) of GA₅ in *dwarf-5*, *dwarf-3*, and *dwarf-2* seedlings of maize (7). This paper describes metabolic studies with $[17-{}^{13}C, {}^{3}H]$ labeled GA₂₀, GA₅, and GA₁, using normal and *Dwarf-8* seedlings, undertaken to establish the biogenetic origin of GA₅ and GA₃ in maize shoots.

MATERIALS AND METHODS

Double-Labeled Substrates

The $[17^{-13}C, {}^{3}H]GA_{20}$ (0.915 atoms ${}^{13}C$ molecule⁻¹, 1.79 GBq mmol⁻¹) was synthesized as described by Ingram *et al.* (11); the $[17^{-13}C, {}^{3}H]GA_5$ (0.915 atoms ${}^{13}C$ molecule⁻¹, 1.51 GBq mmol⁻¹) and $[17^{-13}C, {}^{3}H]GA_1$ (0.915 atoms ${}^{13}C$ molecule⁻¹, 2.11 GBq mmol⁻¹) were synthesized by Fujioka *et al.* (7). The purity of the three double-labeled substrates was determined by GC-MS to be at least 99.5%.

Plant Material

The Zea mays L. (maize) seedlings used in this study came from genetic stocks (F2) that segregated in the ratio of 1 + /+:2 D8/+:1 D8/D8. Seeds were soaked in water on November 16, 1987. After 24 h the seeds were planted in a vermiculite:soil (1:1) mixture in the UCLA greenhouse. One week later the seedlings were transplanted to 2 gallon plastic pots (4 plants per pot) containing a vermiculite:soil (1:1) mixture and grown under natural light in the greenhouse. Feeds were made on December 21, 1987.

Feeding, Extraction, and Purification

Each substrate, dissolved in 10 μ L ethanol:H₂O (1:1, v/v), was injected into the basal part (about 1 cm above the ground) of 5-week-old seedlings. A total of five seedlings were used for each feed. The plants were harvested 12 h later by separating the shoots from the roots. The shoots were immediately frozen in dry ice, and the roots were discarded.

The frozen plant material was homogenized and extracted with MeOH:H₂O (4:1, v/v). After removal of the MeOH, the resulting aqueous residue was partitioned as described by Fujioka *et al.* (7) to give the AE, NE, and AB fractions and AQ. The AE fraction was purified on a column of DEAE Sephadex A-25 as described by Gräbner *et al.* (10). The column (25 mL) was eluted with 25 mL portions of the following solvents: MeOH, 0.25 N HOAc in MeOH, 0.5 N HOAc in MeOH, 0.75 N HOAc in MeOH, 1 N HOAc in MeOH, 3 N HOAc in MeOH, 5 N HOAc in MeOH, and 10

¹ Financial support is gratefully acknowledged from the National Science Foundation, grant DMB-8506998 (B.O.P.), and the Agricultural and Food Research Council (J.MacM.). These results were originally presented at the IPGSA Symposium held in Calgary, Alberta, Canada, in July 1988.

² Present address: The Institute of Physical and Chemical Research, Wako-shi, Saitama 351–01, Japan.

³ Abbreviations: GA, gibberellin; +/+, homozygous normal maize; D8/+, heterozygous *Dwarf-8* maize; D8/D8, homozygous *Dwarf-8* maize; GC-SIM, gas chromatography-selected ion monitoring; MeOH, methanol; EtOAc, ethyl acetate; HOAc, acetic acid; Rt, retention time; KRI, Kovats retention index; MeTMSi, methyl ester trimethylsilyl ether; AE, acidic EtOAc; NE, neutral EtOAc; AB, *n*-butanol; AQ, aqueous residue.

N HOAc in MeOH. The radioactive fractions were combined, concentrated, and finally purified by HPLC on a column (10 cm \times 10 mm i.d.) of Nucleosil 5 N(CH₃)₂, eluted with 0.1% (v/v) HOAc in MeOH at a flow rate of 3 mL/min. Fractions were collected every 1 min. After counting an aliquot of each fraction, appropriate fractions were combined, derivatized, and examined by GC-MS.

GC-MS

The GC-MS instrumentation, GC columns, and major operating parameters used in this study have been described for full scan GC-MS by Gaskin *et al.* (9) and for GC-SIM by Fujioka *et al.* (7). The methods for calculating the isotope ratios in the M^+ ion clusters and the fit factors have also been described by Fujioka *et al.* (7).

RESULTS

The percentage recoveries of the radioactivity from the feeds of $[17-{}^{13}C, {}^{3}H]GA_{20}$, $[17-{}^{13}C, {}^{3}H]GA_5$, and $[17-{}^{13}C, {}^{3}H]GA_1$ to seedlings of +/+, D8/+, and D8/D8 maize are shown

in Table I. The results of GC-MS and GC-SIM analysis of the derivatized fractions from the Nucleosil NMe₂ chromatography of the AE fractions are given in Tables II, III, and IV.

From the feeds of $[17^{-13}C, {}^{3}H]GA_{20}$ (Table II), $[{}^{13}C]GA_{29}$, $[{}^{13}C]GA_8$, $[{}^{13}C]GA_1$, and unmetabolized $[{}^{13}C]GA_{20}$ were analyzed by GC-SIM of the M⁺ ion cluster. Trace amounts of $[{}^{13}C]GA_5$ and 3-epi- $[{}^{13}C]GA_1$ were also detected. The $[{}^{13}C]GA_5$, which cooccurred with $[{}^{13}C]GA_{29}$ in the same HPLC fraction, was identified by GC-SIM of the M⁺ ion cluster at the correct Rt in all three genotypes. The intensities of the M⁺ ion cluster of the metabolite, $[{}^{13}C]GA_5$, in the normal and homozygous *D8* seedlings were too low to permit an accurate determination of the isotope ratio. However, for the hetero-zygous *D8* seedlings it was possible to show that there was not measurable dilution of the $[{}^{13}C]$ label. $[{}^{13}C]GA_3$ was not detected as a metabolite from any of the $[17-{}^{13}C, {}^{3}H]GA_{20}$ feeds.

From the feeds of $[17-{}^{13}C, {}^{3}H]GA_5$ (Table III), $[{}^{13}C]GA_3$ and $[{}^{13}C]GA_3$ 19,2-isomeric lactone were identified from all three genotypes by GC-SIM and Rt. (Pure GA₃-MeTMSi has been shown to be partially isomerized to the isomeric 19,2-lactone

Table I. Recovery of Radioactivity from Feeds of [17-¹³C,³H]GA₂₀, [17-¹³C,³H]GA₅, and [17-¹³C,³H]GA₁ to Normal. Heterozyaous Dwarf-8, and Homozyaous Dwarf-8 seedlings of maize

	Genotype	MeOH ext.	AE	NE	AB	AQ					
	(a) [17- ¹³ C, ³ H]GA ₂₀ feed (Total feed: 1.34×10 ⁴ Bq, 2.49 μg)										
	+/+	1.23×10⁴Bq	0.75×10⁴Bq	0.02×10⁴Bq	0.43×10⁴Bq	0.14×10⁴Bq					
		91.8%	55.9%	1.5%	32.3%	10.1%					
			(56.0)*	(1.5)	(32.4)	(10.1)					
D8/+	0.99×10⁴Bq	0.70×10⁴Bq	0.02×10⁴Bq	0.21×10⁴Bq	0.06×10⁴Bq						
		73.5%	51.9%	1.1%	15.3%	4.7%					
			(71.1)	(1.5)	(21.0)	(6.4)					
	D8/D8	1.23×10⁴Bq	1.08×10⁴Bq	0.01×10⁴Bq	0.15×10⁴Bq	0.04×10⁴Bq					
	·	91.3%	80.6%	0.7%	11.1%	2.9%					
			(84.6)	(0.7)	(11.6)	(3.0)					
		(b) [17- ¹³ C	,³H]GA₅ feed (To	tal feed: 1.32×10)⁴ Bq, 2.89 μg)						
	+/+	1.26×10⁴Bq	0.98×10⁴Bq	0.01×10⁴Bq	0.28×10⁴Bq	0.10×10⁴Bq					
		95.8%	74.8%	0.9%	21.3%	7.5%					
			(71.6)	(0.9)	(20.4)	(7.2)					
	D8/+	0.98×10⁴Bq	0.81×10⁴Bq	0.01×10⁴Bq	0.14×10⁴Bq	0.02×10⁴Bq					
		74.7%	61.2%	0.9%	10.3%	1.1%					
			(83.3)	(1.2)	(14.0)	(1.5)					
D8/D	D8/D8	0.97×10⁴Bq	0.78×10⁴Bq	0.01×10⁴Bq	0.16×10⁴Bq	0.05×10⁴Bq					
	•	74.0%	59.3%	0.9%	11.9%	3.4%					
			(78.5)	(1.2)	(15.8)	(4.5)					
	(c) [17- ¹³ C, ³ H]GA ₁ feed (Total feed: 1.26×10 ⁴ Bq, 2.08 μg)										
	+/+	1.10×10⁴Bq	0.72×10⁴Bq	0.02×10⁴Bq	0.32×10⁴Bq	0.09×10⁴Bq					
		87.1%	57.3%	1.6%	25.7%	7.2%					
			(62.4)	(1.7)	(28.0)	(7.8)					
	D8/+	1.00×10⁴Bq	0.75×10⁴Bq	0.02×10⁴Bq	0.2×10⁴Bq	0.05×10⁴Bq					
		79.9%	59.5%	1.3%	15.8%	4.2%					
			(73.6)	(1.6)	(19.6)	(5.2)					
	D8/D8	0.38×10⁴Bq	0.24×10⁴Bq	0.01×10⁴Bq	0.08×10⁴Bq	0.02×10⁴Bq					
		30.0%	19.2%	0.9%	6.0%	1.6%					
			(61.3)	(3.2)	(21.7)	(5.8)					

^a Figures in parentheses = AE (ethyl acetate soluble) + NE (neutral ethyl acetate soluble) + AB (acidic butanol soluble) + AQ (aqueous residue) = 100.

Genotype	HPLC Rt	Radioactivity	Products	GC Rt*	lons	¹² C: ¹³ C	Fit Factor ^b
	min	Bq		min			
+/+	12–15	155	GA ₁	15:22	506-511	11.7:88.3	0.9864
			3-epi-GA1	16:54	506-511	11.8:88.2	0.9944
	17–20	5013	GA20	16:22	418–423	10.8:89.2	0.9688
			GA ₈	13:41	594-599	21.7:78.3	0.9875
	20–29	707	GA ₂₉	15:31	506-511	10.1:89.9	0.9962
			GA₅	16:17	417–420	c	
D8/+	12–15	358	GA1	15:18	506511	45.8:54.2	0.9939
			3-epi-GA₁	16:50	506-511	46.7:53.3	0.9938
	17–20	5107	GA20	16:22	418–423	13.0:87.0	0.9870
			GA ₈	13:42	594–599	63.0:37.0	0.9896
	20–29	388	GA29	15:27	506-511	18.1:81.9	0.9880
			GA₅	16:11	416–421	8.3:91.7	0.9585
D8/D8	12–15	408	GA ₁	15:20	506-511	34.7:65.3	0.9934
			3-epi-GA₁	16:52	506-511	33.4:66.6	0.9882
	17–20	8525	GA20	16:17	418–423	11.2:88.8	0.9127
			GA ₈	13:43	594–599	56.8:43.2	0.9836
	20–29	407	GA29	15:29	506-511	14.0:86.0	0.9882
			GA₅	16:12	417-420	c	

Table II. GC-SIM Analysis of Feeds of $[^{13}C, ^{3}H]GA_{20}$ to Normal, Heterozygous Dwarf-8, and Homozygous Dwarf-8 Seedlings of Maize

^a GC temperature program for GA₅ and GA₂₀ from 180°C at 5°C per min; for GA₁, GA₂₉, and 3-epi-GA₁ from 200°C at 5°C per min. ^b See Fujioka *et al.* (7) for definition of Fit Factor. ^c M⁺ ion cluster intensities too weak for accurate determination of isotope content.

under the GC-conditions used.) In the case of the D8/+ seedlings, [¹³C]GA₃ and [¹³C]GA₃ 19,2-isomeric lactone were identified by full scan GC-MS and KRI data. Isotope dilution was observed.

From the feeds of $[17-{}^{13}C, {}^{3}H]GA_1$ (Table IV), $[{}^{13}C]GA_8$ and 3-epi- $[{}^{13}C]GA_1$ were identified. $[{}^{13}C]GA_5$ and GA₃ were not detected. For both the recovered GA₁ and the metabolite, GA₈, dilution of the $[{}^{13}C]$ label was highest in homozygous *Dwarf-8* seedlings and lowest in normal seedlings.

DISCUSSION

The present studies together with previous work by Fujioka *et al.* (8) establish the three branches from GA_{20} , shown in Figure 1, for maize seedlings. Each step has been defined by feeding ¹³C-labeled substrates followed by identification of the immediate product by GC-MS and KRI or GC-SIM and Rt. All of the six GAs shown in Figure 1 are native to maize seedlings.

Genotype	HPLC Rt	Radioactivity	Products	GC Rt*	lons	¹² C: ¹³ C	Fit Factor ^b
	min	Bq		min			
+/+	16–19	175	GA₃°	15:39	504-509	13.0:87.0	0.9855
			GA ₃ -isolactone ^c	14:56	504-509	13.5:86.5	0.9882
	22–28	6718	GA₅°	12:59	416–421	7.8:92.2	0.9882
D8/+	16–19	273	GA₃⁴	15:37	504-509	25.7:74.3	0.9676
			GA ₃ -isolactone ^d	14:56	504-509	23.3:76.7	0.9865
	22–28	5893	GA₅⁴	12:59	416–421	8.4:91.6	0.9904
D8/D8	16–19	192	GA₃°	15:37	504-509	25.7:74.3	0.9942
			GA ₃ -isolactone ^c	14:56	504-509	23.3:76.7	0.9813
	22-28	5928	GA₅⁵	13:03	416-421	8.1:91.9	0.9978

Table III. Analysis of Feeds of [17-¹³C,³H]GA₅ to Normal, Heterozygous Dwarf-8, and Homozygous Dwarf-8 Seedlings of Maize

^a GC temperature program from 200°C at 5°C per min. ^b See Fujioka *et al.* (7) for definition of Fit Factor. ^c Identification by GC-SIM on M⁺ ion cluster at correct Rt. ^d Identification by full scan GC-MS and KRI: isoGA₃ (minor) KRI 2634, MS, m/z values (relative intensities) 505(M⁺, 100%), 446(27), 370(15); GA₃ (major) KRI 2692, MS, m/z values (relative intensities) 505(M⁺, 100%), 461(9), 446(14), 388(10), 371(26), 356(15), 312(13), 209(89), 208(39), 194(38), 193(36), and 168(29).

Table IV. GC-SIM Analysis of Feeds of [17-¹³C,³H]GA₁ to Normal, Heterozygous Dwarf-8, and Homozygous Dwarf-8 Seedlings of Maize

oniozygous Dwarr-o Seedings of Maize							
Genotype	HPLC Rt	Radioactivity	Products	GC Rt*	lons	¹² C: ¹³ C	Fit Factor ^b
+/+	13–16	5305	GA1	15:24	506-511	8.7:91.3	0.9927
			3-epi-GA1	16:56	506-511	8.9:91.1	0.9855
	19–23	268	GA ₈	13:55	594–599	10.3:89.7	0.9898
D8/+	13–16	5373	GA ₁	15:23	506-511	16.8:83.2	0.9935
			3-epi-GA₁	16:55	506-511	16.3:83.7	0.9902
	18–22	257	GA ₈	13:58	594–599	26.2:73.8	0.9894
D8/D8	13–16	1553	GA ₁	15:21	506-511	22.5:77.5	0.9923
			3-epi-GA₁	16:54	506-511	21.5:78.5	0.9930
	18-22	37	GA ₈	13:56	594-599	48.7:51.3	0.9942

^a GA₁ and 3-epi-GA₁ GC temperature program from 200°C at 5°C per min.; GA₈ GC temperature program from 220°C at 5°C per min. ^b See Fujioka *et al.* (7) for definition of Fit Factor.

The 2β -hydroxylation of GA₂₀ to GA₂₉ and 3β -hydroxylation of GA₂₀ to GA₁, reported here, were previously established by Spray *et al.* (18) in defining the position of the *d1* block in maize. The 2β -hydroxylation step from GA₁ to GA₈ in maize was previously reported by Davies and Rappaport (3, 4) for normal and *d5* seedlings, based on radio-TLC and GC-Rt data. Using similar data, Rood *et al.* (17) reported the formation of GA₈ from GA₂₀ in hybrid maize seedlings. The metabolism of GA₁ to GA₈ is confirmed here by ¹³C-labeling and GC-SIM.

The present work provides the first *in vivo* example of the conversion of GA_{20} to GA_5 and excludes the alternative biogenesis of GA_5 from GA_1 , at least in maize seedlings. The *in vitro* conversion of GA_{20} to GA_5 has been observed previously by Kamiya *et al.* (12), Takahashi *et al.* (19), Kwak *et al.* (15), and Albone *et al.* (2), using cell-free systems from *Phaseolus vulgaris* L. seeds, in which GA_1 and GA_5 occur naturally.

Previous identifications of GA_3 in plants have been uncertain because of the possibility of extraneous contamination

Figure 1. Later steps in the early-13-hydroxylation pathway in maize shoots. The plain arrow indicates observed metabolism in this study. The arrow with cross bars indicates absence of observed metabolism.

by the widespread use of GA₃ as a reference compound. The identification of endogenous GA₃ in *D8* seedlings by Fujioka *et al.* (8), together with the demonstration of the biogenetic origin of GA₃ in these seedlings, clearly establishes GA₃ as native to maize shoots. The present identification of $[^{13}C]GA_3$ as a metabolite of $[17-^{13}C,^{3}H]GA_5$ by GC-MS and KRI data, reported in this paper for maize seedlings, is the first definitive example of the formation of GA₃ from GA₅ in any plant system (see also the following paper by Albone *et al.* [1]). The data demonstrate that the $[^{13}C]$ label from the substrate, $[17-^{13}C,^{3}H]GA_5$, appears in the metabolite, GA₃. Previous reports (5, 6, 13, 14) on the conversion of GA₅ to GA₃ have used $[^{3}H]GA_{5}$ as substrate where the tritium label could not be detected in the metabolite by GC-MS or GC-SIM.

There is no evidence in this study for the metabolism of GA₁ to GA₅, of GA₅ to GA₁, or of GA₁ to GA₃. The possible, but improbable, conversion of GA₃ to GA₁ remains to be tested, e.g. using [17-¹³C,³H]GA₃. Thus, GA₁ and GA₅/GA₃ are members of separate branches from GA₂₀ as shown in Figure 1. Before the identification of the $GA_{20} \rightarrow GA_5 \rightarrow GA_3$ branch pathway in maize seedlings, it was concluded by Phinney and Spray (16) that GA_1 was the primary, or only, native GA that was bioactive for stem elongation in maize. There is insufficient information available at present to assess the role of GA₃ in the control of stem elongation in maize. Finally, the 3-epi-[¹³C]GA₁ formed in feeds of [17-¹³C,³H] GA_{20} to normal, heterozygous D8, and homozygous D8 seedlings may either be a true metabolite of GA₂₀ or an artifact from the [¹³C]GA₁ also formed. This point is under investigation.

LITERATURE CITED

- Albone KS, Gaskin P, MacMillan J, Phinney BO, Willis CL (1989) Biosynthetic origin of gibberellins A₃ and A₇ in cell-free preparations from seeds of *Marah macrocarpus* and *Malus domestica*. Plant Physiol 94: 132–142
- Albone KS, Gaskin R, MacMillan J, Smith VA, Weir J (1989) Enzymes from seeds of *Phaseolus vulgaris* L.: Hydroxylation of gibberellins A₂₀ and A₁ and 2,3-dehydrogenation of gibberellin A₂₀. Planta 177: 108-115
- Davies LJ, Rappaport L (1975) Metabolism of tritiated gibberellins in d-5 dwarf maize. I. In excised tissues and intact dwarf and normal plants. Plant Physiol 55: 620-625

- Davies LJ, Rappaport L (1975) Metabolism of tritiated gibberellins in *d-5* dwarf maize. II. [³H]Gibberellin A₁, [³H]gibberellin A₃, and related compounds. Plant Physiol 56: 60–66
- de Bottini G, Bottini R, Koshioka M, Pharis RP, Coombe DG (1987) Metabolism of [³H]gibberellin A₅ by immature seeds of apricot (*Prunus armeniaca* L.). Plant Physiol 83: 137-142
- Durley RC, Railton ID, Pharis RP (1973) Interconversion of gibberellin A₅ to gibberellin A₃ in seedlings of dwarf *Pisum* sativum. Phytochemistry 12: 1609–1612
- Fujioka S, Yamane H, Spray CR, Gaskin P, MacMillan J, Phinney BO, Takahashi N (1988) Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol 88: 1367-1372
- Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, MacMillan J, Takahashi N (1988) The dominant non-gibberellin responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85: 9031– 9035
- Gaskin P, Gilmour SJ, Lenton JR, MacMillan J, Sponsel VM (1984) Endogenous gibberellins and kaurenoids identified from developing and germinating barley grain. J Plant Growth Regul 2: 229–242
- Gräbner R, Schneider G, Sembdner G (1976) Gibberelline XLIII. Mitt. Fractionierung von Gibberellinen, Gibberellinkonjugaten und anderen Phytohormonen durch DEAE-Sephadexchromatographie. J Chromatogr 121: 110-115
- Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in *Pisum*. The *le* gene controls the

 3β -hydroxylation of gibberellin A_{20} to gibberellin A_1 . Planta **160**: 455–463

- Kamiya Y, Takahashi M, Takahashi N, Graebe JE (1984) Conversion of gibberellin A₂₀ to gibberellins A₁ and A₅ in a cell-free system from *Phaseolus vulgaris*. Planta 162: 154-158
- Koshioka M, Jones A, Pharis RP (1988) The potential of cell suspension cultures of *Daucus carota* L. as a source of isotope labelled gibberellins. I. Metabolism of [³H]GA₅. Agric Biol Chem 52: 55-62
- Koshioka M, Pharis RP, King RW, Murofushi N, Durley RC (1985) Metabolism of [³H]gibberellin A₅ in developing *Pharbitis nil* seeds. Phytochemistry 24: 663–671
- Kwak S-S, Kamiya Y, Takahashi M, Sakurai A, Takahashi N (1988) Metabolism of [¹⁴C]GA₂₀ in a cell-free system from developing seeds of *Phaseolus vulgaris* L. Plant Cell Physiol 29: 707-711
- Phinney BO, Spray CR (1982) Chemical genetics and the gibberellin pathway in Zea mays L. In PF Wareing, ed, Plant Growth Substances 1982. Academic Press, London, pp 101–110
- Rood SB, Koshioka M, Douglas TJ, Pharis RP (1982) Metabolism of tritiated gibberellin A₂₀ in maize. Plant Physiol 70: 1614–1618
- 18. Spray CR, Phinney BO, Gaskin P, Gilmour SJ, MacMillan J (1984) Internode length in Zea mays L. The dwarf-1 mutation controls the 3β -hydroxylation of gibberellin A₂₀ to gibberellin A₁. Planta 160: 464–468
- Takahashi M, Kamiya Y, Takahashi N, Graebe JE (1986) Metabolism of gibberellins in a cell-free system from immature seeds of *Phaseolus vulgaris* L. Planta 168: 190–199